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The paper presents the theory of semi-Lagrangian (SL) schemes for Hamilton-
Jacobi equations. The main emphasis is on second order problems starting from
the linear advection-diffusion equation and continuing with the MC flow equa-
tion. Several results will be illustrated as well as some connections to other
techniques and hints for future extensions and developments. Finally, some
numerical tests will be presented.

1Introduction
The goal of this paper is to give ashort introduction to the theory of semi-
Lagrangian schemes for Hamilton-Jacobi equations with aspecial emphasis on
second order problems. Let us recall that semi-Lagrangian schemes are interest-
ing extentions of the Courant-Isaacson-Rees [17] method for conservation laws
which allow for large time-steps still guaranteeing high accuracy. The general
idea of such schemes is to reconstruct the solution by integrating (numerically)
the equation along characteristics starting from every grid point for just asingle
time step. The solution is computed coupling anumerical method for ODEs
(to compute the upwind points with respect to the grid nodes) with an inter-
polation formula (to recover the value of the solution at such points, which are
not grid points). In this respect SL shemes differ from particle methods and
Monte Carlo methods where there is no grid and the paths of the particles must
be tracked up to the boundary of the domain of computation. Although SL
schemes are typically used for first order problems, they can also be applied
to second order equations giving some advantages when the advection term is
dominant or when the second order operator is degenerate. It should be noted
that in Finite Differences(FD) or Finite Elements (FE) techniques it is quite
common to split the differential operator in order to treat by semi-Lagrangian
techniques only the first order part. This splitting results either in very severe
time step bounds or in the additional computational effort of solving an implicit
scheme for the second order term. Moreover, the approximation of second order
terms by amore traditional approaches (FD or $\mathrm{F}\mathrm{E}$) can make rather difficult
to handle the degeneracies which are typical of the Hamilton-Jacobi equations
arising in stochastic control problems, front propagations and image processing.

We will present here adifferent approach where second order and first order
terms are treated in the same way. In fact the schemes are based on aweak
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notion of characteristics which relies on the stochastic representation formula of
Feynman-Kac (see e.g. [46]). In this framework, characteristics for the second
order terms are stochastic processes, $\mathrm{f}.\mathrm{e}$ . for the Laplacian the characteristics
are the trajectories of aWiener process. There are several advantages in this
approach: it allows for larger time steps, the schemes are stable also in presence
of degeneracies, they can be implemented on structured and unstructured grids
and they may achieve higher consistency rates (although aprecise proof of this
property is still missing for second order problems). Since the goal of this paper
is to survey the underlying philosophy and some results, we will concentrate on
model problems.

We will start in Section 2from first order equations (linear and nonlinear)
where this approach has shown to be very effective and the interpretation of
characteristic lines is standard. We will continue our presentation dealing with
aclassical linear problem arising in many applications to fluiddynamics, the
advection-diffusion problem. Finally, we will conclude with the second order
degenerate parabolic equations related to the study of the Mean Curvature
(MC) flow. The general framework for our results is the theory of viscosity
solutions, the interested reader can find the main results, several applications
and along list of references in the monographs [3], [2], [37] and in the survey
paper [18].

In order to set these results into perspective we should give some background
on other techniques that have been adopted to solve the obove problems. As
we said, the typical problem which has been attacked with semi-Lagrangian
scheme is the advection problem since the method of characteristics gives the
exact solution. The approximation via the semi-Lagrangian approach gives a
discrete representation formula for the solution that converges to the continu-
ous representation formula when the discretization steps $\Delta t$ and Ax go to zero.
Naturally, aCFL stability condition is required to have convergence but iterest-
ingly this condition does not imply for SL schemes that At must have the same
size of $\Delta x$ (see Section 2). An analysis of SL schemes for the trasport equation
can be found in [29]. The interested reader can also find in [57] and [61] many
informations and examples on SL methods for linear and nonlinear advection
dominated problems arising in atmospheric models. It should be emphasized
that the meteorological community has greatly contributed to the development
of SL schemes since the possibility to integrate models with large time steps is
crucial for weather prediction where the simulation of complex models should
cover at least 24 hours. Section 2will be devoted to the construction of SL
schemes for first order equations. We refer to [28], [33], [30], [35] for the analy-
sis of $\mathrm{S}\mathrm{L}$-schemes for first order nonlinear Hamilton-Jacobi equations (see also
the references therein for other discretizations). Finite differences schemes have
been analyzed $\mathrm{f}.\mathrm{e}$ . in [19].

The advection-diffusion problem treated in Section 3has been extensively
studied by finite differences and finite elements methods so that it is almost
impossible to give acomplete list of references. We limit ourselves to some
contribution which are closer to our approach. It is well known that classical
finite elements fail for advection dominated problems (see e.g. [54], [56]) sinc
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stability is lost. Agreat effort has been done to stabilize Galerkin methods
finally obtaining theoretical results and accurate simulations (see e.g. [41], [38],
[8] and [9] $)$ . In [22] and [55] acoupling between the method of characteristics
and the finite element method has been proposed. The methods based on this
coupling allow for rather large time steps so that they can be compared to
$\mathrm{S}\mathrm{L}$-schemes. The analysis of $\mathrm{S}\mathrm{L}$-schemes for the advection-diffusion problem
is based on the results in [10]. The approximation of more general nonlinear
second order Hamilton-Jacobi equations arising in stochastic control problems
can be found in [46] (see also the references therein), [40], [1], [11], [47]. An
analysis of the rate of convergence has recently appeared in [45], [44] and [5].

