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Weighted Norm Estimates, L*-Summability and
Asymptotic Profiles for
Smooth Solutions to Navier-Stokes Equations
in a 3D Exterior Domain

Cheng HE* & Tetsuro MIYAKAWA

Abstract

The exterior nonstationary problem is studied for the 3D Navier-Stokes equations. We
first improve the known results on the time-decay of weighted norms of weak and strong
solutions. For strong solutions, our decay result seems optimal. Secondly, the L!-
summability is proved for smooth solutions which correspond to initial data satisfying
certain symmetry and moment conditions. The result is then applied to show that
such solutions decay in time more rapidly than observed in general. Furthermore, an
asymptotic expansion is deduced and a lower bound estimate is given for the rates of
decay in time.
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1 Introduction

In an exterior domain Q C R® with smooth boundary 0Q), we consider the initial-boundary
value problem for the Navier-Stokes equations :

Owu— Au+u-Vu=—-Vp in Qx (0, 00),

V-u=0 in © x(0,00),
u=0 on 9 x (0, c0), (1.1)
u—0 as |z| — oo,
u(z,0) = a(z) in Q.

*On leave of absence from Institute of Applied Mathematics, Academy of Mathematics and System
Sciences, Academia Sinica, Beijing, 100080, People’s Republic of China. Supported by JSPS.
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Here u = (uy,us,u3) and p denote unknown velocity and pressure, respectively, while a is
a given initial velocity. For simplicity we assume that R®\ Q is connected. The kinematic
viscosity 1s normalized to be one.
The is an extensive literature dealing with decay properties of weak and strong solutions
o (1.1). (see, e.g.,[3], [4], [3], [16], [21], [23], [27], [26], {30], [31], [32], [38]). For weak
solutions, L?—decay properties have been studied and algebraic decay rates, similar to those
for solutions of the heat equation, are obtained. The results show for each a € L2(Q2), the
subspace of L*() of solenoidal vector fields, there is a weak solution u defined for all ¢ > 0
such that
Jim (2l = 0 (12)

Hereafter, || - ||» denotes the norm of L"(Q). If, in addition, a is in L"(Q2) for some 1 < r < 2,
then i

()l < C(1 + )72 (1.3)
See [3], [4] and [7]. For strong solutions with small initial data, L?—theory was first developed
by Iwashita [23] and Chen [7] on the basis of the LP — L? estimates on solutions ug(t) of the

Stokes equations, i.e., the linearized version of (1.1):

llus(t)lly < Ct 3G P|la]l, (1<p<g<oo,l<p<qg< o), (1.4)

[Vuo(®ll, < O #73 P all, (1<p<g<3,1<p<g<3). (1)
These estimates were applied by [5], [7] and [23] to extend the existence results of Kato [24]
for the' Cauchy problem to the case of (1.1), and we know that if a is in L3(f), the space
of L? solenoidal vector fields, and if ||af|3 is sufficiently small, then (1.1) possesses a unique
strong solution u defined for all ¢ > 0. Moreover, if a € L"(Q) for some 1 < r < 3), then

Wi

5Dy € BO([0,00); L4(Q)) (r < g < o0), (1.6)

DT € 0([0,00) Q) (B< g < 00), )
where BC stands for the set bounded continuous functions. We note that in (1.7) the
boundedness of ¢t — t%+%(%'§)||Vu(t)Hq is open for ¢ > 3 because of the restriction ¢ < 3 in
(1.5). ,

In this paper we systematically apply (1.3)-(1.5) to improve (1.6)-(1.7) and show that if

a € LYQ)NL3(Q) and if ||a||s is sufficiently small, then (1.1) admits a unique strong solution
u such that e

11070y € BO(0,00); I(2) (1 < < 00), (18)

13+50-9vy € BO([0,00); L9(Q)) (1< g<3). (1.9)

These results extend the decay results of [5] to the case of L' —initial data. We further show
that for small e > 0 and 3 < ¢ < o0,

) I Vu(t)l Loy < C,\,et_“%“ (t>0,)>0),

where

U= {z € Q: dist(z,00) > A}
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We next consider weighted estimates for weak and strong solutions to (1.1). For weak
solution to the Cauchy problem, the L?— moment estimates

