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Abstract

A gas in a time-independent state under a uniform weak gravity in a general domain is considered.
The asymptotic behavior of the gas in the limit that the Knudsen number of the system tends to zero
{or in the continuum limit) is investigated on the basis of the Boltzmann system for the case where
the flow velocity vanishes in this limit, and the fluid-dynamic-type equations and their associated
boundary conditions describing the behavior of the gas in the continuum limit are derived. The
equations, different from the Navier-Stokes ones, contain thermal stress and infinitesimal velocity
amplified by the inverse of the Knudsen number. The system is applied to analysis of the behavior of
a gas between two parallel plane walls heated from below (Bénard problem), and a bifurcated strongly
distorted temperature field is found in infinitesimal velocity and gravity. This is an example showing
that the Navier—Stokes system fails to describe the correct behavior of a gas in the continuum limit.

1 Introduction

The study of the relation of the two systems describing the behavior of a gas, the system of classical
fluid dynamics and the Boltzmann system, has a long history (see, e.g., chapter 1 in Ref.1 and references
therein). In these works, systems of fluid-dynamic-type equations and their associated boundary condi-
tions describing the asymptotic behavior of a gas for small Knudsen numbers are derived from the system
of the Boltzmann equation and its boundary condition. One of the striking results of the systematic
theoretical analyses is that in some important class of problems, infinitesimal quantities in the continuum
limit produce a finite effect on the behavior of a gas in the continuum limit (ghost effect).> Consider, for
example, a gas in a time-independent state in a closed boundary at rest with nonuniform temperature.
The temperature field of the gas in the continuum limit is not correctly described by the heat-conduction
equation, contrary to the prevalent understanding. It is determined by a set of equations coupied with
infinitesimal flow velocity amplified by the inverse of the Knudsen number. Thus, in problems where
there is a finite temperature variation, careful consideration is required to investigate the behavior of a
gas even in the continuum limit.

The Bénard problem of a gas between two parallel plane walls with different temperatures in a gravity
field is one of the most famous problems in classical fluid dynamics and is studied by various authors
(see Ref.3). However, when we consider the Bénard problem with the ratio of the temperatures of
the two walls being not close to unity, the asymptotic analysis of the Boltzmann system mentioned
above indicates that some modification is required for the basic fluid-dynamic equations and that an
infinitesimal velocity field in the Knudsen number in its vanishing limit, which cannot be perceptible in
the continuum world, influences the temperature field in the limit. For complete understanding of the
problem, the corresponding asymptotic theory of the Boltzmann system where the effect of the gravity is
taken into account is required. Thus, we first carry out the asymptotic analysis of the Boltzmann system
for small Knudsen numbers under a weak gravity for the situation where the velocity vanishes in the
continuum limit and derive the fluid-dynamic-type equations and their associated boundary conditions
that describe the behavior of the gas in the continuum limit. A weak gravity field is considered here to
show that infinitesimal quantities in the Knudsen number in its vanishing limit in the Boltzmann equation
influence the behavior of the gas in the limit. Then, this system of equations and boundary conditions



is applied to the Bénard problem, and the infinitesimal velocity and gravity fields are shown to influence
the temperature field and to be the source of bifurcation of the temperature field. The bifurcation and
resulting behavior of the temperature field show the incompleteness of the classical fluid dynamics in
describing the behavior of a gas in the continuum limit,

2 Asymptotic Theory in a Weak Gravity Field

2.1 Formulation of Problem

Consider a gas in a time-independent state under a uniform weak gravity in a general domain. We will
investigate the asymptotic behavior of the gas in the limit that the Knudsen number of the system tends
to zero (or in the continuum limit) under the assumption that (i) the behavior of the gas is described
by the Boltzmann equation; (ii) the gas molecules make the diffuse reflection on a boundary of the gas;
(iii) the gravity is uniform and weak of the order of the square of the Knudsen number (the second-order
infinitesimal); and (iv) the flow velocity vanishes in the limit that the Knudsen number vanishes (the
first-order infinitesimal).

Let L, Ty, po, and g; be, respectively, the reference length, the reference temperature, the reference
density, and the gravity of the gas system. The nondimensional space coordinates z;, the nondimensional
molecular velocity ¢;, the nondimensional velocity distribution function f , and the nondimensional gravity
g are defined from the corresponding dimensional variables Xi, &, f, and g; as follows:

_Xi & ;F f .
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where R is the specific gas constant [the Boltzmann constant (1.3806503 x 1022 JK~!) divided by the
mass of a molecule]. Let the mean free path of the gas in the equilibrium state at rest and at temperature
To and density pg be £. For a gas molecule with a finite influence range, & = 1/v2rd2,(po /m), where
m is the mass of a molecule and d,, is the radius of the influence range of the intermolecular force (this
corresponds to the diameter of a hard-sphere molecule). The Knudsen number Kn of the system is defined
by

)

Kn = f) (2)
which characterizes the degree of rarefaction of the gas. Let
VT A 9i
k= '—2—'I<1’1 and Gis = k_2 (3)

The case where §;; is of the order of unity (or §; is of the order of k2) is of our interest in the present
paper [see the assumption (iii)].

The Boltzmann equation for a time-independent state is expressed with the above nondimensional
variables in the following nondimensional form:

Ci%'i-kzﬁizgg = %j(f,f), : (4a)
i = ('f. - $.)Bdg(a)dc., (4b)
all o;,all ;.
where .. ' '
? = p(laj(Cjt "ACJ)I/!‘CM - Ct'la ]C‘.*.- C‘il)) R .
f = f(xl" Ci)’ f* = f(xi! CI'*), f, = f(xi) C:)a f:- = f(xi) Cz!n-)’ (5)
G =G+ aioi(Ga —G)y Gl = Gin — i (Gin — ¢5),

and o; (or a) is a unit vector, expressing the variation of the direction of the molecular velocity owing
to a intermolecular collision, df3(a) is the solid-angle element in the direction of a, and B(|o;(¢je —
Gi)l/IGe = Gils [Gin — ¢i]) s a nonnegative function of 0 (e = €)1/ 1Gin — G} and [¢iw ~ Ci|, whose functicinal
form is determined by the intermolecular force [e.g., for a gas consisting of hard-sphere molecules, B =
laj (G« = ¢;)1/4v/2m]. The integrations with respect to (;, and o; are carried out over the whole space of
Gis and over the whole direction of a; (the whole spherical surface) respectively.
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Let the temperature and velocity of the boundary be, respectively, T\, and v,,;. The corresponding
nondimensional variables T, and 0,; be defined, respectively, by Ty, /Ty and vy, /(2RT) /2. The diffuse
reflection boundary condition is given with these variables by

(6, i) = — 22— exp (6= u)® »
f(zi,G) = (1T )3/ exp < 7 ) (¢ng > 0), (62)
x \1/2 .
— 2 (Tw) /W G e GG, o

where n; is the unit normal vector to the boundary, pointed to the gas region and the condition required
for a time-independent problem, ?,:n; = 0, is used here. The boundary parameters T, and Ui May
depend on k and can be expanded in power series of k. Corresponding to the assumption (iv), the series
of 0,,; starts from the term of k, that is,

Twz Aw0+Tw1k+"'l
Vi = Dyirk + <+

In the following sections, the asymptotic behavior of the solution f(z;,¢;) of the boundary-value
problem (4a) with (6a) for small k (or k « 1) is studied under the assumption that

/ G:fd¢ = O(k). )

This is the extension of Ref. 2 to the case with gravity. It will be made clear that a slight gravity influences
the behavior of a gas drastically.