The MC flow problem has obtained agreat attention because of its im-
portance in many applications which ranges from phase transition to image
processing (nonlinear filtering). It is aprototype for degenerate second order
Hamilton-Jacobi equations. Several results have been obained via viscosity s0-

lutions starting from [16] and [26]. The interested reader can find along list of
references in the survey papers [60], [25] and in the lecture notes [39]. Among the
many papers related to the numerical approximation of MCM we limit ourselves
to few of them based on the level set formulation (see e.g. [50], [7] for other
approaches). In the pioneering paper [53] afinite difference approximation of
the mean curvature is used there to replace the velocity $c$ of afront propagating
in the normal direction according to the first order Hamilton-Jacobi equation

$\{$

$v_{t}(x, t)+c(x)|Dv(x, t)|=0$

$v(x, 0)=v_{0}(x)$ . (1)

The interested reader can find in the monographs [59] and [52] several devel-
opments and applications of this approach. Another class of finite differences
approximation schemes has been proposed in [48]. Those schemes are based on
the description of MCM via the (short time) solution of the heat equation with
discontinuous initial data. An analysis of this technique and convergence results
can be found in [24], [4]. Other finite differences schemes have been proposed
in [20] where aconvergence result is also proved. An error analysis for these
schemes has appeared in [21] (see also [23]). More recently, asemi-Lagrangian
scheme strictly connected to the approach described in [53] has been imple-
mented in [62]. The analysis of the $\mathrm{S}\mathrm{L}$-scheme presented in Section 4can be
found in [31], [27], [12] and it is still going on.

2Basics on semi-Lagrangian schemes for first
order problems

Let us start with the simplest linear problem, the advection equation

$v_{t}+av_{x}=0$ in $R\mathrm{x}(0, +\infty)$ (2)

with the initial condition

$v(x, 0)=v_{0}(x)$ in $R$ (3)

126



127

The exact solution of problem (2), (3), obtained via the method of characteris-
tics, is

$v(x, t)=v_{0}$ ($x$ -at), for any $(x, t)\in It$ $\mathrm{x}[0, +\infty)$ . (4)

The above representation formula means that the solution at the point $(x, t)$

coincides with the value of the initial condition at the foot of the character-
istic passing through $(x, t)$ . That information can be used also for numerical
purposes, trying to mimic the method of characteristics on agrid. To simplify
the presentation, let us take auniform space step $\Delta x$ and define its nodes by
$x_{i}=\mathrm{i}\mathrm{A}\mathrm{x}$ , $i\in Z$ . Considering the representation formula on asingle time
interval of width At for every node of the grid, we get

$v$ ( $\mathrm{t}:$ , At) $=v_{0}(x:-a\Delta t)$ , for any $i\in \mathbb{Z}$ . (5)

Now keep the time step $\Delta t$ constant and define $t_{n}=\mathrm{n}\mathrm{A}\mathrm{t}$ , $n\in N$ . We can
iterate the same argument on every time step obtaining

$v(x_{i}, \mathrm{n}\mathrm{A}\mathrm{t})=v(x_{i}-\mathrm{a}\mathrm{A}\mathrm{t}, (n-1)\mathrm{A}\mathrm{t})$ , for any $i\in Z$ , $n\in N$. (6)

It is interesting to note that the representation formula (6), coincides with the
SL approximation scheme derived by applying the forward Euler scheme to (2).
In fact, using the standard notation for numerical approximations

$v^{n},\cdot\equiv v(x_{i}, t_{n})$ , for $i\in \mathbb{Z}$ and $n\in N$ (7)

we can write the SL scheme for (2) as

$\frac{v_{i}^{(n+1)}-v_{\dot{l}}^{n}}{\Delta t}-\frac{v^{n}(x_{i}-a\Delta t)-v_{\dot{l}}^{n}}{\Delta t}=0$ , for $i\in \mathbb{Z}$ , $n\in N$ (8)

which is equivalent to (6). There are three important remarks to be made.
The first is that the advection term $av_{x}$ has been approximated as adirectional
derivative in the backward direction of characteristics $(-a)$ so that the up-wind
correction is built in the scheme. The second is that to implement the scheme
we need alocal reconstruction of the approximate vale of $v^{n}$ at the foot of
the characteristic $x:-aAt$ which is not agrid point (except for the special
choice $\Delta x=a\Delta t$ ). This problem can be easily solved by interpolation over the
(known) values $v_{i}^{n}$ . When the drift is constant the foot of the characteristic can
be computed exactly so that the only numerical error involved in this compu-
tation is the interpolation error which can be reduced by means of high order
interpolation formulas. The last remark is that, for this problem, stability is
guaranteed for any At since

$||v^{n}||_{\infty}\leq||v_{0}||\infty$ (9)

For aprecise analyis of this approach to linear advection problems we refer to
[29].

It is also interesting to note that the same approach can be adopted for
nonlinear problems such as

127



$\{$

$v_{t}+H(\nabla v)=0$

$v(x, 0)=v_{0}(x)$
(10)

which also have arepresentation formula for the solution, the s0-called Hopf-
Lax-Oleinik formula. Acrucial role in the representation formula for (10) is
played by the Legendre-Fenchel conjugate of convex analysis which we recall
here for reader’s convenience.