/Ra(l + |2))u(z, 1)[2dz + /Ot /Rs(l + [2])*|Vu(z, t)2dzedt < C, (0 < a < 3)

were obtained for weak solutions ([18], [40]); and for strong solutions the weighted L9—
estimates

I+ [2)*u()llg + 1321+ =) Vue), < €
are known to be valid with @ > 0 and # > 0 such that
a+28=3-3/q or a+20=4-3/q; 3<q< oo, (1.10)

under various assumptions on initial data. See [1], [11] [18], [35] [36] for details. The balance
relation (1.10) between the space and the time decays agrees with that of the heat equation.

In case of the exterior problem (1.1), the corresponding results are still incomplete. Farwig
and Sohr [10] gave a class of global weak solutions such that

2|0, [2°0%u, |a|*Vp € L*(0,+o00; L))

for1<¢<3/2,1<s<2and 0<3/g+2/s—4 < a<min{1/2,3 — 3/q}. Farwig [9] then
gave another class of weak solutions u, such that for

| Fu()]l3 + EVullidr <|llz[Fu(s)l} (0<a<),

for s =0 a.e. s> 0, and all t > s; and

llzl7u ()]} + 2/: llzl?Vulljdr < lelru(s)|f} + Ce, )]t - sI? (1.11)

for s =0, a.e. s >0, and all ¢ > s, where § > 0 is arbitrary.
In this paper, we improve above results and give a class of weak solutions, which satisfy

lelfu@l + [ Nlzlfvulidr < 0+ 0% (6/5 <q<3/2),

Nzl < CL+8F 83 (0< o < 94/2(6 — q), 6/5 < g < 3/2),

under suitable g-dependent assumptions on initial data.
As for the weighted estimates on strong solutions, He and Xin [17] gave a class of small
strong solutions which satisfy that

I+ o) 3u@l, < C (a=3/7—3/g,7 < g < o0),

under some assumptions on initial data. However, these estimates are not optimal. In this
paper, we deduce the optimal decay rates in space and time for strong solutions and establish
the balance relation between the space and time decays which is similar to that of solutions
to the Cauchy probelm. In dealing with our estimates, a crucial role is played by (variants of)



the results of Giga and Sohr [15] on the maximal regularity of solutions to the nonstationary
Stokes equations.

Secondly, we study L'-summability in z € Q of strong solutions to (1.1). For the Cauchy
problem, Miyakawa ([33], [34]) proved that for an arbitrary a € L'(R") N L*(R™), there is a
weak solution u satisfying

u € BC([0,00) : L'(R™)). (1.12)
Lions [28] (see also [8]) shows that if Va € L'(R"), there is a weak solution u such that

Vue LE(0,00 : L'(R™),  du, 0ue L*0,T:L'(R")) (1<s<2).  (1.13)

This result can be viewed as supplementary to the L] L2-estimates of [15]
T
/0 (10zull; + 18l + IVpll)dt < ¢ (1/s+3/2¢=2, 1<q<3/2).

Hereafter, || - ||, denotes L™-norm.

For the exterior problem (1.1), few results are known on the L!-summability of solutions.
Kozono [25] studied necessary and sufficient conditions on.the L!-summability of strong
solutions and proved that a strong solution belongs to L'(Q) if and only if the net force
exerted by the fluid to 90 vanishes:

/BQ(T[u,p] W) (y,8)dS, =0, 0<t<T, (1.14)

where
Tlu,p] = (Tjk[w, p))ihers  Tiklu,p] = Ojuk + Okuj — 6ixp

is the stress tensor, v = (11,12, v3) is the unit outward normal to 9Q, and dS is the surface
element on Q. To our knowledge, no other results are available on L!-solutions to (1.1). In
fact, in dealing with (1.1) in L', the presence of the boundary 99 causes several difficulties.
To solve (1.1), we usually invoke the projection P onto the solenoidal vector fields to eliminate
the pressure gradient Vp in (1.1) and then transform the problem into the integral equation

u(t) = e Ha — /Ot e tDAP(y - V)u(T)dr. (1.15)

Here, A = —PA is the Stokes operator. In the case of the Cauchy problem, the projection
P commutes with the Laplacian A ; so the semigroup {€7*}:» is essentially equal to the
heat semigroup {e‘4}:5q, which is bounded on the L' space of solenoidal fields. Moreover,
P is written in terms of the Riesz transforms, and so one can avoid the use of L'(R") by
employing the Hardy space H'(R") in which P is bounded. However, all of these techniques
are not applicable to the exterior problem (1.1).