The macroscopic variables, the density p, the velocity v;, the temperature T, the pressure p, the stress
tensor p;j, and the heat-flow vector ¢; are defined by the velocity distribution function f. The corre-
sponding nondimensional variables 5, #;, T', 5, Pij, and §; are defined, respectively,kby p/po, vi/ 2RT)Y/?,
T/To, p/Po, Pij/Po, and gi/po(2RT,) /2, where py = RpoTy. They are related to f as follows:

5= [ac, (83)
poi= [Giac, (8b)
377 = [(G-o0fac (89)
p= 4T, (8d)
i =2[ (G- 906 - 9 fc, (8)
6= [ (G- 006 - ) fac. (8f)

2.2 SB Solution
Putting aside the boundary condition, we look for a moderately varying solution of Eq. (4a), whose length
scale of variation is of the order of the reference length L of the system [0f/0z; = O( f)], in a power
series of k: R A A X ,

fsB = fspo + fsprk + fspak® + -+, 9
where the subscript SB is attached to discriminate the moderately varying solution satisfying the} (':onditio'n
(7). This type of solution (or expansion) will be called SB solutiion (or expansion). The condition (7) is
reduced to the following condition on the component function fsgo of the expansion (9):

/ CiFspodC =0, | (10)
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The relation between the macroscopic variables and the velocity distribution function is given by
Egs. (8a)r(80 with the subscript SB attached. Corresponding to the expansion (9), the macroscopic
variable hsp, where h represents p, ¥;, T, etc., is also expanded in &:

;lSB = ;LSBQ + iLsglk + ;Lsgzk2 + -

The component function hsp. is related to the component function of the velocity distribution function
as follows:

pmo = / fmodt, (11a)
papodisso = / Cifspod =0, (11b)
3. . .
5PsmoTsmo = / (% fsgodl, (11c)
Pspo = pseoLsmo, (11d)
DijsBo = 2/C5ijSBOdCa (11e)
Gusso = / 66, FomodC, (11f)
pean = [ famac, (12a)
PspodisB1 = / Gifsmrde, (12b)
3 -~ Xl 24 3 ~ 2
2Pseolser = [ fsmd( - 5Ps81Tspo, (12c)
Psp1 = pspoTss1 + pse1Tsmo, (12d)
Dijsp1 = 2/Cz‘ijSBldC, (12e)
R 2 3. & . . o
Gisp1 = / GG fserd¢~5pspolspodiser — bijspodiser, (12f)

............

where the condition (10) is used.

Now return to obtaining the SB solution. Substituting Eq. (9) into the Boltzmann equation (4a) and
arranging the same order terms of k, we obtain a series of integral equations for the component function
f SBm:

j(fSBO,fSBO) =0, (13)
3 m~1 P
2(f0 foom) = GBI - V- oo foame) + Mg LB (m21, (19
: r=1 *

where the ) term is absent when m = 1, and H3z =1 for m > 3 and Hs = 0 for m < 2.
The solution fggo of the integral equation (13) satisfying the condition (10) is given by

; psBo ¢
= —PSBO L 1
oo = s~ a9

where the relations (11a) and (11c) are used. The solution (15) is incomplete to determine fggo, because
the spatial variations of the parameter functions pspo and ngo are not specified. With this fsgo, the
equation (14) is the inhomogeneous linear integral equation for fsg., (m > 1). The homogeneous equation
corresponding to Eq. (14), i.e., X X

J(fsno, famo®h) = 0, (16)
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has five independent solutions:

v=1, G, (17)

which is seen from the relations ¢’ + ¢, = 1 + 1, and fSB0 fSBO* = fSBo fsBos. From the general relation
f 1,!:J fsym, fSBn)dC 0 of the collision integral J, the inhomogeneous term of the integral equation (14)
must satisfy the following relation (solvability condltlon) for Eq. (14) to have a solution:

[a g e fSB"“ 2Bt 4¢ — 345(0, Gurispm—s, 2652(PsE358)mz) = 0, (18)

where the notation (- - - ),, indicates the m~-th order component function of the SB expansion, for example

(PsBisp)s = 2hspodis1PisB2 + PsB10lspy -
The solvability condition (18) being satisfied, the solution of the integral equation (14) is expressed

in the form:

fSBm = fSBO(COm + CimG: + C4m(1',2) + fSBPma (19)
where fsgpm is the particular solution satisfying the orthogonal relation
[vlsrmac =0, (20)
and ) A . g o
_ 59sBm  3psm  (PsBUZsp)m _ 2(psBYisB)m
m = ~ - ~ - - 3 Cim = ——F——,
2psBo.  2PsBo_ Psgo PsBo (1)
_ DPSBm  PSBm 2(pSEUiSB)m]
Cim = = = - = + = .
Tspo LBsBo  PsBo 3psso
More explicitly, the inhomogeneous term of Eq. (14) form =1 is

dfsso 1 dpsso 1 8Tspo [ & 3)]|;
i =G : - : 22
G oz, [ﬁSBO bz © Tspo Ozi \Tspo 2 Tsao @)

The two relations for 9 = 1 and 3 = ¢? in the solvability condition (18) for m = 1 are reduced to
identities, and the relation for ¢ = ¢; is

Opsgo _ . (23)
Bz;
Then, the inhomogeneous term (22) is reduced to
dfsmo G Oseo [ & 5 psso T spo = (*2 5) >
i = = = - =) E({), 24
= B a7y 3 ) T = s (O 3) BO (24)

where ¢ A 1
G=mm (=D E) = zexn(-{%).
Tsso
Now putting fsgm in the form

fsom = Fomodm (i) = PO B(O) (2, G0, (25)
TSBO

we express the collision integral J(fspo, fspm) in Eq.(14) in terms of the linearized collision integral of
the function of ¢ (z:,(;), that is,

A2

(C)‘CTSBO (¢m($n Ct))l (26)

J(fspo, f

where L (#m(:,(;)) is the linearized collision integral defined by
Lty ($(&)) = / B¢ + 6, — &= 6B (0o — EN/IGin = i, 1Gie = GAR(@)AC,,  (272)
By los(Gio = E/1Gin = Gily G = Gl) = T Bl (G = /1o = Gl G — GlTsho)s  (27b)
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¢=0(G)y de=0(C), ¢ =), ¢ =), (27¢)
G=CG+ei(Gn - i, &, =6 — @ (Ge = G (27d)

Then, from Eqgs. (14), (24), and (26) the equation for ¢, (z;, ) [or ¢y (&) for short] is given in the following
form:

iy 1 8Tspo - 5
‘CTSBO (¢1(mu<z) = Psso Oz, Cz (C - 2) . (28)
The solution ¢ (z;, f.-) of this equation is expressed in the form
. Pser | 2TafR hspodissi = Tsp1 (~2 5) 1 'sgo
iy64) = = + T = ~ A 1 T ’ 2
% (:L' C) PsBo PsBo C TSBO ¢ 2 pSBO oz; C A(C SBO) ( 9)

where A((, TSBO) is the solution of the following integral equation:
5
£a[CiA(C1 a)] = - (CZ - 5) ’ (30)
(=}
with the subsidiary condition: / LA, @)E(Q)dC = 0.
The function A(¢,a) for a hard-sphere gas, which is independent of a, is tabuleted in Ref.1. For the

BKW (or BGK) model,
A= (- 3)

From this fsp,, the first term of the inhomogeneous term of Eq. (14) for m = 2 is

P R N
621 for 1) = BB p a1 ), (31
* SBO
where
I= T_;B% OPss1 C'*‘( 2 5PSBOU;SB1)C~~
Pso 0z; )" \psmo Oz I

iz |_Pse aTSBO TSBI
S50 | Tspopsso 0%i Bz, Tsmo “

" (2”SB°"’SB1 6TSB°) &g (<2 - —) ¥ (T?fi 3?3") G (¢t -o2+ 2),

DsBo

Tspy
1 3TSBo aTSBO %2 1 3«4(( ) TSBO) T BA(E , Tspo)
Il = - — i -3 T X

_ (T 8*Tsso
pSBO amlazj

) GG A, Tspo).

With this inhomogeneous term, the solvability condition (18) for m = 2 gives the following three equa-
tions:

OpspovisBL _
R =, (32)
Opsp1 _

or; 0, ‘ 9

. . Tsp 10 ATy, '
PsBo¥isp1 52; ~ 30a, (’YZ(TSBO)Tsl'é% 6;0)’ (34)
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where 9, (TSBO) is expressed in the following integral of A(f ,TSBO):
Y2(a) = 2I6(A(¢, a)), (35a)
L&) =z [ 2@ em-cc (35b)
For example,
42(Tspo) = 1.922284066 (a hard-sphere gas), 4:(Tsgo) = 51/320 (the BKW model).