Definition 2.1 Let $H$ : $R^{n}arrow R$ be a continuous and convex function such
that

$\frac{H(p)}{|p|}arrow+\infty$ $for|p|arrow+\infty$ . (11)

(14)

The Legendre-Fenchel conjugate of $H$ is the continuous and convex function,
$H^{*}$ , defined by

$H^{*}(p) \equiv\sup_{q\in R^{n}}\{p\cdot q-H(q)\}$ . (12)

It is worth to note that (11) guarantees that $H$’ (p) is always properly defined
and $(H^{*}(p))^{*}=H(p)$ for any $p\in R^{n}$ . The Legendre-Fenchel conjugate is crucial
to establish alink between the general Cauchy problem (10) and acontrol
problem. Infact, if the hamiltonian $H$ satisfies the assumptions required in
Definition 2.1, we can write the equation in (10) as

$v_{t}+ \sup_{a\in R^{n}}\{a\cdot\nabla v-H^{*}(a)\}=0$ . (13)

which is the Bellman equation for afinite horizon control problem with the
controls varying in $A\equiv R^{n}$ (see [2] and [3] for details). The Hopf-Lax-Oleinik
representation formula for the solution of this equation is

$v(x, t)= \inf_{y\in R^{n}}[v0(y)+tH^{*}(\frac{x-y}{t})]$

Extensions of the above representation formula to more general hamiltonians
$H(x, \nabla v)$ can be found in [13] and [14].

Let us examine now the typical $\mathrm{S}\mathrm{L}$-scheme in two dimensions. Let us define
the lattice $L$ ( $\Delta x$ , $\Delta y$ , At) by

$L\equiv$ { $(x_{i,yj},t_{n})$ : $x_{i}=i\Delta x,y_{j}=j\Delta y$ and $t_{n}=n\Delta t$ ,for $i,j\in Z$ and $n\in N$}
(15)

where $(x_{i}, y_{j}, t_{n})\in R^{2}\mathrm{x}R_{+}$ , $\Delta x$ and $\Delta y$ are the space steps and At is the time
step. In order to obtain the $\mathrm{S}\mathrm{L}$-scheme let us consider the following approxima-
tion

$-a \cdot\nabla v(X:, y_{j}, t_{n})=\frac{v(x_{\dot{*}}-a_{1}\Delta t,y_{j}-a_{2}\Delta t,t_{n})-v(x_{\dot{l}},y_{j},t_{n})}{\Delta t}+O(\Delta t)$ (16)

We will use the standard notation $v_{\dot{l},j}^{n}$ for an approximation of $v(x:, y_{j}, t_{n})$ ,
$i,j\in \mathbb{Z}$ and $n\in N$ and $v^{n}$ : $R^{2}arrow It$ for its reconstruction, i.e. its extension to
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any triple $(x, y, t_{n})$ . Replacing in (13) the term $v_{t}$ by forward finite differences
and the directional derivative by (16), we get

$\frac{v_{i,j}^{n+1}-v_{i,j}^{n}}{\Delta t}=\min_{a\in R^{2}}[\frac{v^{n}(x_{i}-a_{1}\Delta t,y_{j}-a_{2}\Delta t)-v^{n}(x_{i},y_{j})}{\Delta t}+H^{*}(a)]$ (17)

which leads to the time explicit scheme

$v_{\dot{l},j}^{n+1}= \min_{a\in R^{2}}[v^{n}(x_{i}-a_{1}\Delta t, y_{j}-a_{2}\Delta t)+\Delta tH^{*}(a)]$ (18)

Let us set $a=(x-y)/t$ in (14). It is clear from (18) that the $\mathrm{S}\mathrm{L}$ schemes has
the same structure of the representation formula of the exact solution written for
$v_{0}=v^{n}$ and $t=\Delta t$ . Naturally, in order to compute the solution one has to com-
pute first the value of $v^{n}$ on the right-hand side by an interpolation procedure
based on the values on the nodes of the lattice $L$ . The last step is to determine
$H^{*}(a)$ so that we can finally compute the minimum for $a\in R^{2}$ . Although this
step can be rather expensive (or unfeasible) for ageneral Hamiltonian, there are
many interesting cases which can be solved explicitly. We refer the interested
reader to [30] for some applications to isotropic front propagation problems and
for the properties of SL schemes for (1). Aconvergence result for first order SL
schemes can be found in [33] whereas some hints for the implementation and the
optimal choice of the discretization steps are discussed in [32]. More recently,
aconvergence result for high order accurate semi-Lagrangian schemes in one
dimension has been proved in [35].

3Approximation of the linear advection-diffusion
equation

Let us consider the stationary advection-diffusion problem in one dimension,

$\{$

$-\epsilon u’+\mathrm{P}(\mathrm{x})\mathrm{v}/=f(x)$ , $x\in I=(0,1)$ (19)
$u(0)$ $=u(1)=0$

As we have done in the Section 2, we can write the first order term $\beta(x)u’$ as
the directional derivative of the solution $u$ in the direction of the vectorfield $\beta$ .

