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1. Introduction

We consider the equations of ideal MagnetO-Hydrodynamics (MHD) for the motion
of an electrically conducting fluid, where ‘ideal’ means that the effect of viscosity and
electrical resistivity is neglected. We study the initial boundary value problem in the half
space. More precisely, we consider the equations of MHD

(l.la) $\rho_{\mathrm{p}}(\partial_{t}+u\cdot\nabla)p+\rho\nabla\cdot u=0$ ,

(l.lb) $\rho(\partial_{t}+u\cdot\nabla)u+\nabla p+\mu H\mathrm{x}(\nabla\cross H)=0$ ,

(l.lc) $\partial_{t}H-\nabla\cross(u\cross H)=0$ ,

(l.ld) $\nabla\cdot H=0$

in $[0, T]$ $\mathrm{x}\Omega$ with the initial condition

(1.2) $(p, u, H)|_{t=0}=(p^{0},u^{0}, H^{0})$ in 0

and with the boundary condition

(1.3) $u\cdot\nu=0$ , $H\mathrm{x}$ $\nu=0$ on $[0, T]$ $\mathrm{x}\Gamma$ .

Here $\Omega$ is the half space $\{x\in \mathrm{R}^{3};x_{1}>0\}$ with the boundary $\Gamma=\{x_{1}=0\}$ ; the
pressure $p$ (scalar), the velocity $u=(u_{1}, u_{2}, u_{3})$ , and the magnetic field $H=(H_{1}, H_{2}, H_{3})$

are unknown functions of $(t, x)$ ;the permeability $\mu$ is supposed to be apositive constant;
the density $\rho=\rho(p)$ is also supposed to be asmooth known function of $p>0$ such that
$\rho>0$ and $\rho_{p}\equiv\partial\rho/\partial p>0$ for $p>0$;we write $\partial_{t}=\partial/\partial t$ , $\partial_{i}=\partial/\partial x_{i}(i=1,2,3)$ ,
$\nabla=(\partial/\partial x_{1}, \partial/\partial x_{2}, \partial/\partial x_{3})$ and use the conventional notation in the vector analysis;
$\nu=(-1, 0, 0)$ denotes the unit outward normal to 0. Thus our boundary condition (1.3)
can be written as

(1.4) $u_{1}=H_{2}=H_{3}=0$ on $[0, T]$ $\cross\Gamma$ .

The initial value problem (1.1), (1.2) in the whole space has been solved by Kato [2].
Other initial boundary value problems for the equations (1.1) with boundary conditions
different from (1.3) have been studied by Yanagisawa [19], Yanagisawa-Matsumura [21].
To explain the details, let us set

$\Gamma_{0}=\{x\in\Gamma;(H^{0}\cdot\nu)(x)=0\}$ , $\Gamma_{1}=\{x\in\Gamma;(H^{0}\cdot\nu)(x)\neq 0\}$ .
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They consider the case when $\Gamma$ consists only of $\Gamma_{0}$ or $\Gamma_{1}$ . In this case, their problems can
be reduced into initial boundary value problems for quasi-linear symmetric hyperbolic
systems with boundary characteristic of constant multiplicity.

Ageneral theory for initial boundary value problems for symmetric hyperbolic systems
has been developed by many authors. The case when the boundary is non-characteristic
has been studied by Priedrichs [1], Lax-Phillips [5], Tartakoff [17], Rauch-Massey III [12]
and so on (see also [13]). The case when the boundary is characteristic of constant
multiplicity has been treated by Lax-Phillips [5], Tsuji [18], Majda-Osher [7], Rauch [11],
OhnO-Shizuta Yanagisawa [10], Secchi [14] and so on.

If $\Gamma$ consists only of $\Gamma_{0}$ or $\Gamma_{1}$ , then our problem (1.1)-(1.3) can be also reduced into
an initial boundary value problem with boundary characteristic of constant multiplicity.
So, in this case, we can find asolution $(p, u, H)$ .

Our main concern is the case when both $\Gamma_{0}$ and $\Gamma_{1}$ are not empty. In this case, the
equations form aquasi-linear symmetric hyperbolic system with boundary characteristic
of non-constant multiplicity. However, only few studies have so far been made at the
case when the boundary is characteristic of non-constant multiplicity (see [8], [16]). The
purpose of this paper is to show that the solution to our problem (1.1)-(1.3) has full
$regula\sqrt.ty$ .

2. Main Theorem

We use the following notation for the function spaces: For $m\in \mathrm{Z}_{+}$ , we define

$X^{m}(T;\Omega)=\cap W^{j,\infty}(0, T;H^{m-\dot{g}}(\Omega))j=0m$ .