The collision integral J(fsp1, fsp1) in the inhomogeneous term in Eq. (14) for m = 2 is arranged with
the aid of formulas in Ref. 1, and then the whole inhomogeneous term is further arranged with the aid of
the solvability conditions (23) and (32)-(34). Thus, we obtain the equation for ¢;(z;, ) [or ¢a((;) for
short] in the following form:

Lt (62(8)
N 2 ” ,.
1 [ Tspy %2 zavy  2TsL2 hspotiser Tspa z 72
= (2L ¢, 1-82)) - Bl e (G-
2 (TSBO) LTSBO (C ( C )) ﬁSBO TSBO Tsso (C( C ))

- 2
T;é%ﬂsso
- (—‘—“‘ﬁSBD ~ UtSBl”]SBlACTSBO( g 2(1(1)

pspodism Tt 8T (&G BAGT - M-
+ pSBovAfBl B0 Ly G 04K Tomo) _ (2Gi¢; — 61;) A, Tspo)
Pspo Oz; T\ a¢

Ll e, (a {lc————a’“c N GRD) A(E,TSBO)—ngo———a“““:TSB"’D

Psso Tsgo 0% ¢ 0T spo

1 Tsmiz (72 _ _) Tézég O0sm \ (s _ &
"3 Pspo Ox; G (C pseo  O; GG - 3 3%

— N
1 6T530 BTSBQ 3 .o A ]
- . . . .. N i s NG ’T
- g (2520 (220 [R5 Tt 437, A i) A i)
Tspo 8*T'spo . 36
T 5, QUL+, Tb2), (36)

where

Ttons B G = 5 [ BEIGL' + 89— o - ) B, da) L.,

with ¢., @', d., ¢, and B;__ defined by Egs. (27b) and (27c), and

Tsso
TS > o s0AQ Tspo) | o A Tspo)
Thal = (Cj(ﬁ' - ?51'3‘) (2 (42 -~ 3) A(C,TSBO) - C———-—é'z-——- + ZTSBO——6T530 ,
Tha2 = (? (Cz - —) A({, Tspo) ~ 36"——“~A %5530),

Thad = 5 (CzA(E,TSBO) - 5%(7“530) (62 - g)) ,

dA(C, Tsmo) _5q5 d%2(Tspo) (Ez _ _g_) ’

Thad = T'sgo 2 X =
580§ 9 Tom 5T sBo dTpe

and

Thb1 = (Ejé - %aﬁ) A Beao), - Thb2 = A Tspo) = SnPsmo) (02 - 3) = 2mas,
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Here, each of the inhomogeneous terms marked by * * %, as well as the terms expressed by the operator

L, Satisfies the solvability condition (18). .
The solution of the integral equation (36) is expressed in the following form:

7y _ P 2(psp1dise1 + Pspodisea) T ah
¢2(<i)=ZSB2+ (PsB1Visp bsBoVispa) SBO

SBO Pspo G
+ {ﬁssz _ PsB2 + 2?’53003531] (C'z _ E)
PsBo  PsBo 3psBo 2
. 2 . .
1T (54 sy g) . Dshobsodisa: Tsen : (52 _ §)
2 TSBO ) 4 8 ﬁSBO TSBO ' 2

PsBo 3

21/2 2 o )
+2 (M) visp10;sB1 (Ci(j _4 z'j)
—

+ ﬁSBoﬁisalfg-ég 'spo §s~i BA(C, ':fSBa) _
Pimo Oz; \ ¢ 8¢
+ L Tspi 0Tam0 ¢, | LeAG Tamo) _
PsBo TSBO Oz; 12 af

(266 ~ 6:).A(C, TSBO))

z X » BA(, Tspo)
(¢2 - 3) A, Tsmo) - Tago = 2500

L ;s n  (Teht 00sm TSR P
_ﬁzl:(; 6151' C‘IA(C’TSBO) (ﬁSBO Ba:,' C@C] - 3 6,_7 B(C:TSBO)
1 [(8Tsmo\ [ 0Tsmo sy Qo A
o (25) () S
Tspo 8*Tspo TR B
* ﬁ2—SBO_6zi3$j [(C'C] 3 6”) By +6N7 1 37

where B({, Tspo), By (¢, Tspo), By(C, Tsmo), NA(C, TgBo), and N'B({,Tsgo) are defined in Appendix A.
The first six terms on the right-hand side are the second-order terms of the local Maxwellian. The
terms marked by % * ¥ are obtained by modifying the obvious solutions known from the form of their
inhomogeneous terms expressed by L4, operator with the solutions of the corresponding homogeneous
equation in order for the orthogonal condition to be satisfied.

We proceed with the analysis in a similar way. Then, from the solvability condition (18) for m = 3,
we obtain the following equations:

Opspolisps | Opsmibismr _

=0 38

Oz; Or; ’ (38)
. . Obispy  10Psss . .
PsBoV;sB1 Bz, = "2 8, + PsBogiz

10 [. 4 a2 (317;'531 dVjsp1 2 Olksp1
+26:1:j [71(TSBO)TSB° Oz; + oz; 3 Oz 8

N N N 2
1 9 ], . O0Tsgg 0Tsge 1 [ 0Tsgg By
B 2pspo Oz; {77(TSBO) [ O0z; Oz; 3 ( oy, ) 6":’ }

1 8. . . Tspo  18°Tsgo
~ %emg Bz, [’73 (TsBo)T'spo ( w0z, 3 2l dii )|, (39)
dTsp; 8Tspo

PsBovisp: 2z T (PsBoVisB2 + Psp1DisB1) :
11 K]

DI -t

8 (. \a120Tsm - d’?z(TSBo)T;z/z% 'm0
Bz, ("/2(TSBO)TSBO dz; + Tsm dTSBo Oz; ’ “0)
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where &I(TSBO), A3 (TSBO), and ’?7(TSBo), related to transport coefficients, are defined by the following
integrals [see Eq. (35b}:

Y1(a) = Is(B(¢,a)), F3(a) = 216(B1(¢, a)), (a) = Is(B2(¢,a)).
For a hard-sphere gas,
A1 (Tspo) = 1.270042427,  43(Tspo) = 1.947906335, 47(Tsmo) = 0.189201,
and for the BKW model,
41 (Tspo) = T, 43(Tsmo) = Tamo,  A7(Tsmo) = Tsmo

Now, at the stage of the solvability condition (18) for m = 3, the equations that determine the
component functions of the macroscopic variables at the leading order are lined up. From Egs. (23) and
(33), which are required for the flow velocity 9; to be a small quantity of the order of k, psgo and Hsp1
are constants (say, po and p;):

Pspo = Po, Psmr = P1, (41)
from which .
. p . pr — pseol’sp
psBo = TEL, psB1 = -m—'[:o——i, (42)
Tspo TsBo

with the aid of the equations of state (11d) and (12d). Equations (32), (34), and (39), which are derived
from the solvablhty condition (18) for (m = 2, ¢ = 1 and ¢?) and (m = 3, ¢ = (;), contain the component
functions psgo, TgBo, Disp1, and Ppgp2, but from Eq. (42), they are the equations for Tsso, 9isB1,and Psp2-
Generally, the set of equations derived from the solvability condition (18) for (m = s+2,4 = 1and ¢ 2) and
(m = s+ 3, ¢ = {;) contains the functions psp,, T'sBs, DisBs+1,3nd Pspes2 as well as functions appeared
in the equations at the previous stages [or the functions psgr, Tsar, DisBr+1,and pspr+2 (r < 8 —1)].
Thus, with the aid of the expanded form of the equation of state (8d), the staggered combination of
functlons PsBs, TSB,, DisBs+1, and Pspst2 is determined consistently and successively from the lowest
order by the rearranged sets of equations given by the solvability condition (18).