$\beta(x)\cdot\nabla u=\frac{du(X(t))}{dt}|_{t=0}$ (20)

where $X(t)$ is the solution of the Cauchy problem

$\{$

$X’(t)=\beta(X(t))$ (20)
$X(0)=x$

which defines the characteristic lines of (19)
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For $\epsilon$ $=0$ , this is enough to start building the time discrete scheme (in-
tegration along the characteristics). For $\epsilon$ $\neq 0$ , the interpretation in terms of
characteristics becomes more complicated because they must be understood in
aweak sense. In that case (see e.g. [46]) the characteristics are the solution of
the Cauchy problem for the system of stochastic differential equations

$\{$

$\mathrm{d}X(t)=\beta(X(t))\mathrm{d}t+\mathrm{d}w$

$X(0)$ $=x$ , (22)

. The time discretization can be obtained then by applying aone-step method
for the integration of (22) chosen in the large collection of methods presented in
[43]. The simplest choice is the Euler scheme which will be used here to simplify
the presentation. Let us start defining the second order operator

$L[u](x)=\epsilon u’(x)-\beta(x)u’(x)$ . (23)

and let $\delta$ be apositive parameter (virtual time step) which we will use in the
definition of the discrete operator $L_{\delta}[u]$ ,

L6[u](x) $:= \frac{1}{\delta}[\frac{1}{2}u(x-\beta\delta+\sqrt{2\delta\epsilon})+\frac{1}{2}u(x-\beta\delta-\sqrt{2\delta\epsilon})-u(x)]$ . (24)

Proposition 3.1 (Consistency)
Let the solution $u\in C^{2}(I)$ , then $L_{\delta}[u]$ converges pointwise to $L[u]$ for $\delta$ tending
to 0.

Proof.
We will give tha proof for $\beta(x)\equiv\beta$ . The proof is similar when $\beta(\cdot)$ is aregular
function.

Let us set
$z=x-\beta\delta$ (25)

$z^{+}=z$ $+\sqrt{2\delta\epsilon}$ (26)

$z^{-}=z-\sqrt{2\delta\epsilon}$ (27)

By Taylor expansion, we get

$u(z^{+})=u(x-\beta\delta+\sqrt{2\delta\epsilon})=u(x)+(-\beta\delta+\sqrt{2\delta\epsilon})u’(x)+$

$+(- \beta\delta+\sqrt{2\delta\epsilon})^{2}\frac{u’(x)}{2}+O((-\beta\delta+\sqrt{2\delta\epsilon})^{3})$ (28)

and
$u(z^{-})=u(x-\beta\delta-\sqrt{2\delta\epsilon})=u(x)+(-\beta\delta-\sqrt{2\delta\epsilon})u’(x)+$

$+(- \beta\delta-\sqrt{2\delta\epsilon})^{2}\frac{u’(x)}{2}+O((-\beta\delta-\sqrt{2\delta\epsilon})^{3})$ (29)
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Replacing (29) and (28) in (24) we conclude that

$L_{\delta}[u](x)=\epsilon u’(x)-\beta u’(x)+O(\sqrt{\delta})=L[u]+O(\sqrt{\delta})$ .

$\square$

We get then the following consistent discretization of (19):

$u_{\delta}(x)= \delta f(x)+\frac{u_{\delta}(x-\beta\delta+\sqrt{2\delta\epsilon})+u_{\delta}(x-\beta\delta-\sqrt{2\delta\epsilon})}{2}$ . (30)

Note that for $\epsilon=0$ , we obtain the SL scheme for the advection equation already
examined in Section 2.
Let us introduce the space discretization for (30). Let us divide $I=(0,1)$ in
sub-intervals of width $k=\Delta x$ . We introduce the following representation

$u_{\delta}^{k}= \sum_{j\in Q}u_{j}\phi_{j}(x)$
(31)

where $u_{\delta}^{k}$ denotes the space discretization of $u_{\delta}(x)$ , $Q=\{1, \ldots, N\}$ is the set of
indices for the internal nodes $x_{j}$ and $\{\phi_{j}(x)\}_{j\in Q}$ is abasis of bounded functions.
The boundary Dirichlet condition is imposed on the nodes $x_{0}$ and $x_{N+1}$ .

$\phi_{j}(x_{j})=1$ , $\phi_{j}(x_{m})=0(m\neq j)$ and $||\phi j||_{\infty}=1$ . (32)

Replacing (31) in (30) we obtain the fully discrete scheme corresponding to (19)

$u_{j}= \delta f_{j}+\frac{1}{2}\sum_{m\in\sigma(j)}u_{m}\phi_{m}(z_{j}^{+})+\frac{1}{2}\sum_{m\in\sigma(j)}u_{m}\phi_{m}(z_{j}^{-})$
(33)

where $z_{j}^{+}=x_{j}-\beta(x_{j})\delta+\sqrt{2\delta\epsilon}$ , $z_{j}^{-}=x_{j}-\beta(x_{j})\delta-\sqrt{2\delta\epsilon}$ and $\sigma(j)$ denotes
the stencil of the method.
Note that at this stage we can set $\sigma(j)\equiv Q$ , for any $j$ , and sum over all the
indices belonging to $Q$ although only those corresponding to the vertices of
the cells containing $z_{j}^{\pm}$ are contributing to the sum (because of (32)). We will
introduce anotation for the real stencil later on in this paragraph.

Our problem is equivalent to the solution of the linear system of algebraic
equations in the unknown $u_{j}$ :

$U=F+\Phi U$ i.e. $AU=F$ (34)

where
$U\equiv(u_{1}, \ldots u_{N})^{T}$ , $F\equiv(\delta f_{1}, \ldots, \delta f_{N})^{T}$, $A\equiv I-\Phi$

and
$\Phi\equiv\{\phi_{\dot{\iota}j}\}$ , $\phi_{\dot{|}j}\equiv\frac{\phi_{j}(z_{i}^{+})+\phi_{j}(z_{\dot{l}}^{-})}{2}$ .