In this paper we establish L!-summability for strong solutions to (1.1).in the case where
the domain {2 and the initial data a satisfy certain symmetry conditions. To do so, we use the
potential representation of the solution instead of (1.15), and first discuss L*-summability of
02y and Vp. This immediately implies (1.14) for our solutions, which in turn ensures that
u, O;u and §2u decay more rapidly than observed in general. It should be noticed that we
prove the ezistence of L-solutions to (1.1) in some specific situations, while [25] discusses
only necessary and sufficient conditions for (1.14) to hold.
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We discuss also an asymptotic expansion of solutions. In the case of the Cauchy problem,
[11] and [36] proved that the weak and strong solutions admit various types of asymptotic
expansions, in terms of the space-time derivatives of Gaussian-like functions, provided that
the initial data satisfy appropriate moment conditions. Similar results are given in [12] and
(13] for solutions in the half-space. In this paper we first derive asymptotic expansions for
u and Vp, both of which contain a term that is not in L*. This implies that (1.14) holds if
and only if u or Vpis in L'. We further prove that condition (1.14) is characterized only in
terms of the pressure p. Namely, (1.14) holds if and only if

/BQ(y&,p —pv)(y,t)dS, =0  forae t>0, (1.16)

with 8,p the normal derivative of p. Condition (1.16) is sometimes more useful than (1.14)
because it involves only a scalar field p. We then deduce the first-order asymptotic expansion
for solutions satisfying (1.14). As a corollary, we can prove the existence of a lower bound of
rates of time-decay of the L!-solutions, as is done in the case of the Cauchy problem ([11])
and the problem in the half-space ([12]).

The paper is organized as follows: In section 2 we introduce necessary notation and then
state the main results. In section 3 we give the outline of the proofs of the main results.

2 Notation and Main Results

Throughout the paper we fix an exterior domain O C R® with smooth boundary 89. Without
loss of generality, we may assume that the complement Q° of Q is contained in the ball
B(0, Ro) with radius Ry > 0 centered at the origin, and that the origin is in 0°. L7(Q),
1 < p < oo, denotes the usual Lebesgue spaces of scalar functions with norm || - ||, and those
of vector functions are denoted L™(Q). CF,(Q) is the set of compactly supported smooth
real functions ¢ = (¢;)3_; such that V- ¢ = 0. LI(Q), 1 < r < oo, is the L"-closure of
Cq,(2). W™ (Q) denotes the usual L™-Sobolev space with 1 < r < oo and the closure
of C5°() is denoted by W{™"(Q). Given a Banach space X with norm || - |[x, BC(I : X)
is the space of functions which are bounded and continuous from the interval I to X ; and
L*(0,T : X), 1 < s < o0, is the space of strongly measurable functions f : (0,T) = X such
that 7 | f(B)ldt < 0.

Let P: L"(Q) — L,(Q), 1 < r < oo, denote the bounded projection associated with the
Helmholtz decomposition of L"(§2) (cf. [32]). Then the Stokes operator A is defined by

A = —PA, D(A) ={u e W>(Q) :ulpp =0} NL3(N), 1<r < oo}

We also need the Banach spaces

—1/s.5 ' e B Sdt %
D7 i= {0 € L) 5 Wollpgmurae = lolle + ([ 1546401 5)* < oo},

- 3,8 x o = [0 - \’dt -:.
Dy = {v € LYQ) ¢ [[vllpamsres = llzl®v]l, + (/0 l[£%]2]* Ae mv”q_t_) < oo},

in order to specify our initial data.
We next define weak and strong solutions to (1.1).
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Definition 1. A vector function u on 2 x [0, 00) is called a weak solution to (1.1) if
1) u € L®(0,T; L*(Q) N L*(0,T; H(Q)) for any T > 0,
2) wu satisfies the equations (1.1) in the sense of distribution, i.e.,

‘/:)/Q(—-g—gu + Vu-Vé+ (u-Viu- ¢)dzdr = /ﬂ #(z,0)a(z)dz

for every ¢ € Co([0,00); W*(Q2)) N Cy([0, 00); L2(92)).