The set of equations for fsgo, T'sgo, Uisp1, and Pspy has a striking feature. That is, the leading
temperature field Tspo is determined together with the next-order velocity component ¥;58;. This is
an important result related to the incompleteness of the classical gas dynamics (ghost effect), which is
discussed in detail in Ref.2. Furthermore, the gravity, which vanishes in the continuum limit, enters
Eq. (39) or the set of equations for pspo, Tspo, Disp1, and Pspz. This is another ghost effect a.nd its
example will be presented in Section 3. The presentation of this ghost effect and its combination of the
first one is the purpose of the present study. The component function fsgm of the velocity distribution
function is determined by the macroscopic variables pgg,, TsBs, Disps, and pSB, (8 < m). The leading
component function fsgo is the Maxwellian at rest with parameters jggg and Tsgo, i-e.,

: _ Psmo ¢?
fsBo = Ty P ( ) (43)

(mTspo) Tspo

However, the parameter ’f’sgo is not determined by the Euler set of equations. We have already seen this
type of example in Refs.4 and 5. Furthermore, in the present case it is determined together with the
higher-order variable #;sp; and parameter §i,.

From fspm obtained [Eqgs.(15) and (25) with (29) and (37)], the component functions $;;spm and
disBm Of the stress tensor and heat-flow vector are easily obtained as follows:

(44a)
(44b)

PijsBo = Pspodij,
PijsB1 = DPsp1dij,

) 8%, O0l;s1 2 Olrser
N 3 T1/2 iSB1 iSB1 __ 8ii
Pijsp2 = Psp2dij — bz; | 0z; 3 Oz OV

a -~ N 2 N n
Y7 | 9TsBo 0Tspo % (3Tsao) 5 43T sBo (52Tsao 10 TSBO5U> (440)

PsBo Oz; an Bz, PsBo 611:,;3.’1?]' 3 Oz



Gispo = 0, (452)
. 5. 172 0TsEo
Gism1 =~ Teho 5.2 | (45b)
. 5 (. 2120081 . ATl 0Tsmo

, —-— — = T, T - 4] .
gisB2 1 (72 SBO 5, + AS‘Bl——~dCZ,SBO o (45c¢)

The term with the factor 4; in p;;spo is the viscous stress, due to the first-order velocity field 0;581, given
by the Newton law, and the terms with factor 4, in §ispm, are the heat flow by the Fourier law. The
"‘ylf’;é% and '72T§1§?) are, respectively, the (nondimensional) viscosity and thermal conductivity of the gas,
and Tsmd'?zfgé% / dT'sgo in gisp2 is due to the temperature dependence of the thermal conductivity. The
third6 and fourth terms in p;;sps, as a whole, are called thermal stress, and are the source of Kogan’s
flow.

2.3 Knudsen-Layer Analysis and Boundary Condition for SB Solution

In the previous section, we have derived the set of fluid-dynamic-type equations describing the behavior
of the gas in the continuum limit, putting aside the boundary condition. The problem is discussed here.

The leading term of the SB solution fspo is Maxwellian without flow [Eq.(43)]. This distribution
satisfy the diffuse reflection condition (6a) if the boundary value of Tgg, is taken as Two:

Tsgo = Two on a boundary. (46)

The next-order distribution fsm, which is not Maxwellian, cannot be made to satisfy the diffuse
reflection boundary condition, which is the corresponding part of Maxwellian. Thus, we introduce the
correction in a neighborhood of the boundary, i.e., a Knudsen-layer correction, to the SB solution. That
is, we put the solution f in the form

f=fs+fx, (47)

where fx is the Knudsen-layer solution, for which the condition on the SB solution is loosened. That is,
the length scale of variation of fk in the direction normal to the boundary is of the order of the mean free
path [i.e., n:0fx /0z; = O(fk)], and fk is assumed to be appreciable only in a thin layer, with thickness
of the order of the mean free path, adjacent to the boundary.

Here, the following Knudsen-layer coordinates are introduced:

z; = knni(x1, x2) + Twi(X1, X2), (48)

where z,,; is the boundary surface, 7 is a stretched coordinate normal to the boundary, x; and x» are
(unstretched) coordinates within a parallel surface 7 = const, and the normal vector n; is a function of

X1 and x2. The Knudsen-layer correction fx is expanded in a power series of k:
fx = frrk+---, (49)

where the series starts from the order of k, since the diffuse reflection condition is satisfied by fsgo at
the order of unity. The expansion of fsg in Eq.(9) is reshuffled here, since the following power-series
expansion in k7 can be applied in the Knudsen layer, where n = O(1):

fse = (fspo)o + [(fsal)o + (ni agjfo) 7)} PR (50)
tJo

where the quantities in the parentheses with subscript 0, (- - - )o, are evaluated on the boundary.
Substituting the split form (47) with the series (50) and (49) into the Boltzmann equation (4a) and
rewriting in the Knudsen-layer variables (48), we obtain the series of equations for fxm

im0 = 25((smolo Fc), (51
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The sum fSB + fK being substituted into the diffuse reflection condition (6a) and the result being
expanded in &, the boundary condition for fx,, on the boundary is obtained. That is, at = 0,

Uw_A 2iAwi_Ai 2 3 Tw "T
1 PSB1+ Gi(Vwai vSBJ)_*_(i_ ) 1— Tspy

fx1 = fsmo ~ =

PSBO Two Two 2 Two
L GAC/TLE Tuo) O smo -
11250 Bz (Gini >0), (52)

where A . 12
Gur _ pser _ Tur—Tom  Abispini _ 2Vl
pso  PsBo 2T w0 T2 Po

.........

/ ¢inifradg,
¢ini<0

The Knudsen-layer correction fx being introduced as the correction to fsg in the neighborhood of the
boundary, it should vanish as 7 — oo:

fKI—}O as 7 — 0o.

Thus, fx1 is determined by the half-space boundary-value problem of the linearized Boltzmann equation
with one-space variable . The boundary-value problem is considered for more general situation for the
BKW equation in Refs.4 and 5, and the undetermined boundary values 9;55; and T531 are related to
8T530/6a:, for the solution to exist. This is confirmed by mathematical studies of the existence and
uniqueness of the solution of the boundary-value problem (e.g., Ref. 7; see also Ref. 1).

The relations are given in the following form:

(B3sB1 = Bwj1) (65 —nymi) _ Ky 8Tsmo -
7"11%2 - Po Oz, —— (6 — TjNi), (53a)
Ujspin; =0, (53b)
TSBIA"' Tw1 - Cf_laTSBUn (53c)
TwO bo azj

where K; and d1, which are called, respectively, thermal-creep and temperature-jump coefficients,?-12
are functions of TwO depending on molecular models. For example,

K, = —0.6463, d; = 2.4001 (a hard-sphere gas),
Ry /TM? = _0.38316, dy/T/? =1.30272 (BKW).

The relations (53a)—(53c) give the boundary conditions for Djsp1 and sy

At this stage, the equations and their associated boundary conditions that determine the behavior of
the gas in the continuum limit are lined up. That is, the equations are Egs. (32), (39), and (34) and the
boundary conditions are Egs. (46), (53a), and (53b).

2.4 Asymptotic Fluid-Dynamic-type Equations and their Boundary Condi-
tions
For the convenience, we summarize the fluid-dynamic-type equations and their associated boundary

conditions that describe the behavior of a gas in the continuum limit under the assumptions introduced
at the beginning of Section 2.1. The fluid-dynamic-type equations are

0pspobise1 =0, (54)
3:1:;
L . Obispr _ 10p%m, 9 Disw , Fism 28%5316 )]
PsBoY;sB1 oz, 3 0u + PsBodiz + 3 63, Fl(TSBO) dz; + oz; 3 oz, ¢

1 9 3TSBo M'sgo 55
2 5 (Fv( Tspo) B, Oz, ), (55)
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.. 8T 16 . T
pSBOUiSBI a;?() = -2_8:31 (F2(TSBO) ai?o) » (56)
where
N ~ _ N 2
s _ Do o 293Tspo 8*Tspo | [y [ 0Tspo
psBo = Fepn” Dspy = pspa + %0 0 + Pl ) (57a)
T'1(Tspo) = % (Tsmo)Tal, Ty(Tepo) = Y2 (Tspo)Tof2, (57b)
P Y PP d¥3Tsmo 1,
T (T = —— - A, I'7(T. = = — A, 57c
7(TsBo) e A 7(TsBo) e 3 (57c)