Let $\overline{p}$ be apositive constant and set $\overline{V}=(\overline{p},$0,0). Our main theorem is as follows:

Theorem 2.1. Let $m\geq 3$ be an integer. Suppose that the initial data $V^{0}=(p^{0}, u^{0}, H^{0})$

satisfies the following conditions:

(i) $V^{0}-\overline{V}\in H^{m}(\Omega)$ ;

(ii) $V^{0}$ satisfies the compatibility conditions up to order $m-1$ ;

(iii) $\Gamma_{1}$ is dense in $\Gamma$ ;

(iv) $\nabla\cdot$ $H^{0}=0$ in $\Omega$ ;

(v) $p^{0}(x)>0$ in 0.

Then there exists a $T_{0}>0$ such that the initial boundary value problem (1.1)-(1.3) has $a$

unique solution $V=(p,u, H)$ with $V-\overline{V}\in \mathrm{X}\mathrm{m}(\mathrm{T};\Omega)$ .

Remark Physically, we must impose the conditions (iv), (v). The conditions (i), (ii)
are necessary to get aregular solution. Therefore only the condition (iii) is unreasonable.
The initial boundary value problem (1.1)-(1.3) under the condition weaker than (iii) is
an open problem
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3. Preliminaries

For the equations (1.1) we may assume $\mu=1$ without loss of generality; otherwise
it suffices to introduce new variables $\mu^{1/2}H$ instead of $H$ . Moreover we can write the
equations (1.1) in the following equivalent form:

(3.1a) $\alpha(p)(\partial_{t}+u\cdot\nabla)p+\nabla\cdot u=0$,

(3.1b) $\rho(p)(\partial_{t}+u\cdot\nabla)u+\nabla p-(H\cdot\nabla)H+(1/2)\nabla|H|^{2}=0$ ,
(3.1c) $(\partial_{t}+u\cdot\nabla)H-(H\cdot\nabla)u+H(\nabla\cdot u)=0$,
$(3.1\mathrm{d})$ $\nabla\cdot H=0$

where $\alpha(p)=\rho_{p}(p)/\rho(p)$ . The following lemma is needed later.

Lemma 3.1. Let m $\geq 3$ be an integer. Suppose that the initial data $V^{0}=(p^{0}, u^{0}, H^{0})$

satisfies the following conditions:

(i) $V^{0}-\overline{V}\in H^{m}(\Omega)$ ;

(ii) $V^{0}$ satisfies the compatibility conditions up to order $m-1$ ;

(iii) $\Gamma_{1}$ is dense in $\Gamma$ .
Then it holds that

(3.2a) $\partial_{1}^{k}u_{1}^{0}=\partial_{1}^{k}H_{2}^{0}=\partial_{1}^{k}H_{3}^{0}=0$ on $\Gamma$ ( $k$ is an even number);

(3.2b) $\partial_{1}^{k}p_{1}^{0}=\partial_{1}^{k}u_{2}^{0}=\partial_{1}^{k}u_{3}^{0}=\partial_{1}^{k}H_{1}^{0}=0$ on $\Gamma$ ( $k$ is an odd number).

for $k=0,1$ , $\ldots$ , $m-1$ .

Proof Given the system (3.1) and the initial data $V|_{t=0}=V^{0}$ in $\Omega$ , we define the function
“$\theta_{t}^{i}V|_{t=0}$”in $\Omega$ by fomally applying $\dot{P}_{t}^{-1}$ to the system, solving for $\theta_{t}^{j}V$ and evaluating at
time $t=0$ . Furthermore let us take the $7\cross 7$ matrix $M_{i}(i\in \mathrm{Z}_{+})$ such that

$M_{i}V=\{$
$(0, u_{1},0,0,0, H_{2}, H_{3})$ ( $i$ is an even number),
$(p, 0, u_{2}, u_{3}, H_{1},0,0)$ ( $i$ is an odd number)

for $V=(p,u_{1}, u_{2}, u_{3}, H_{1}, H_{2}, H_{3})\in \mathrm{R}^{7}$ . It suffices to show that

(3.3) $M_{\dot{\iota}}(\partial \mathrm{i}"\theta_{t}^{i}V|_{t=0}")=0$ on $\Gamma$ for $0\leq i+j\leq k$ $(k=0,1, \ldots, m-1)$ .

Indeed, letting $i=k$ and $j=0$, we conclude the proof.
Now we shall show the statement (3.3). We proceed by induction on $k$ . Rom the

boundary condition (1.4), the case $k=0$ is trivial. Inductively assume that the statement
is true up to $k-1$ and consider the case of $k$ . It is enough to prove that

(3.4) $M_{i}(\partial \mathrm{i}"\partial_{t}^{k-i}V|_{t=0}")=0$ on $\Gamma$ $(i=0,1, \ldots, k)$ .