3) wu satisfles divu = 0 in the sense of distribution, i.e.,

/Qu(:n,t)vw(:v)dx =0 for every ¢ € C3°(9).

Definition 2. u is called a strong solution to (1.1) if u € L*(0,T; L?(Q)) for 3 < p < 400,

and all 0 < 7 < oo, and 2)- 3) in the Definition 1 hold for u.

We can now state our main results. The first result deals with the existence and estimates
of weak solutions in weighted L*>—spaces.

Theorem 1. Leta € LY{Q)NLAQ). If |z a0 € L¥(Q) and a € D33 for some
o 6/5,(1-7v)/2

0 < v < 1/4, then there is a weak solution to (1.1) which satisfies

@l +2 [ 17u(s)13ds < flal, (2.1)
NPT u@)l + [ Nlel T Vu(s)lidds < CA 1+, (22)
lizlPu(dll2 < C(lalls, 4)(1 +1)7H5, (2:3)

for all0 < B <3(3—7)/8, and
Ju(@®)l2 < Cllalla(1 + )75, (2.4)

Here A, depends on v, ||a|l;, ||a||D1/4,z/a and |Ha:la‘§1a]]‘2
6/5,(1—) /2
We further prove !
Theorem 2. Under the assumptions. of Theorem 1, suppose that |z|*/%a € L*(Q) and

a € DY** with 1/s+3/2p =2, 1 <s<2and6/5 < p<3/2. Then there is a weak solution
to (1.1) which satisfies

Iz Fu()]i2 + /0 2l Vu(n)2dr < CAx(1+ (1 + )5 o (29)
and . . . ,
lzlu()ll: < CAs(1+¢)7576%7 (0 < a < 9p/2(6 — p))- (2.6)

Here A, depends on ||a);, naupm,?l,i W llall p-sres and llz|3all,.

)
Remarks. 1) Property (2.4)) for weak solutions is due to Chen [7].

27



2) Farwig and Sohr [5] gave a class of weak solutions such that
|20, |2|*0%u, |2|*Vp € L*(0,00; L*(Q))

for1<g<3/2,1<s<2and 0<3/g+2/s—-4<a<min{l/2,3—3/q}.

3) Farwig [9] gave a class of weak solutions satisfying (1.11). Our results improve the
results of [9].

We next improve known results on strong solutions and show the existence of a global
strong solution which decay more rapidly than those treated, e.g. in [4], [5], [7] and [23].

Theorem 3. Leta € L}(Q) N L3(Q). There is a & > 0 so that if ||al|z < &1, then (1.1)
admits a unique global strong solution u satisfying

30-Dy € BC([0,00); L3(R)), 2<g< oo, (2.7)

#H0-Du e BO(0,00); L(R)),  2<g<3. (2:8)

Furthermore, for any e > 0,
IVulla@y < C(e)Ast™%, 3 < g < oo, (2.9)
with Az = ||al|y + ||a]|3 + ||a]l3-

Our results (2.7) and (2.8) are a natural extension to the case of (1.1) of the corresponding
results of Kato [24] on Cauchy problem.

Applying (2.7) and (2.8), we establish weighted norm estimates both in time and space of
strong solutions.

Theorem 4. Let a € L}Y(Q) N L2(Q) and |z|*a € LP(Q) with « = 3 —3/p and 3/2 <
p < oco. There is a 82 > 0 so that if ||al|z < 02, then (1.1) admits a unique strong solution u
satisfying

Bllelu@®l, < CAp), B =(3/2)(1p —1/a), (2.10)
for3/2<p<3and3 < q< +oo, and '
Pllelru(®)lls < C{Ap) + (A2(p) + lall 7 [l 37F )45 (2.11)

for3<p<ooandp<q< too. Here, Au(p) = llall + l2l%all,.