By the introduction of the quasi-pressure Psp2, Eq. (39) of the third order is reduced to Eq. (55) of the
second order. That is, Eq. (39) is a third-order equation only in its appearance. The thermal-stress term
(or the third term on the right-hand side) in Eq. (55) can be further reduced to the first order with the

aid of Eq. (56). With the new modified pressure 13232 defined by

~ N N 2
. 2 0 (.. . oF T (Fsgo) (07
t 2 0 so\ _ T'7(Tsmo 5B0
Pspy = Psp2 + 30 52 (’Ys(TSBo)TSBo Bz, ) ( )

6]30 sz
~ ~ 2
e I'7(Tspa) ( 8Tsmo

Eq. (55) is rewritten in the following form with the first-order thermal-stress term:

o Bb;sp1 1 aﬁL'B2 . 10 O9isp; aﬁjssl 2 Blrsm
. _ _10psp, b+ =2 |Ip -~ = i
Pspobismy —5 "= = —5 =52 + bsmoia + 35; 1"\ o, T e 3 om, é

. . 27 .
Lr 9j5m 8spo T3 dOw/T3 (9Fsno " | 0o (59)
T2 Tsge 0Oz 45, dTSBO Oz; 8z; ’
where I’y = I'1(Tsgo), T2 = [3(F'spo), and T7 = [y (Tspo). Incidentally,
[7 = 1.758705, T7 =1.884839 (a hard-sphere gas),
. . 5.
Ir=Tso,  Tr=3Two (BKW).
The boundary conditions are
Tspo = Two, : (60a)
(0jsB1 = Dwj1)(8s —nymi) Ky 8Tspo N _
3 jjw:,{)? g = —E——é—;T(&j - n;n;), Ujsgin; =0. (60b)

The effect of molecular property enters the above system only through the transport coefficients 4,
42, 93, and 97 (or 'y, I'y, T'; and I'7) and the slip coefficient K;. Thus, the fundamental_structure of the
equations and boundary conditions is generally common to molecular models.

3 Bénard Problem

Consider a gas in a time-independent (or steady) state under the uniform gravity between two parallel
plane walls with different temperatures. The gravity is in the direction normal to the wall, that is
G22 = —§ (§ > 0) and g1 = §a3 = 0. Let L, Ty, and Tp be, respectively, the distance between the wall,
the temperature of the lower wall, and that of the upper. The coordinate system is taken in such a way
that the lower wall is at zo = 0 and the upper wall is at z; = 1. The parameters being taken to satisfy
the assumptions at the beginning of Section 2.1, and the behavior of the gas is analyzed on the basis of
the fluid-dynamic-type equations (54), (55) [or (59)], and (56) and the boundary conditions (60a) and



(60b). The analysis is limited to a two-dimensional case where the variables are independent of z3 (or
8/8z3 = 0) and vs = 0. The behavior in the limit that Kn — 0 being interested in, the variables T', 5,
u;, and P (or P*) and the parameter T'5 are, respectively, used for TsBo, PsBo; Visp1, and Pspa (or Phgs)
and Tg/T4. Thus, p = pO/T Here, the temperature T4 is taken as the reference temperature Ty in the
definition of T'. The parameters included in Egs. (54)-(56) and (60a) and (60b) are T, §, and Fo. It
may be better to add some comment on the parameter fip. At present, p, is not specified in the problem
stated above. Let the average density of the gas in the domain be taken as the reference density po in the
definition of the nondimensional variables. Then the constant Po is specified with the other parameters
T and § g, but the explicit relation is given only after the solution is obtained. That is,

- —1

where the bar — over 1/7 indicates its average over the domain.

3.1 One-Dimensional Solution

First consider the case where the behavior of the gas is uniform in the direction parallel to the walls
(or 8/0xy = 8/dz3 = 0). Then, the solution of Eqgs. (54)-(56) under the boundary conditions (60a) and
(60b) are expressed in the following form:

T=TU: ﬁzﬁU=ﬁ0/TU7 (623')
Uy = Uy =Ug = 0, (62b)
TU F2( ) TB
P = 'PU = -—2@130/ dt P2(t)dt ) (62C)
1
where Ty is given by the implicit function
Tu TB
sa= [ Ty(t)dt / / Ty (t)dt . (63)
1 1
The function I'; is related to the nondimensional thermal conductivity 4; by
Ta(t) = A ()2, (64)

When I'3(t) = cot™ [n = 1/2 (hard-sphere), n = 1 (BKW); co: a constant], the relation (63) can be made
explicit: . A
Ty = [1+ (T - 1))/ (D), (65)

The undetermined constant fy is related to the average density (say pg) in the domain in the following

way. By definition,
1 L 1 ﬁO d
Po-—f/o PdX2~po/0 i‘; Ta.

Ta Ts
4 m:[ mma// t7IT5(¢)de. (66)

We will investigate the possibility of bifurcation from this one-dimensional solution, which will be
called 1D solution and denoted by hy for simplicity. In the following analysis, we consider only the case
where the quantities are independent of z3 (8/8z3 = 0).

Thus,

3.2 Bifurcation from One-Dimensional Solution

Consider a solution that is periodic, with period 27 /a, with respect to the z; direction. We examine
whether the periodic solution bifurcates from the 1D solution [Egs.(62a) and (62b)] and clarify the
behavior of the solution in the neighborhood of the bifurcation point, if any. Let the values of the
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parameters T' and § at a bifurcation point be T and §,. The value of Po, given by Eq. (66) for the 1D
solution, is denoted by ;. That is,

TBb TB&
Pob = /1 Dy (t)dt / /1 t710,(t)de. (67)

For the solution periodic with respect to z; to be considered hereafter, gy is given by
-1

1 p2n/a
. a 1
Do = (5;'/0 /o Twaldz2> . (68)

For this purpose, we try to find the solution (say, k) as a perturbation to the 1D solution (say, fzyb) at
the bifurcation point in the following form:

T = Tus(zs) + 6T}, (z2) cos amy + 62[Tho(72) + Toy (z2) cos azy + Tha(ze) cos 2az,]
+ 63[T30(m2) -+ T31 (272) cosqzry; + -+ Tss (ZQ) cos 3(1.’131] +ee, (693)

P = pus(T2) + 6p11(22) cos az1 + 6 [pao(x2) + foa (z2) cOS 01 + foa(z2) cos 2071
+ 6%(B30(22) + pa1 (32) cOs Ay + -+ - + paz(x2) cos 3azi) +-- -, (69b)

uy = 0Uy1(zp) sinaz; + 62[U21 {(z2)sinaz; + Usz(w2) sin 20, |
+ 63[U31 (122) sinar, +---+ U33($2) sin 30[(1:1] +, (690)

Uz = §V11(22) cosazy + 62[Vag(z2) + Vay (22) cos oy + Vaa(z3) cos 2az;)
+ 8% [Vao(z2) + Va1 (z3) cosazy + - - - + Vas(zz) cos x|+ -+, (69d)

uz =0, (69)

P* = Phy(z2) + 6Py (z2) cos azy + 62[172*0 (z2) + Py (z3) cosaz; + P3y(z2) cos 2az;]
+ 53[P§0(z2) + P3i(z2) cosaz; +--- + P33(x2) cos3azq] + -+, (69f)
where 6 indicates the deviation from the bifurcation point, for example, 6? = [(T's —Tg,)2 +(§ ~g8)?]'2,

but it is not necessary to be explicit here. Corresponding to the expansion using 6, the parameters T
and § away from the bifurcation point (T’gs, J) are expressed as

N N g — T §— 5
TB — TBb+52 (TB = Bb)’ §=Qb +52 (g 52917)’ (70)

where (T — Tgs) /6% and (9 — §;)/6? are quantities of the order of unity.