System (34) has aunique solution if and only if $A=(I-\Phi)$ is anon singular
matrix. This is equivalent to demand that the scheme (33) satisfies the discrete
maximum principle
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Now we want to introduce asubset of indices which will represent the stencil
of our method. For any j $\in$ {q, \ldots , N-q} we define the stencil

$\overline{S}(j)=\{j-q, \ldots,j-1,j, j+1, \ldots,j+q\}$ (35)

and the set of indices

$S(j)=\{j-q, \ldots,j-1,j+1, \ldots,j+q\}$ (36)

Let the discrete operator connected to the elliptic operator $L[u]$ be defined as

$L_{h}[u](x_{j})= \alpha_{j}u_{j}-\sum_{p\in S(j)}\alpha_{p}u_{p}=f_{j}$
, $j=1$ , $\ldots$ , N. (37)

We want to solve the discrete problem

$L_{h}[u](x_{j})=f_{j}$ , $j=1$ , $\ldots$ , $N$ (38)

coupled with aDirichlet boundary condition. The following general result holds
true.

Lemma 3.2 (Discrete Maximum Principle)
Let $A$ be the matrix of the system (34) and let the following assumptions be
satisfied:
(i) $A$ has nonnegative elements, $i.e$ . for any $j=1$ , $\ldots$ , $N$

$\alpha_{j}>0$ , $\alpha_{p}\geq 0$ , $forp\in S(j)$ ; (39)

(ii) $A$ is diagonally dominant,

$\sum_{p\in S(j)}|\alpha_{p}|\leq\alpha_{j}$
, for any $j=1$ , $\ldots$ , $N$ (40)

where the strict inequality holds for at least one index $j$ .
Moreover let

$L_{h}[u](x_{j})\leq 0$ , for any $j=1$ , $\ldots$ , N. (41)

Then the value $u_{j}$ at the internal nodes x$, $j\in Q$ , satisfies
$u_{j} \leq\max\{u_{0}, u_{N+1}\}$ , $\forall j=1$ , $\ldots$ , N. (42)

Sketch of the proof
Let us assume that $u_{j}\geq 0$ for all $j=0$ , $\ldots$ , $N+1$ (this is not restrictive since
we can always add to $Uj$ , $j=0$ , $\ldots$ , $N+1$ , asuitable positive constant).
Let $1<j<N$ , the condition (41) implie

$\alpha_{j}u_{j}\leq\sum_{p\in S(q)}\alpha_{p}u_{p}$
.
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From (39) and (40), we have

$\alpha_{j}u_{j}\leq(\max_{p\in S(j)}u_{p})\sum_{p\in S(j)}|\alpha_{p}|\leq(\max_{p\in S(j)}u_{p})\alpha_{j}$ ,

then
$u_{j} \leq\max_{p\in S(j)}u_{p}$

,

i.e. $u_{j}$ in the interior of the region is less than or equal to the maximum of its
“neighbours”. This easily leads to the conclusion. $\square$

The question is: which kind of SL schemes satisfy the Discrete Maximum Prin-
ciple? Asufficient condition for Lemma 3.2 to hold for the $\mathrm{S}\mathrm{L}$-scheme described
by (33), (34) is

$\sigma(j)=\overline{S}(j)$ . (43)

which means that the stencil of (33) is centered at the node $Xj$ , $\forall j=1$ , $\ldots$ , $N$ .
Let us write the scheme (33) as:

$u_{j}= \delta f_{j}+\sum_{m\in Q}c_{m}u_{m}$
(44)

where
$c_{m}= \frac{\phi_{m}(z_{j}^{-})+\phi_{m}(z_{j}^{+})}{2}$ . (45)

By (32) we have
$|c_{m}|\leq 1$ , $\forall m\in Q$ .

Let define the value 6such that, for any $\delta\leq\hat{\delta}$, the condition (43) is verified.
Then, for any $\delta\leq\hat{\delta}$ we can write (33) as

$L_{\delta}^{h}u=\delta f_{j}$ , $j=1$ , $\ldots$ , $N$ (46)

where
$L_{\delta}^{h}u= \alpha_{j}u_{j}-\sum_{p\in S(j)}\alpha_{p}u_{p}$

(47)

and $\alpha_{p}=c_{p}$ , $\alpha_{j}=1$ -Cj. The following result holds (see [10] for the proof).

Proposition 3.3
Let the coefficients $c_{m}$ defined in (45) be non negative. Then, the scheme (46)

verifies the discrete maximum principle.

Note that we can write the scheme (33) as (46) only for particular choices
of the 6, i.e. for the values of 6such that $\delta\leq\hat{\delta}$.

In fact, to guarantee that the stencil is centered at the node $x_{j}$ the two
points $z_{j}^{-}$ and $z_{j}^{+}$ should be close to $x_{j}$ and this of course depend on $\beta$ and $\delta$ .
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An analysis of the $\mathrm{S}\mathrm{L}$-scheme and of the recipes for the choice of $\delta$ when the
local reconstruction is obtained by $P_{1}$ finite elements can be found in [10].