Remark. Under some smallness assumption on initial data, the strong solution u to the
Cauchy problem satisfies

tP(1 4 |2]?)*/%u € L®(0,00; LI(R?)) (3 < q < o)

with a =3—-3/p, 8=(3/2)(1/p—1/q), 1 < p < g < o0 and g > 3." See [18]. For the exterior
problem, our results are similar to thos of [18]. Especially, the balance relation between the
space and time decays agrees with that of the Cauchy problem.

We now turn to the problem on L!— summability. The first result concerns the existence
of strong solutions with specific integrability and decay propertiess.
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Theorem 5. Let a € L*(Q) N L3(Q) N W¥¥4(Q). There ezists a number n > 0 such
that if ||aljls < n, then (1.1) possesses a unique strong solution u satisfying

02u, dwu, Vp € L340, 00 : L¥4(Q)), (2.12)

and

IVull, <at™2756"0 (1<q<r<3, r>1),

1 (2.13)
| 4ull, + 8@l + IVPE), < 77560 (1<q<r<3/2, r>1),
l62ull. < et™73G0 (1< g <r <3/2).
Note that the last assertion of (2.13) contains a time-decay result in L' of 2u.
Now, let e;,1 = 1,2, 3, be the unit vector along the z;-axis; and define
Vile,t) = I(a,t)e:+(4m)'Va, [ o -y D(y, )y
= [(z,t)e; + /oo Vo, I (z,T +.t)dr,
0
I(z,t) = (4nt)=3/2e 1=/,
In terms of these functions, our second result is stated as follows.
Theorem 6. Under the assumption on a in Theorem 1, we have
. ¢
£50-1) (u;— Vi(z, 1) - / /9 (T, p]-V)dSydT) € BC([0,00) : L™(Q)) (2.14)
0
fori=1,2,3 and 1 <r < 3/2, and
-1 -1 -1
o+ amy9ia - [ (T, ), 04s,)| <o (2.15)
Moreover, the following are equivalent.
u € BC([0,00) : L'(Q)). (2.16)
/m(T[u,p] v)(y,t)dSy =0 for a.e. t > 0. (2.17)
Vol < ct™!  for a.e. t> 0. (2.18)
|Gy < ct™!  for a.e. t>0. (2.19)

Kozono [25] shows that (2.17) holds for a.e. t € (0,7T') if and only if

vweC(0,T : L*(Q)) and peC(0,T : L¥*}Q)).
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Our equivalence result shows that this last condition on p is redundant for (2.17) to be valid.
Indeed, we shall show that p € C(0,7 : L¥?%(Q0)) and v € C(0,T : L(Q)) are, respectively,
equivalent to (2.17).See Lemma 5.2 and Lemma 6.1 in [20].

We now turn to the problem on L!-summability. The result below asserts the existence
of L'-solutions in a few specific cases.

Theorem 7. Let a € L'(Q) N L(Q) n W¥*54(Q) and ||a|j5 < n.
(i) We have

o= 4m) Vsl - [ (52,5~ ),
forl<r <3/2, and
[ (o - amy 1 91al - [ (w0up — pras,)

for 1 <r <3/2, where 8, = 0/0v stands for the differentiation in the direction of v.
(i) The strong solution {u,p} satisfies (2.17) if and only if

< ctm1-30-3) (2.20)

< ct=1-50-) (2.21)

/a (WP —p)(y,)dS, =0 for e t>0. (2.22)

(iii) Suppose O is invariant under reflections with respect to every coordinate plane and
the initial velocity a = (a;)3_, satisfies the following condition :

a; is odd in z; and even in each of the other variables. (2.23)

Then for a.e. t > 0, the corresponding solution u has property (2.28) a s a function of z, and
the associated pressure p is even in each component of z. Moreover, {u,p} satisfies (2.17)
and

u € BC([0,00) : L'(Q2)), Jim Jlu(t)ll = 0. (2.24)

(iv) If 99 is invariant under the reflection z — —z and if a(—z) = —a(z), then

u(—z,t) = —u(z, 1), p(—z,t) = p(z, 1)

for a.e.t >0, and (2.17) and (2.24) hold.
(v) Let {u,p} satisfy (2.17) and suppose further |z|a € L*()). Then

lull- < et™2750-D (1<r<oo), |V, <t 50D (1<r<3),
1Aull- + 10l + V]l < @=5730=D (1< r<3/2), (2.25)

162ull + [[Beulls + IVpll, < 330D (1< <3/2).