The basic equations are the conservation equations (54)-(56) and the equation of state (57a), with
the new notations. It is, however, convenient here to eliminate the Pspy (or P*) by taking the curl
of Eq. (55), since pYg, (or P*) does not appear in the boundary conditions and it is not a quantity of
physical interest here. Substituting the series (69a)—(69¢), and (70) into the basic equations (54), the
curl of Eq. (65)-(56), and (57a) and arranging the same order terms of &, we obtain a series of linear
ordinary differential equations that determine the component functions ’f’mn, Pmny Umn, and V,,,,,. The
Prun 18 obtained from these quantities from Eq. (55). In the series of equations, the component functions
appear in such a way that they can be formally determined successively from the lowest order (or in the
order of m). The leading-order component functions T3y, g1, Uyq, and V4; are governed by the following
equations:

L;(U11,V11,0) =0, (71a)
Ly(U1y, Va1, T, 0) =0, (71b)
L3(Vi1, T, ) =0, (71c)
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and .
. Doy 111
f11 = —5— =, 72
Tyy Tus (72)
40Ty, dTus dUsy; d* Uy, dTys al'yy dViy
Pl = r
P = =g Un =D g T +alu v + ==

N 2 .
a . dTys a2 TUb dTUb dT1;
+P0b {[Fn ( = ) + Doy ——— a2 } Ti1 + s dz, dzs }
Here, Ly, Ly, and L3 are the operators defined as follows:

Li(U,V,a) = aU + v, 1 dbwy,

— 73
dzz = pus dz (73)

. - 2 . a

- U T dlyn d®U | Ty [(dfys L d® Ty, | dU

L,(U,V,T,a) = 2-1% _1b —a?| &
2( a) d Flb dmg d:z:2 [Flb d(l,‘z F]b d.’l;‘% @ diEz

. ~ 2 . ~
Iy, 4T d*v Iy [dT Iy 427,
2 lb Ub _ 15 Ub 16 Ub 2
~2a Flb dflJ2U+ad$% a{l—‘ (d(l)z) +P1b dx% +QJV

N 2 .
a F7b dTUb d T Fn dTUb ET_
F]_b d.’L‘z d.’L'.z d.'l)g dmz

+ l:_a2thUb I Ty 4Ty Ty T 4 20 (201) 2] T} . (74)

Ty dzg Ty dzp dzi L1y dzg  Tus \ Ty

R . 2,2 . 2 . g
Yo £ (tast) 8o (e tarte ]

ng d:vg d.’l: sz d:l:g d:rg ng d:l:z sz dm%
(75)
where
iy =T1(Tse), T =T2(Tms), T = T7(Ts),
- 2p 2
I (dI‘m /dT) pepy, m (d m /AT )T_Tm
From Egs. (60a) and (60b), the boundary conditions for these equations are
Ty=Un=Vi=0 atz;=0 andz, = 1. (76)

The boundary-value problem [(71a)-(71c), and (76)] is homogeneous. Thus, the problem can, gener-
ally, have a nontrivial solution only when the parameters TBb, gs, and « satisfy some relation, say,

Fb (T.Bba gba O!) =0. (77)

This is the relation among the parameters Tg;, 95, and o for which the solution (69a)-(69f) bifurcates
from the one-dimensional solution (62a)—(62c). The curve g, versus T, for a given a, which is obtained
numerically for a hard-sphere gas, is shown in Fig. 1, where the corresponding curve when the thermal
stress terms [the terms containing Iz, and Iz, in the operator L, defined by Eq. (74)] are neglected in
Eq. (71b) is shown in dashed lines for comparison. There is appreciable difference for small Tg,. The
relation being expressed as §, = gb(TBb, a), consider the minimum value of §, with respect to a with TB,J
being fixed and denote it by (9s)m and the minimum point by a. The curves (gs)m and am, versus Tg,
are shown in Fig. 2.

When the condition (77) is satisfied, the solution is determined except for a constant factor. This
factor is determined by the higher-order analysis, which is only touched on owing to limited space. The
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Figure 1: Bifurcation curves I: §, versus Tg; for various a. (a) Wider range of §, showing several branches
and (b) magnified figure of the the first branch. The solid lines indicate the bifurcation curve for
a hard-sphere gas; the dashed lines —- - indicate the corresponding curve when the thermal stress terms
are neglected.
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Figure 2: Bifurcation curves II: The curves (9s)m and o, versus T:’Bb. (a) the two curves (§)m and o,
versus T’gy and (b) a magnified figure of the curve (Gs)m versus Tgy. The solid lines indicate the
bifurcation curve for a hard-sphere gas; the dashed lines ——- indicate the corresponding curve when the
thermal stress terms are neglected.

boundary-value problem for U1, Vo1, and Tgl is homogeneous and of the same form as that for Ui,
Vi1, and Ti;. The problem for Up,;, Vini, and Tm} (m > 3) is inhomogeneous, and its homogeneous
part is of the same form as that for Uy, Vi1, and Ti;. Thus, its inhomogeneous part must satisfy some
relation (solvability condition) for the solution Up,1, Vim1, and Tim1 to exist. The homogeneous part of the
boundary-value problem for Umn, Vimn, a0d Tpp, (n # 1) has no nontrivial solution unless an additional
condition among T'gs, 85, and « is satisfied.

Let the undetermined constant factor (or the norm) of the set (Uyy, Vi, T1;1) be 6 A, where the norm
may be defined, for example, as A = | fol(Uf1 + V& +T2)dz,]'/2. Then, the solvability condition of the
boundary-value problem for Usy, Va;, and T31, is expressed in the following form:

Alar(Ts — Ts) /62 + a,(§ ~ §) /6% - apA? = 0. (78)

Thus, . A
2 _or (Te —Ts) | a, (§—gs) _
A = —ao 7 + o B or A=0,
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where ar/ap and ag/ap are determined by Tss, G5, and c. The first equation gives the amplitude of the
bifurcated solution, and the second is the one-dimensional solution. The bifurcated solution extends to
the range

a N 2 N N
—T“(TB —Tgs) + a_g(g - &) >0, (79)
ao ao

in the parameter plane (T'g, §), and the amplitude A remains zero along the direction (Ts — Tgs, § — 0s)
given by
2T (Tg — Ts) + —“'(9 =) =0. (80)
ao ao
That is, this is the direction of the bifurcation curve Fb(TBb, gb,¢) = 0 in the TBb-g,, plane, which is
shown in Fig. 1.

When ap = 0, the coefficients ar/ap and a,/ap are infinite. This indicates that the amplitude §A is
much larger than é (the square root of the deviation from the bifurcation point), and thus the preceding
analysis should be reconsidered. The solution bifurcating from the bifurcation point (T's, §s, ) where
the condition ap = 0 is satisfied can be obtained in a similar way to the preceding analysis by modifying
the power series (69a)—(69f) of & to a power series of §/2, That is,

f = fup(xa) + 82 f1;(x3) cos oy + 8] fao(2a) + for(z2) cosaxy + faz(T2) cos 2a,]
+ 8% fa0(x2) + fa1(z2) cosazy + -+ + fys(T2) cos 3oz
+ 82[fs0(22) + far(z2) cosazy + - - - + faa(z2) cosdazy]+-- -, (81a)
uy = 62Uy (22) sin oz + 6[Us; (22) sin oy + Usa (22) sin 20z
+ 63/2[U31(:cz) sinaz; + -+ - + Usz(z2) sin 3oz ]
+ 82[Ugi (z2) sinazy + - - - + Uga(x2) sindaz, ) + -+, (81b)

where f = T, ug, B, or P*. The boundary-value problem for (U11,V11,T11) is the same as that for
(Uu,Vu,Tu) in the preceding analysis, as should be. In the higher-order analysis, the homogeneous
part is the same as before but some inhomogeneous terms degenerate because of the condition on ao,
and the amplitude of the solution (U11, V11, Tu) is determined by the solvability condition of the equations
for (Usy, V51, T51) As the result, the fourth power A%, instead of A? in the general case, of the amplitude
of (U1, Vn,Tu) is expressed by a linear combmatxon of Tg — Ty and § ~ Gb-

When na, as well as o, satisfies the bifurcation relation (77) for some set of integer n (n*), some
comments are in order. Then the leading terms (the terms of the order §) of the perturbation should be
the sum of corresponding Fourier components, that is,

é Z Jin(z2) cosan(z; —¢,) or & z urn(z2) sinan(z; — cn)',

n=(n*) n=(n*)

where c,, is some constant, and the following terms correspondingly consist of more terms than before.
The analysis can be carried out in a similar way to that of the preceding analysis. Incidentally, if the
neighboring integers (say m and m + 1) belong to the set (n*), the corresponding amplitudes, A,, and
Am+t1, vanish.