Note that in our $\mathrm{S}\mathrm{L}$-scheme the diffusion term is discretized at the foot of
the characteristic instead that at the node $Xj$ . This means that first we move
up-wind according to the advection term and then we discretize the diffusive
term. This choice, opposite to the finite difference approximation, allows to
deal with the degeneracies of the second order operator. The scheme is also
well suited to treat the two limit cases $\epsilon=0$ (pure advection) and $\beta=0$ (pure
diffusion). In the first case (30) correspond to the upwind scheme

$u_{\delta}(x)=\delta f(x)+u_{\delta}(x-\beta\delta)$ . (48)

In the second case, (30) gives

$u_{\delta}(x)= \delta f(x)+\frac{u_{\delta}(x+\sqrt{2\delta\in})+u_{\delta}(x-\sqrt{2\delta\epsilon})}{2}$ . (49)

In $R^{2}$ version of the above SL scheme can be written as:

$u_{\delta}(x, y)= \frac{1}{4}[u_{\delta}(x-a_{1}\delta-\sqrt{2\delta\epsilon}, y-a_{2}\delta)+$

$+us(x -a_{1}\delta+\sqrt{2\delta\epsilon}, y-a_{2}\delta)+u_{\delta}(x-a_{1}\delta, y-a_{2}\delta-\sqrt{2\delta\epsilon})+$

$+u_{\delta}(x-a_{1}\delta, y-a_{2}\delta+\sqrt{2\delta\epsilon})]+\delta f(x, y)$ (50)

We approximate the solution $u$ at $(x,y)$ with the mean of the values $u(z_{1})$ ,
$u(z_{2})$ , $\mathrm{u}(\mathrm{z}\mathrm{z})$ and $u(z_{4})$ , where:

$z_{1}=(x-a_{1}\delta-\sqrt{2\delta\epsilon}, y-a_{2}\delta)$

$z_{2}=(x-a_{1}\delta, y-a_{2}\delta-\sqrt{2\delta\epsilon})$

$z_{3}=(x-a_{1}\delta+\sqrt{2\delta\epsilon}, y-a_{2}\delta)$

$z_{4}=(x-a_{1}\delta, y-a_{2}\delta+\sqrt{2\delta}\epsilon)$ .
In order to obtain afully discrete scheme we construct a(structured or

unstructured) grid and we “project” on the grid by local interpolation.
Note that $\delta$ is afree parameter which makes the scheme very flexible. In

[10] it has been proved that tuning $\delta$ and choosing apiecewise linear local
interpolation one can reconstruct other well known stabilized FE methods, such
as the SUPG method or the Bubble method (see [41], [38], [8] and [9] for more
informations about stabilized FE methods for this problem). Acomparison of
the numerical results on this test problem will be given in the last section
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4Approximation of MC flow
Let us consider the second order evolutive Hamilton-Jacobi equation which
arises in the level set formulation of mean curvature motion, that is:

$\{$

$y(x, t)= \mathrm{d}\mathrm{i}\mathrm{v}(\frac{Dv(x,t)}{|Dv(x,t)|})|Dv(x, t)|$ , in $R^{2}\mathrm{x}(0,T)$

$v(x, 0)=v_{0}(x)$ , in $R^{2}$ .
(51)

where $v_{0}$ is arepresentation function for the front $\Gamma_{0}$ at time 0(i.e. acon-
tinuous function which vanishes on $\Gamma_{0}$ and changes sign crossing $\Gamma_{0}$). Alarge
amount of papers have studied this problem from the analytical point of view,
the interested reader can find in the lectures [25], [60] and [39] an introduction
to the subject and arather complete list of references. It is worth to note that
problem (51) can develop singularities in finite time so that its solutions should
be understood in the viscosity sense (see [16], [26]).

The scheme we propose here can be regarded as the discrete version of a
representation formula for the viscosity solution of (51). In [63] Soner and
Touzi have proved arepresentation formula for the solution of alarge class
of geometric second order Hamilton-Jacobi equations, including (51) (see also
[64], [65] $)$ . The formula is based on astochastic control interpretation of the
MCM which leads to look at it as atarget problem for adegenerate diffusion
dynamics where the target is the initial configuration of the front. Although
their representation formula is suitable for more general situations, we will focus
for simplicity on the mean curvature evolution of acurve in $\mathrm{R}^{2}$ . In this special
case, Soner-Touzi representation formula has the form

$v(x, t)=E\{v_{0}(y(x, t, t))\}$ (52)

where $E(\cdot)$ is the probabilistic expectation, $y(x, t, t)$ is the solution of the Stochas-
tic Initial Value Problem

$\{$

$dy(x,t, s)=\sqrt{2}P(y, t, s)dW(s)$ (53)
$y(x, t,0)=x$

and $P$ is defined by

$P(y, t, s)= \frac{1}{|Dv(y,t-s)|^{2}}\{$
$v_{x_{2}}^{2}(y, t-s)$

$-v_{x_{1}}(y, t-s)v_{x_{2}}(y, t-s))$
$-v_{x_{1}}(y, t-s)v_{x_{2}}(y, t-s)$ $v_{x_{2}}^{2}(y, t-s)$

(54)
In this construction, the Wiener process appearing in (53) is 2-dimensional,

but the projection matrix $P$ has rank one. Neglecting for simplicity the argu-
ments in (53), (54), we also have:

$\sqrt{2}PdW$ $= \frac{\sqrt{2}}{|Dv|^{2}}$ ( $-v_{x_{1}}v_{x_{2}}v_{x_{2}}^{2}$ ) $(\begin{array}{l}dW_{1}dW_{2}\end{array})$

$= \frac{\sqrt{2}}{|Dv|-}(\begin{array}{l}v_{x_{2}}-v_{x_{1}}\end{array})$
$(_{\mathrm{r}^{v_{\mathrm{r}}}\eta_{v}}DdW_{1}- \frac{v_{v_{1}}}{|Dv|}dW_{2})$

$=\sigma dW$
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$d \overline{W}=(\frac{v_{x_{2}}}{|Dv|}dW_{1}-\frac{v_{x_{1}}}{|Dv|}dW_{2})$

is still the differential of astandard Wiener process, and

(55)

$\sigma(y, t, s)=\frac{\sqrt{2}}{|Dv(y,t-s)|}$ $(\begin{array}{ll}v_{x_{2}}(y,t- s)-v_{x_{1}}(y,t- s)\end{array})$ . (56)

Replacing (53) by

$\{$

$dy(x, t, s)=\sigma(y,t, s)d\overline{W}(s)$
(57)

$y(x, t,0)=x$

it is then possibile to reformulate the representation formula in order to reduce
the dimension of the Brownian process, replacing (53) by

$\{$

$dy(x,t, s)=\sigma(y, t, s)d\overline{W}(s)$
(58)

$y(x, t, 0)=x$

Also for the MC flow equation, the semi-Lagrangian scheme parallels the repre-
sentation formula written on asingle time step. In fact, writing the Soner-Touzi
representation formula between $t$ and $t+\Delta t$ we get

$v(x, t+\Delta t)=E$ { $v(y$ ( $x$ , $t$ , At), $t)$ } (59)

with $y$ defined by (58).
Following [43], we discretize (59), (58) according to the theory of numerical

schemes for stochastic ODEs. Asimple choice is to discretize equation (58) by a
stochastic Euler scheme and to compute the expectation in (59) considering for
$\Delta\overline{W}$ only two determinations, namely $\Delta\overline{W}=\pm\sqrt{\Delta t}$ , each one with probability
1/2. Setting up aspace grid of step Ax, we obtain the scheme (written at the
node $x_{j}$ and at the $(n+1)$-th time step):

$v_{j}^{n+1}= \frac{1}{2}(I[V^{n}](x_{j}+\sigma_{j}^{n\sqrt{\Delta t})}+I[V^{n}](x_{j}-\sigma_{j}^{n\sqrt{\Delta t}))}$ (60)

where $\sigma_{j}^{n}$ is defined by

$\sigma_{j}^{n}=\frac{\sqrt{2}}{|D_{j}^{n}|}(_{-D_{1,j}^{n}}^{D_{2j}^{n}},)$ (61)

$D_{1,j}^{n}$ , $D_{2,\mathrm{j}}^{n}$ and $D_{j}^{n}$ are suitable numerical approximations of $v_{x_{1}}(xj, tn)$ , $v_{x_{2}}(xj, tn)$

and $Dv(x_{j}, t_{n})$ . In (60), (61) we have replaced the expectation by aweighted
average, the computation of the function $v(x, t_{n})$ by anumerical interpolation
$I[V^{n}](x)$ , the solution of (58) by its Euler approximation and the derivatives in
$\sigma$ by finite differences.

It is very easy to show that the scheme (60) satisfies adiscrete maximum
principle as long as the reconstruction $I[V](x)$ is monotone (e.g. piecewise linear
or bilinear). In fact, the right-hand side of (60) consists of aconvex combination
of values of $I[V^{n}]$ so that if

$\min_{j}v_{j}^{n}\leq I[V^{n}](x)\leq\max v_{j}^{n}j$ ,

136



137

the same bounds also apply to $v_{j}^{n+1}$ .
Let us examine the consistency of the scheme. Assume now that the vector

$V^{n}$ of the node values is obtained from the exact solution by setting $v_{j}^{n}=$

$v(x_{j}, t_{n})$ . As usual, the solution $v$ will be assumed to be smooth enough to
carry out all the differentiations required, and we will assume in addition that
$|Dv|\geq c>0$ . The consistency assumptions on the elementary building blocks
of the scheme are:

$||I[V^{n}]-v(t_{n})||_{\infty}\leq C\Delta x^{r}$ , $\forall n\in N$ (62)

$|D_{1,j}^{n}-v_{x_{1}}(x_{j},t_{n})|\leq C\Delta x^{q}$ , $\forall n\in N$ (63)

$|D_{2,j}^{n}-v_{x_{2}}(x_{j}, t_{n})|\leq C\Delta x^{q}$ , $\forall n\in N$ (64)

where $C$ is apositive constant.
Let us recall that the stochastic Euler scheme is first-0rder in terms of weak

convergence (see [43]). For our purposes, this means that, for any smooth
function $g$ :

$\frac{1}{2}g(x+\sigma(x, t, 0)\sqrt{\Delta t})+\frac{1}{2}g(x-\sigma(x, t, 0)\sqrt{\Delta t})=E\{g(y(x, t, \Delta t))\}+O(\Delta t^{2})$ .
(65)

Theorem 4.1 Assume $v$ is a smooth solution of (51), such that $|Dv|\geq c>0$ .
Assume moreover that (62), (63), (64), (65) hold. Then, the local $t$ uncation
error of the scheme $(\mathit{6}\theta)-(\mathit{6}\mathit{1})$ has the $fom$