Condition (2.23) is inspired by [6]. (2.24) is known for weak solutions to the Cauchy problem ;
see [33]. Since strong solutions are required to be in BC([0, 00) : L3(Q)), it follows that the
solutions treated in Theorem 3 belong to BC([0,00) : L)) forall 1 < ¢ < 3.



For solutions satisfying (2.17), we then deduce the space-time asymptotic profiles, which
are analogous to those obtained in [11], [36] for the Cauchy problem and in [12], [13] for the
problem in the half-space.

Theorem 8. Let u be a strong solution satisfying (2.17). If |zla € L'()), we have

Jim 330048 o (1) 4 V(- / yai(y)dy + VVi( t /°°/ (u ® w)dydr
° e (2.26)
YV 1) - /O /m y ® (T[u,p] - v)dSydr| =0
for1 <r < oo, where B, =0 if r < 00 and 0 < B < 1/2 is arbitrary.
Theorem 9. Let 1 <r < oo and let u be a strong solution treated in Theorem 8.
(1) We have
0<co<tE*30-Du(t)], <er  forlarget >0 (2.27)

if and only if either

/Q(y ® a)dy + / / y ® (Tlu,p]- v)dSydr) #0, (2.28)

or

/Ooo/;(u ® u)dydr + ( /0 N /a LY ® (Tlw, 7] v)dSydr) #el, (2.29)

for all c € R. Here, I is the 3 x 3 identity matriz and M, and M, denote, respectively, the
symmetric and anti-symmetric parts of a square matriz M.
(i) Let u be the solution treated in Theorem 8 (iii). Suppose further |z|*a € L3(Q) and

01($1,$2, $3) = 02(1’337301,552) = Gs(zz;%,xl)v (2-30)

assuming that Q is invariant also under cyclic permutations of coordinate azes. Then u also
satisfies (2.30) for each t > 0. Moreover, if |z|%a € L*(Q), then

/0‘”/0 lyI*|u(y, t)’dydt < oo

and
}lﬁ%“+ +‘Z‘:3~—8" /ydai(y)dy
+3 _,aﬁvv / /y u @ u)dydr (2.31)
18l= 2
+‘12I—:3 —8Vi(- / / T(u,p] - v)dS, dT” = 0.

We note that (see [6]) in Theorem 5, the matrix [o(y ® a)dy is anti-symmetric. The proof
of Theorem 5 (i) is based on Theorem 4 and is completely parallel to the argument given in
[37] in the case of the Cauchy problem. Theorem 5 (ii) shows the existence of solutions with
faster decay properties under an additional condition of symmetry. Conditions (2.23) and
(2.30) are inspired by [6]. .
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3 Outline of the Proofs

We first construct our approximate solutions to (1.1). Let a € L2(Q)NLI(Q)(1 < p,q < co).
By Lemma 1 of [30], we can select a* € C3°,(Q), so that a* — a in L2(Q) N L%(Q) strongly
and

lla*lly < 2llally,  [la*]lq < 2lfall,. (3.1)
Our approximate solution u*, k = 0,1,2, -, are then obtained by solving
?g; ~Au’ = -Vp°,  in Q x (0,00),
divu® = 0, in  x (0, 00),
u? =0, on 99 x (0, +00), (3.2)
u® — 0, as |z| = +oo,

u%(z,0) = a%(z), in Q

and
Ou* k k-1 k k .
ek Au 4+ (- V)u' = =Vp®,  in 0 x (0,0),
divu* =0, in  x (0, 00),
u* =0, on 90 x (0, +00), (3.3)
ukF — 0, as |z| = 400,
u*(z,0) = a*(z), in Q

for k > 1. We know (cf. [29]) that there exists a unique solution u*(k > 0) to (3.2) and
(3.3) satisfying

ouk  GuF 9%k OpF ' o
L*0,T; L =1,2.3.k>0andall T > 0.
ot’ 9dz;’ 0z;0z;’ Ou; € L*(0,T; L*(9)) forz,5 ,2,3,k > 0 and a >0