3.3 Two-Dimensional Temperature Field under Infinitesimal Flow Velocity

In the previous section we have found that there is a bifurcation of temperature field under infinitesi-
mal flow velocity (the first-order infinitesimal) and gravity (the second-order infinitesimal) and that the
nonlinear thermal stress, which is the second-order infinitesimal, affects the bifurcation of the tempera-
ture field. In this section, we will study the temperature field away from bifurcation point by numerical
analysis of the system summarized in Section 2.4.

The numerical computation is carried out in the following way. Consider a gas in the finite domain
(0 <z <m/a, 0 < z2 < 1) and take the following conditions on the side boundaries:

A

oT Oug s
= = =2 . = 2
. 0, w3 =0, B2, 0 atz;=0and z; = o (82)
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in addition to the conditions

A

T=1 wuy=uy=0 at z2 =0, and T=TB,U]_=UQ=O at zo =1, (83)

a 1 1!'/0 1 -1
Do = (;-/0 ‘/0 Tdeldxg . (84)

Incidentally, from the basic equations (54)—(56) with (57a) and the boundary condition (82), it is found
that 0P/0r; = 0 at z; = 0 and z; = 7/c.

Let a solution of the above problem in a rectangular domain be S1. Then its mirror image with
respect to the vertical boundary is also a solution of the problem (say S2). The two kinds of solutions
S1 and S2 being alternately arranged laterally, the resulting function is found to be two times continu-
ously differentiable across the vertical connection lines z; = nz Ja (n=0,1,2,--), because it satisfies
Eqs. (54)—(56) except on the connection lines and satisfies the condition (82) at the connection point.
That is, the function thus constructed is a periodic solution with period 27 /o with respect to z; in the
infinite domain between the two plane walls at g =0 and z, = 1.

The boundary-value problem, i.e., Eqs. (54)-(56), (82)—(84), is solved numerically by a finite difference
method. The solution of the boundary-value problem for the finite-difference equations is obtained by
the method of iteration. The outline of the process is as follows: (i) First rewrite Eqgs. (54)-(56) in
the following form, where Opgg,/0z; term is eliminated from Eq. (55) by taking the curl of it, and the
vorticity w and the stream function ¥, in place of the continuity equation (54), are introduced, and the
superscript with parentheses showing the step of iteration is attached for convenience of explanation.

and

a (n) 8T (n+1) — oaln) uﬁ") 8T ™)
521,' (Fz 6m,~ =2 0 T(") az,' ’ (85)
1 T/ -1
s(n+1) _ [ & 1
A = (w A dzld:c:») , (86)
pinin) (0 ﬁ) wrtt) o _ 2086 BTy, pRD gl
! 02?2 Oz2 (T(n+1))2 0z ! 0z; Oz
+ R BNCSSY o7+ [ gy{™ N ™ _oTY [ gy) . dul™
al‘i 1 aivg 6z,' 6x1 33:1 33),‘ 6:32
N 1 i '_-a_ F(n+1) af(nﬂ) aT(n-f-l) _-a— I‘("+1) afv(n+1) aT(n+1)
13(()"“) 0z; | 0z \' 7 Oz2 Oz; Oz \ 7 Oz, Oz;
(n) (n) g(n+1) (n) gf(n+1) 5(nt1) o (n) (n)
+ 213((),,4.1) Y _Ouy” or + Ou,” 8T 2?0 Ou; ' w , (87)
(T(n+1))2 Oz; Oz Ox;  Ox, T(+1) Oz
6? 62 1 1 0 o\ ;
et s O o2 b)) 2 () 9 () O\ A(ne1)
(azi + axg) ¥ B (T D)2 (“2 9z, A amg) ™, (88)
A (n+1) . H(n+1)
(n+1) _ A(nt1) 0¥ (n+1) _ _A(nt1)
U T 6172 ’ Uy T 62!1 ' (89)
where . . .
I3V = To(f™), T{™Y = Iy(F+D), 0D = py (fee), (90)

and Eq. (88) corresponds to the relation w = Ouz/0z; — Buy /Oz2. Then, the finite difference form of
these equations is prepared. (ii) Choose an initial set of (u§°), u§°’, T, ﬁéo), w®). (iii) Obtain Tint1)
BT, WD) glnt) w™ | and u{"*Y) successively using Egs. (85)—(89) according to their order with
the set (7("), ﬁ((,"), W™, Ty, ul™) obtained at the previous stage (or given as the initial set).
That is, T(**1) from Eq. (85), ﬁ((]"+1) from Eq. (86), w(™*V) from Eq.(87), ¥+ from Eq. (88), u§"+1)
and ug"“) from Eq. (89) using the data obtained at the previous stage. The boundary condition in the
process of solution is obvious except that for w(™*1) on z, = 0 and 1, for which w(™*+1 = (") F9ul™,
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Figure 3: The bifurcated temperature field for a hard-sphere gas I: T = 0.1. (a) § = 320, (b) § = 328,
(c) § = 1000, (d) § = 7000. The solid lines indicate the isothermal lines [T =0.1n(n=1,2,...,10) from
the upper wall to the lower]; the arrows indicate u; at their starting point and its scale is shown on the
left shoulder of the figure. The thin lines indicate the corresponding results with the thermal stress effect
neglected, and the dashed lines ----- indicate the 1D solution.

where 9 is a constant properly chosen so that the iteration converges, is used. (iv) Return to step (iii)
and continue the process with newly obtained (F("+1), p{"+1) w(n+1) glnt1) u("+1) (rt1)y as (T,
A, w™, ™ 4™ (™) The essential problem at each step is to solve the Poisson equation.!3

Some of the results of computation are shown in Figs. 3 and 4. When T = 0.1 (Fig. 3), the bifurcated
solution first extends to the direction of smaller § from the bifurcation point at § = 341.28 and then to
larger § after its amplitude grows to some size. At § = 320, there is no bifurcated solution for the system
with the thermal stress terms neglected, for which the bifurcation point is at § = 364.96 [panel (a) of
Fig.3]; at § = 328, the maximum difference of the temperature of the system without thermal stress
amounts to 20% of the correct solution [panel (b) of Fig. 3]; and for § = 1000 and 7000, slight differences
of isothermal lines are seen in the central region in panels (c) and (d) of Fig.3. When T = 0.5 (Fig. 4),
the bifurcated solution extends to the direction of larger § from the bifurcation point at § = 1162.28. At
§ = 1170 [panel (a) of Fig.4], there is no bifurcated solution for the system without thermal stress; at
§ = 1180 [panel (b) of Fig. 4], there is clearly a difference between the two solutions with and without
thermal stress. The results clearly show that the Navier-Stokes system fails to describe the temperature
field in the continuum limit. The strongly deformed temperature field in the absence of gas motion is the
ghost effect.
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Figure 4: The bifurcated temperature field for a hard-sphere gas II: T = 0.5. (a) § = 1170, (b) § = 1180,
(c) § = 2000, (d) § = 30000. The solid lines indicate the isothermal lines [T = 0.05n+0.5 (n=0,1,...,10)
from the upper wall to the lower]; the arrows indicate u; at their starting point and its scale is shown on
the left shoulder of each panel. The thin lines indicate the corresponding results with the thermal stress
effect neglected, and the dashed lines ----- indicate the 1D solution.

3.4 Discussions

In this section, the Bénard problem of a gas in the continuum limit between two parallel plane walls with
different temperatures is studied on the basis of the asymptotic fluid-dynamic-type equations and their
associated boundary conditions. The two-dimensional problem discussed in this work is, apparently, a
plain problem which has already been studied sufficiently, but the result is not the one that is given by the
classical gas dynamics. In the problem the temperature field is determined together with the infinitesimal
velocity field. The infinitesimal velocity is not perceived in the continuum world (or in the world of the
continuum limit). Thus, there is a bifurcation of the temperature field and it is strongly distorted even
when there is no flow at all. In other words, the correct behavior of a gas in the continuum limit can not
be obtained only by the quantities perceptible in its world.