$L_{\Delta x,\Delta t}(x_{j},t_{n})=O( \Delta t+\frac{\Delta x^{f}}{\Delta t}+\frac{\Delta x^{q}}{\Delta t^{1/2}})$ . (66)

Proof
Let us start observing that

$I[V^{n}](x_{j}\pm\sigma_{j}^{n}\sqrt{\Delta t})=I[V^{n}](x_{j}\pm\sigma_{j}^{n}\sqrt{\Delta t})-v(x_{j}\pm\sigma_{j}^{n}\sqrt{\Delta t}, t_{n})+$

$+v(x_{j}\pm\sigma_{j}^{n}\sqrt{\Delta t},t_{n})-v(xj\pm\sigma(xj, t_{n}, 0)\sqrt{\Delta t}, t_{n})+$

$+v(x_{j}\pm\sigma(x_{j}, t_{n}, 0)\sqrt{\Delta t}, t_{n})=$

$=O(\Delta x^{f})+O(\Delta x^{q}\Delta t^{1/2})+v(xj\pm\sigma(xj , tn’ 0)\sqrt{\Delta t}, t_{n})$

where we have estimated the right-hand side row by row, used the fact that $v$ is
smooth and $\sigma_{j}^{n}-\sigma(x_{j}, t_{n}, 0)=\mathrm{O}(\mathrm{A}\mathrm{x}9)$ , along with (62), (63), (64). Therefore
we get

$\frac{1}{2}(I[V^{n}](x_{j}+\sigma_{j}^{n\sqrt{\Delta t})}+I[V^{n}](x_{j}-\sigma_{j}^{n\sqrt{\Delta t}))}=$

$= \frac{1}{2}[v(x_{j}+\sigma(x_{j},t_{n},0)\sqrt{\Delta t},t_{n})+v(x_{j}-\sigma(xj , t_{n}, 0)\sqrt{\Delta t}, t_{\hslash})]+$

$+O(\Delta x^{f})+O(\Delta x^{q}\Delta t^{1/2})=$

$=E${ $v$ ($y$ ( $x$ , $t$ , At), $t)$ } $+O(\Delta t^{2})+O(\Delta x^{r})+O(\Delta x^{q}\Delta t^{1/2})$ (62)
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in which also (65) has been used.
By (67) and (59), we can finally get our estimate of the local truncation

error,
$L_{\Delta x,\Delta t}(x_{j}, t_{n})= \frac{1}{\Delta t}(v(x_{j}, t_{n+1})-v_{j}^{n+1})$ . (65)

El

The convergence for the SL scheme can be obtained by applying the abstract
convergence theorem by Barles-Souganidis [6], In fact, it has been proved that
the scheme is monotone, stable and consistent for monotone interpolations and
short time steps, $\mathrm{c}\mathrm{f}\mathrm{r}$ . [12]. Naturally, these restrictions should be removed or
at least weakened also because there is some numerical evidence that this can
be actually done. This is the goal of our future work for adifferent proof which
should cover large time steps and high-0rder approximation schemes which have
been tested in [27].

5Numerical tests
In this section, we provide some numerical experiments on the two model prob-
lems examined in Section 3and 4.

5.1 The advection diffusion problem

Let us consider the following boundary value problem: problem:

$\{$

$- eu”+\beta u’=f$ in $(0, 1)$

$u(0)=u(1)=0$
(69)

where we fix $\epsilon=0.01$ and $\beta$ $=1$ and $f(x)=1$ .
The exact solution is:

$u(x)=- \frac{1}{\beta(e^{\mathrm{g}}e-1)}(e^{\frac{\beta ae}{e}}-1)+\frac{x}{\beta}$.

In Figures 1and 2we represent the approximate solution using respectively
the standard Galerkin method and astabilized FE method (SUPG) with $k=$

$\Delta x=0.05$ . We can observe spurious oscillations using $\mathrm{G}$ (Figure 1) and smooth
approximate solutions using SUPG (see Figure 2).
For $k=0.05$ , we have choosen for SL method the $\delta$ parameter in order to obtain
the same results as SUPG (Figure 3) $)$ . The approximation by the SL scheme
remains stable also decreasing Ax, Figure 4shows the solution for $k=0.025$ .

5.2 Shrinking of simple curves
In the following tests the space grid is orthogonal and uniform, with 50 nodes
per side of the computational domain. The approximation of the gradient has
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Figure 1: Galerkin approximation, Ax $=0.05$

Figure 2: SUPG approximation, Ax $=0.05$
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Figure 3: SL approximation, Ax $=0.05$

Figure 4: SL approximation, $\Delta x=0.05$
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Figure 5: Ashrinking circle

been performed by means of centered differences. In all tests we have used
athird order reconstructions (Lagrange type polynomials or ENO type recon-
structions). Figure 5shows the shrinking of acircular front evolving by mean
curvature, atest example for which the exact solution is known (see e.g. [39]).
The level curve of the numerical solution is plotted every 5iterations up to the
extinction.

Figure 6illustrates awell-known feature of motion by mean curvature: the
evolution of any closed simple curve tends towards ashrinking circle which even-
tually collapses (see [42]). The initial front is asquare rotated by 30 degrees and
the level curves are plotted every 4iterations in the first part of the evolution.
Note that in this test, the initial front is not aligned with the grid.
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