In order to prove the assertion (3.4), we proceed by induction on $i$ . First we consider the
case $i=0$ . The compatibility condition of order $k$ implies that

“$\partial_{t}^{k}u_{1}|_{t=0}"="\partial_{t}^{k}H_{2}|_{t=0}"="\partial_{t}^{k}H_{3}|_{t=0}"=0$ on $\Gamma$ ,
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and hence the case $i=0$ is clear. Inductively assuming that the assertion (3.4) is true up
to $i-1$ , we consider the case of $i$ .

First suppose that $i$ is an odd number. Applying $\partial_{1}^{i-1}\partial_{t}^{k-i}$ to the both sides of $(3.1\mathrm{d})$ ,
we obtain

(3.5) $\partial_{1}^{i}\partial_{t}^{k-i}H_{1}+\partial_{1}^{i-1}\partial_{2}\partial_{t}^{k-i}H_{2}+\partial_{1}^{i-1}\partial_{3}\partial_{t}^{k-i}H_{3}=0$ .

Rom the inductive hypothesis it follows that $\partial_{1}^{i-1}$
“$\partial_{t}^{k-i}H_{l}|_{t=0}"=0$ on $\Gamma$ $(l=2, 3)$ , which

implies that
$\partial_{1}^{i-1}\partial_{l}"\partial_{t}^{k-i}H_{l}|_{\mathrm{t}=0}"=^{\lrcorner}$ a $(\partial \mathrm{i}^{-1}"\partial_{t}^{k-i}H_{l}|_{t=0}")=0$ on $\Gamma$ $(l=2,3)$ ,

and hence
(the left-hand side of (3.5)) $|_{t=0}=\partial_{1}^{i}"\partial_{t}^{k-\dot{\iota}}H_{1}|_{t=0}$

” on $\Gamma$ .
Thus it holds that $\partial_{1}^{i}$

“$\partial_{t}^{k-i}H_{1}|_{t=0}"=0$ on $\Gamma$ .
Similarly, applying $\partial_{1}^{i-1}\partial_{t}^{k-:}$ to the both sides of the first component of (3.1b), we have

$\partial_{1}^{i-1}\partial_{t}^{k-i}\{(\rho(p)\partial_{t}u_{1}+u_{1}\partial_{1}u_{1}+u_{2}\infty u_{1}+u_{3}\partial_{3}u_{1})+\partial_{1}p$

$-(H_{2}\partial_{2}If_{1}+H_{3}\partial_{3}H_{1})+(H_{2}\partial_{1}H_{2}+H_{3}\partial_{1}H_{3})\}=0$.
Calculating the differentiations of the product, recalling the inductive hypothesis and
observing $\partial_{1}^{i}"\partial_{t}^{k-i}H_{1}|_{t=0}"=0$ on $\Gamma$ , we obtain $”\partial_{1}^{i}\partial_{t}^{k-i}p|_{t=0}"=0$ on $\Gamma$ .

Moreover applying $\partial_{1}^{i-1}\partial_{t}^{k-i}$ to the both sides of the second and third components of
(3.1c) and using the inductive hypothesis, we get

$H_{1}^{0}("\partial \mathrm{i}\partial_{t}^{k-i}u_{l}|_{t=0}")=0$ on $\Gamma$ $(l=2,3)$ .
Since $H_{1}^{0}$ is continuous on $\Gamma$ and $\Gamma_{1}$ is dense in $\Gamma$ , we have $H_{1}^{0}\neq 0\mathrm{a}.\mathrm{e}$ . on $\Gamma$ , and hence

$\partial \mathrm{i}"\partial_{t}^{k-\dot{\iota}}u_{l}|_{t=0}"=0$ on $\Gamma$ $(l=2,3)$ .
Therefore if $i$ is an odd number, then the assertion (3.4) is true.

Next suppose that $i$ is an even number. Applying $\partial_{1}^{i-1}\partial_{t}^{k-i}$ to the both sides of (3.1a)
and using the inductive hypothesis, we obtain $\partial_{1}^{i}$

“$\partial_{t}^{k-i}u_{1}|_{t=0}"=0$ on $\Gamma$ . In the same
way, applying $\partial \mathrm{i}^{-1}\partial_{t}^{k-i}$ to the both side of the second and third components of (3.1b) and
recalling the inductive hypothesis, we have

$H_{1}^{0}(\partial \mathrm{i}"\partial_{t}^{k-i}H_{l}|_{t=0}")=0$ on $\Gamma$ $(l=2,3)$ .
As argued above, we obtain $”\partial_{1}^{i}\partial_{t}^{k-v}u_{l}|_{t=0}"=0$ on $\Gamma(l=2,3)$ . Therefore if $i$ is an even
number, then the assertion (3.4) is true.