A bifurcated and distorted temperature field is also obtained with the aid of the Navier-Stokes equa-
tions if the vanishing flow velocity is just retained. However, it does not give the correct answer. In the
asymptotic fluid-dynamic-type equations, there is another contribution. It is the thermal stress. The
thermal stress is of the second order in the Knudsen number and the viscous stress is generally of the first
order. In the present case, the velocity is of the first order and therefore the viscous stress degenerates to
the second order. Thus the thermal stress should be retained together with the viscous stress. Here we
show the difference between the two results. The dotted lines in Fig. 1 are the corresponding bifurcation

176



curves for the sets of equations (54)-(56) where the thermal stress terms [or the terms containing I'; in
Eq. (55)] are eliminated. Some examples of isothermal lines for the two results are compared in Figs.3
and 4, where the results for the thermal stress neglected is shown in thin lines. These results clearly show
the ghost effect and inappropriateness of the Navier-Stokes system for the description of the behavior of
a gas in the continuum limit.

In a real gas, the mean free path may be very small but is not exactly zero. Then, the flow velocity is
nonzero for the bifurcated temperature field. As an example, consider the following case: The distance L
between the two walls is 10 m; the temperature T's of the upper wall is 300 K; the gas between the channel
is air (or nitrogen gas) and under atmospheric pressure, although it is not a monatomic gas and does
not correspond exactly to the present asymptotic equations. Then, the mean free path near the upper
wall is roughly 6 x 1078 m. (i) When T5/T4 = 0.1, the mean free path near the lower wall is 6 x 10~7
m and thus the Knudsen number is 6 x 1078, The gravity |g;| at the bifurcation point is |g;] = 2 x 10~7
m/sec?, which is 2 x 107® of the gravity on the earth. According to the numerical computation, |u;| < 5
for § = 320 or |u;| < 17 for § = 1000; that is, the flow velocity is, respectively, less than 0.4 or 2 mm/sec.
The corresponding temperature field is given in panels (a) and (c) of Fig. 3. In the case of Fig. 3 (a), there
is no distortion of the temperature field if the thermal stress terms [or the terms containing I'7 in Eq. (55)]
are neglected. (ii) When Tg/T4 = 0.5, the mean free path near the lower wall is 10~7 m and thus the
Knudsen number is 1078. The gravity |g:| at the bifurcation point for Tg/T4 = 0.5 is |g;| = 5 x 10~°
m/sec?, which is 5 x 10710 of the gravity on the earth. According to the numerical computation, |u
< 1for § = 1170 or |u;| < 10 for § = 2000; that is, the flow velocity is, respectively, less than 5 x 10~3
or 5 x 1072 mm/sec. The corresponding temperature field is given in panels (a) and (c) of Fig.4. In the
case of Fig.4 (a), there is no distortion of the temperature field if the thermal stress terms [or the terms
containing I'y in Eq. (55)] are neglected. In view of the temperature field and the scale of the system,
the velocity is practically a vanishingly small quantity. In the analysis, we considered the case where the
plane walls were at rest. Unless the motion of the walls is kept at rest with accuracy much less than the
above speed, which is difficult to control, the analysis taking into account of this small motion (9:1) into
the boundary condition (60b) is required for the correct description of the behavior of the temperature
field. We have considered a perfectly time-independent problem. Infinitesimal time-dependent quantities
(e.g., Bwiin;) may induce time-dependent or time-independent effect on the behavior of a gas in the
continuum limit.

The effect of infinitesimal velocity is more striking when we consider the Bénard problem with the
diffuse reflecting side walls. That is, a one-dimensional temperature field is impossible owing to the
boundary condition (60b). In case of classical fluid dynamics (the Navier-Stokes equations under nonslip
condition), the one-dimensional temperature field given in Section 3.1 is possible when the temperature
of the side walls is given in harmony with 1D solution. Thus, the results of the two system disagree at
the starting point of the study of the Bénard problem.

The present study shows that the behavior of a gas in the continuum limit cannot be described by
the Navier-Stokes equations for an important class of problems and that infinitesimal quantities play an
important role for its description (ghost effect). The ghost effect is also discussed in Refs. 2, 14, 15, and
16.

4 Concluding Remarks

In the present work, we considered a gas in a time-independent state in a weak gravity field in a general
domain. Its asymptotic behavior for small Knudsen numbers was investigated on the basis of the Boltz-
mann system for the situation where the flow velocity and gravity were very small quantities (or more
precisely, infinitesimals, respectively, of the first and second orders of the Knudsen number in its vanishing
limit). A system of fluid-dynamic-type equations and their associated boundary conditions that describes
the behavior of the gas in the limit that the Knudsen number tends to zero (or in the continuum limit)
is derived from the Boltzmann system by the asymptotic analysis. Both infinitesimal quantities, the flow
velocity and gravity, influence the behavior of the gas (or the temperature field) in the continuum limit.
That is, the temperature field in the continuum limit is determined by the equations coupled with the
two infinitesimal quantities amplified by infinite quantities (i.e., the inverse of the Knudsen number or
its square). The asymptotic system of equations and boundary conditions was applied to the bifurcation
analysis of the Bénard problem of a gas in a weak gravity field between two parallel plane walls with
different temperatures.
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The Bénard problem was studied analytically and numerically. Bifurcation from the temperature
field uniform in the direction parallel to the plane walls (1D solution) was analyzed, and the bifurcation
curve was obtained. The bifurcated temperature field away from the bifurcation point was studied
numerically by a finite-difference method. In the continuum world (or to those who are living in the
world where the mean free path of the gas molecules is vanishingly small), the (infinitesimal) flow velocity
is not perceptible, or the gas is at rest. In spite of this, there is a bifurcation of the temperature
field. Strongly distorted temperature field as well as the 1D temperature field exists in a gas at rest.
This bifurcated temperature field is not correctly obtained by the Navier-Stokes system by retaining
the infinitesimal velocity. Additional thermal stress terms are required to obtain the correct solution.
Infinitesimal nonlinear-thermal-stress flow has the same-order effect on the bifurcation and the bifurcated
temperature field. What is noted is that a one-dimensional temperature field cannot, in general, be
possible in the Bénard problem in a domain with a finite lateral length.

The classical fluid dynamics is inappropriate to describe even the well-known Bénard problem for
a gas in the continuum limit (unless the temperature ratio of the two walls is close to unity). The
inappropriateness can be understood in the framework of the classical fluid dynamics if the order of the
magnitude of the transport coefficients is taken into account. However, we have to resort to kinetic theory
to obtain the correct system of equations and their associated boundary conditions.

A Function B((, Tego), N4(C, Tsmo), ete.

The functions B({, T'spo), N A(f ,Tso), etc. appeared in Egs. (37) are expressed by linear combinations
of solutions of the following integral equations related the linearized collision operator £, (*):

o |(66 - 300 B 0)| = 1B e
Lo[N™({ a)] = IN(™  with the subsidiary conditions: / 1, &N E(GAC = 0. (92)

The inhomogeneous terms I Bg") and IN(™) in Eqs. (91)-(92) are as follows:
- (2 §2 -
1B = -2 (c.-cj -3 ij) , IBY = (g,g ,-) A(¢, a),

y - :
18 = (c,g < 1,) (2(4 34(G,0) - (24 )+za5*‘;§’“)),

¢
3

1B = Ju(GAG @), GAG ) = 22 3 (G AG 0), G G ),
k=1

- 0,4(5, a) 6.;4((., a) = d¥s(a) (= 3
) — o94A%9) (1) = 9,926,872 972(a) _2
IN 2§2< )A((, a) -3 T INW =24 o ¢% - 5a T (42 2),

3
IN® = PAG0) - 3300 (8- 3), VO = 3 26 AG ), GG ),

k=1

The functions B(¢, a), B1((, a), B2(C, a), N4(C, a), and N'B((, a) are expressed by the functions defined
above as follows:

B({,a) = BO(,a), By =-BY, B,=-82 _283), (95a)
NA = LN L NOLN@D o ®) B = —iN@, (95b)
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