Since p* is unique up to an addition of one constants, we assume (cf. [3]) that p* €
L*(0, T; LS(%2)).
An easily calculation yields that if a € L2(Q), then

ek (2)]|2 < 2l|all; for all £ > 0, /0 | Vuk(s)||2ds < 4|jal|2. (3.4)
Following the arguments in {3],[7],(15], [10], we have that, if « € L*(Q) N L?(Q), then

@)l < Cllalla(1 + 1) (35)

with C > 0 independent of k > 0 and t > 0; If a € L2(Q) N Di~Y/** with 4 = 3/ + 2/s,
1<9g<3/2, 1<s<2. Then

L7 [ (10alz + 1941 + 192415) < (1l + Nall gy

s

(3.6)
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uniformaly in k > 0; If a € LZ(Q)NDLZY/** with 4 =3/q+2/s, 1 <q<3/2,1 <s<2and
0 < a < 3-—3/p. Suppose further that a € Défg"‘/a if0<a<?2/3;and a € Dgi”;@?ﬁ‘;‘za if

2/3 < a < 1. Then

/Ooo ‘Hivl"&uk“;dt + /Ooo |H3’lalv2ukl];dt
+ ‘/0°° “'.’Itlavpk”;dt < C(”I“"'laa”% + ”a”D;;ll,”)s (37)

uniformaly in & > 0.

By cut-off function and Bogovskii formula, we can transform the exterior problems of
(3.2) and (3.3) into corresponding one defined in whole space R® with some additional terms
at the right hand side, which are of compact support. Multiplying both sides of resulting
equations by |z|>~"u (or |z|?u), the moments in Theorem 1 and 2 followed after long but
complex calculations by applying the estimates (3.4)- (3.7). See [19] for details.

In order to prove Theorem 4, we need to deduce an integral representation of approximate
solutions u*. We know that the solution to the Cauchy problem of the Stokes equations is

written as

t R i - T)dydTt } =
Vi /(; /3 Vi(z —y,t T) -f(y, )dy s 1=1,2,3,
where

V"(:L',t) - I‘(z,t)ei + —];“V"a—‘/Rs F(-T ;lz,t)dz (38)

4w Oz
I'(z,t) = (4nt)=3/2e= =l /4t

and e' is the unit vector along z;— axis. WE easy see that
Vi(z,t) = curl(curko’) = —Aw® 4+ Vdivw', i=1,2,3

with

i 1 Nz —2z,t), ;
w'(z,t) = yym /};3 ——————Iz—l———dze = 0(z,t)e

Choose ¢ € C§°(Q) so that ( = 0 for z € {z|0 < dist(z,00) < A} and ( =1 for z € Q) =
{z|dist(z,0Q) > 2)} with a given positive constant A, where dist(z, ) is the distance
between z and 0. Then

cutly {feurly (z — ,¢ — 7)) (W)] + C(y)curks?(a, £ — 7))
= (Ve —v,t— 1) + Bi(z,5,t,7),
Ri(z,y,t,7) = V{ x {curlyw'(z — y,t — 7) + curtlw’(z,t — 7)}.

Let y and 7 denote the variables in equations (3.3). We multiply (3.3) by
curl {[eurlyw’(z ~ y, ¢ — 7)]¢(y) + [curle’ (2, t — 7)]¢ ()]},

integrate for y € R® and 7 € [s,t — €] for arbitrary 0 < € < ¢ — s, then take the limit of the
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resulting equality as ¢ — 0, and get

// Zbu (y, T F( —y,t — 7)dydr
+// Zba ui( C(J I'(z —y,t — 7)dydr
o3
[ l:;Ib,uk b, 7)o@ =yt = T)dyar
0?