Thus the assertion (3.4) is true by induction on $i$ , and hence the statement (3.3) is also
true by induction on $k$ . $\square$

4. Proof of the Main Theorem

The equations (3.1) can be converted into the following equivalent form as asymmetric
system:

(4.1a) $\alpha(p)(\partial_{t}+u\cdot\nabla)p+\nabla\cdot u=0$ ,
(4.1b) $\rho(p)(\mathrm{a}+u\cdot\nabla)u+\nabla p-(H\cdot\nabla)H+(1/2)\nabla|H|^{2}=0$,
(4.1c) $(\partial_{t}+u\cdot\nabla)H-(H\cdot\nabla)u+H(\nabla\cdot u)=0$.
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The equivalence of (3.1) and (4.1), under the initial and boundary conditions (1.2) and
(1.3), follows by observing that if the solution of (4.1) satisfies $\nabla\cdot$ $H=0$ in $\Omega$ at $t=0$,
then $\nabla\cdot H=0$ in $\Omega$ is true for all $t>0$ . Thus for the proof of Theorem 2.1, we shall find
aunique solution to the initial boundary value problem (4.1), (1.2), (1.4).

Proof of Theorem 2.1. The uniqueness of the solution to the initial boundary value
problem (4.1), (1.2), (1.4) is easily checked. We consider the existence of the solution to
this problem. For the proof, we introduce the extension $\tilde{V}^{0}(x)=(\tilde{p}^{0},\tilde{u}^{0},\tilde{H}^{0})(x\in \mathrm{R}^{3})$

of the initial data $V^{0}(x)=(p^{0}, u^{0}, H^{0})(x\in\Omega)$ as follows: $\tilde{u}_{1}^{0},\tilde{H}_{2}^{0},\tilde{H}_{3}^{0}$ are odd functions
and $\tilde{p}^{0},\tilde{u}_{2}^{0},\tilde{u}_{3}^{0},\tilde{H}_{1}^{0}$ are even functions with respect to $x_{1}$ . Then the assertion (3.2) yields
that $\tilde{V}^{0}\in H^{m}(\mathrm{R}^{3})$ .

Now we consider the initial value problem for the system (4.1) in whole space with the
initial condition

(4.2) $V|_{t=0}=\tilde{V}^{0}$ in $\mathrm{R}^{3}$ .

Since the equations (4.1) is asymmetric hyperbolic system, this initial value problem
(4.1), (4.2) has aunique solution $V=(p, u, H)$ with $V-\overline{V}\in X^{m}(T_{0;}\mathrm{R}^{3})$ for some $T_{0}>0$

(see [3], [6] and so on). We shall show that $V$ restricted to $[0, T_{0}]\cross\Omega$ is adesired solution
to our initial boundary value problem (4.1), (1.2), (1.4). For this purpose, it suffices to
prove that $V$ satisfies the condition (1.4).

For afunction $f(t, x)((t, x)\in[0, T_{0}]\cross \mathrm{R}^{3})$ , we define the functions Odd(f)(t, $x$ ) and
Even(f)(t, $x$ ) $((t, x)\in[0, T_{0}]\cross \mathrm{R}^{3})$ as

Odd(f)(t, $x$ ) $=-f(t, -x_{1}, x_{2}, x_{3})$ , Even(f)(t, $x$ ) $=f(t, -x_{1}, x_{2}, x_{3})$ .

Using this notation, we set

$\hat{u}_{1}=Odd(u_{1})$ , $\hat{H}_{2}=Odd(H_{2})$ , $\hat{H}_{3}=Odd(H_{3})$ ,

$\hat{p}=Even(p)$ , $\hat{u}_{2}=Even(u_{2})$ , $\hat{u}_{3}=Even(u_{3})$ , $\hat{H}_{1}=Even(H_{1})$

where $V=(p, u, H)$ is as above. By direct calculations, we can prove that $\hat{V}=(\hat{p}, \text{\^{u}}, \hat{H})$

is also asolution to the initial value problem (4.1), (4.2). Thus the uniqueness of the
solution to the initial value problem (4.1), (4.2) implies that $V=\hat{V}$ . This yields that
$u_{1}$ , $H_{2}$ , $H_{3}$ are odd functions, and hence $V$ satisfies the condition (1.4). Therefore $V$

restricted to $[0, T_{0}]$
$\mathrm{x}\Omega$ is adesired solution to our initial boundary value problem

$(4.1)\square$’

(1.2), (1.4).
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