- — 7)dyd
+// Z;lbzuk(y, ay ayiayke(m y,t — 7)dydr
s [ bty (B,

lk=1

+/ u(y,t R'3 z y)dy

+ [ uly, )@ - v, 2)edy + [ o y,s)c vV

0
—y,t°)d
y(x y,t°)dy

+ [ uly )Rie ,y,tsdy+// u(y, ™) + AR (2,0, , )dydr
19 le(C(y)U(y,t))

—// u(y, 7)Ry(2,y,t, 7)dydr 47rax,/m T— dy

k=1

Where _ . )
Riz(m7y7t77-) = - (VC ' V) V- AC : V11

; _ 1
Rife,) = Ve [ Zouls(q- =)o

We see that suppR;(z,-,t,s) and suppR,(z, -, t,s) are contained in {y: A < dist(y, Q) <
2A}, and for m € N,

3

IV™T(2,8)] < C(t+ [a)7"F",  |V™6(=, )| < C(t + |af2)~ .

Smce 7207 < C, for all @ > 0, a simple calculation gives |||z|*V*T||, < Ct*T ) for
k>0,1<p<ocoand a>0. So, the weighted estimates on singular and fra.ctlonal 1ntegra1
as given in [41], [42] and [43]) imply

l1z]°6]l, < Clllz|°T]l, < C+8-50=7)
for1/p=1/r—-2/3,1<r<3/2,0<a<1-3/p,

Iz|*V8], < Cll|z|°T}, < CtE-570-7)
forl/p=1/r—-1/3,1<r<3,0<a<2-3/p,

29?6}, < C|||z|°T|, < CtE~30-3)
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forl<p<oo,-1l/p<a<3-3/p.

By (3.9), we can obtain the weighted L? estimates of Theorem 4 with the help of the above
estimates. See [19] for details.

Now we turn the proofs of Theorem 4-9. For problem (1.1), we know that if a € L'(©2) N
L3(Q) and ||ajl3 < n, there is a unique strong solution u defined for all t > 0, such that

|mam§+2ﬁmvm@h=“¢g for all £ > 0, (3.10)
u € BC([0,00) : L7(Q)) (1<r<3), (3.11)
lu@)|, < c(1+2)75E"7 (1<q<r<3, r>1) (3.12)

See [3], [4], [7], [19], [22], [23]. Moreover, if a € L2(Q) N W?/55/4(Q), the result of [15] and
[45] shows :

L Bealifa + No2ullgss + 9Pl Ddr < ellall3 + lallwarmar). (313)

We also know that

Ju(®)ll, < ™37 (1<g<r<oo, r>1),
(3.14)

1

IVu@)], < ™7 268 (1<q<r<3, r>1)

See [5], [23], [27] and [45] for the details.

We next deduce the parabolic potential representation of a solutions to (1.1), which will
play the basic role throughout this paper. By (3.13) and the trace theorem for Sobolev
functions, the integral

// (Tlu,p] - v)(y,7) - Vi(z — T)dSyd'T"

is well defined. This, together with (3.13) and (3.14), implies that our strong solution u fo
(1.1) is represented as

w(zt) = [ a(y)(z—yt)dy

+ [ (Tlup v)wr) ile vt = 1)dSdr 019

—// u-Vu)(y, (:z:—y,t——'r)dydr

= L+L+1;

for a.e. (z,t) € O x (0,00); see Proposition 1 in [39].
Direct calculation show that the associated pressure gradient Vp is written as

8p(a,t) = —(4m) [ 8Vle -y (Tlu,pl-v)(w,1)dS,

+(4r)"1o; /9 |z —y|™1V - (u- Vu)(y, t)dy.
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From equations (1.1), direct calculation gives
= (4m)7 [ le—y"0,pdS, - (4m)7 [ paife —y|ds
p = (4 [ le—ylopds, —(4m) [ pole—yI7ds,

+(4m)™ [ o= ol (@undhus)dy.
Since —Ap =V - (u - Vu) = djuxlru; € L}(2) and u - Vu € L'(Q), it follows that

/aaa,,pdSy=/0Apda:=—/nv-(u-Vu)dw=0,
and so

p = (n) [ [y V)l —yblds,de

—(4m) [ pOile —y|7dS, + (4m) 8,0, [ e — i (@si)dy,

where 7 is the extension of u to R® defined to be G outside . Making fully use of these
representations of u and p, we show the results of Theorem 5-9 after long arguments. See
[20] for the details.
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