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\S 1. Introduction and main result
Prank [3] claimed that the presence of steps associated with screw dislocations plays

akey role for the growth of crystal surfaces; see also [1]. In geometric model the location
of the steps on acrystal surface is represented as acurve $\Gamma(t)$ depending on time $t$ . In
[2] it was proposed that the evolution of $\Gamma(t)$ is governed by acurvature flow equation
with adriving force term:

$V=V_{0}(1+\ell_{0}\kappa)$ . (1)

Here $V$ and $\kappa$ denotes the normal velocity and the curvature of $\Gamma(t)$ respectively in the
direction of the unit normal vector field $n$ of $\mathrm{T}(\mathrm{t});V_{\mathrm{O}}$ is apositive constant, which is the
normal velocity of the straight step; and $\ell_{0}$ is also positive constant, which is the critical
radius of the curvature. If 0is the only dislocation, we consider (1) in $\mathbb{R}^{2}\backslash \{0\}$ such
that one of the end point of $\Gamma(t)$ is zero. In [2] it is suggested that there is an essentially
unique rotating solution for (1). Such asolution is called aspiral(-shaped) solution. In
modern analysis this problem can be solved by ashooting method as suggested in [16,
Appendix AVI, p.190-203]; see also [14].

Figure 1Screw dislocation
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$\Gamma(t)$ $]$ normal velocity $V=V_{0}$

$\downarrow$

normal velocity $V=\mathrm{V}\mathrm{o}(1+\ell 0\kappa)$

$\downarrow$

$\downarrow$

The step due to the dislocation will rapidly wind itself up into aspiral
centered on the dislocation, until the curvature at the center reaches the
critical value $-1/\ell 0$ , at which the normal velocity falls to zero; the whole
spiral $\mathrm{w}\mathrm{i}\mathrm{u}$ then rotate steadily with stationary shape.

Figure 2: The location of the step
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In this proceeding we study the existence of spiral(-shaped) solution when the growth
equation (1) takes the anisotropy into account. Such an extension is very natural in the
theory of crystal growth. For technical reasons we postulate that the dislocation is not a
point but aclosed disk Bp, the center of which is 0, and that crystal surface $B_{R}$ is alarge
disk having common center with dislocation disk. Moreover, we postulate that $\Gamma(t)$ is
orthogonal to the boundary of the crystal surface $B_{R}$ and $B_{\rho}$ . Under these assumptions
evolution of $\Gamma(t)$ in an annulus $\Omega=\{x\in \mathbb{R}^{2}|\rho<|x|<R\}(=B_{R}\backslash B_{\rho})$ is governed by

$\{$

$V=M(n)(D_{0}\kappa_{\gamma}+V_{0})$ on $\mathrm{F}(\mathrm{t})$ ,
$\Gamma(t)[perp]\partial\Omega$ , (2)

Here $\kappa_{\gamma}$ denotes the anisotropic curvature of $\Gamma(t)$ in the direction of $n$ . It is defined by

$\kappa_{\gamma}:=-\mathrm{d}\mathrm{i}\mathrm{v}_{\epsilon}\nabla\gamma(n)$ , (3)

with the interfacial energy density 7: $\mathrm{R}^{2}arrow \mathrm{R}^{+}=$ {a $\in \mathrm{R}$ $|\sigma\geq 0$} which is positively
homogeneous of degree one, i.e., $\gamma(\lambda p)=\lambda\gamma(p)$ for all $p\in \mathrm{R}^{2}$ and $\lambda\in \mathrm{R}^{+};\nabla$ denotes
the gradient and $\mathrm{d}\mathrm{i}\mathrm{v}_{s}$ denotes the surface divergence. For avector field $f$ on acurve in
$\mathrm{R}^{2}$ the surface divergence is defined by

$\mathrm{d}\mathrm{i}\mathrm{v}_{s}f:=\langle\partial_{s}f,\tau\rangle$ ,

where $\partial_{\epsilon}$ is the derivative with respect to arclength and $\tau$ is the unit tangent vector
to the curve; $\langle\cdot, \cdot\rangle$ denotes the inner product of $\mathrm{R}^{2}$ . The function $M(n)$ is called the
mobility, which is positively homogeneous of degree zero and depends on $n$ ; $D_{0}$ is a
positive constant. If $M(n)\equiv 1$ and $\gamma(p)=|p|$ , then the curvature flow equation in (2)
is $\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{l}\dot{\mathrm{u}}\mathrm{n}\mathrm{g}$ but (1) with $D_{0}=\ell_{0}V_{0}$ . For more applications of these equations the reader
is referred to anice monograph of M. E. Gurtin [4] and areview article by J. Taylor, J.
Cahn and A. Handwerker [19].

Our goal in this proceeding is to seek aspiral(-shaped) solution. Contrary to isotropic
case there might be no rotating solution. For anisotropic case it is natural to say that $\Gamma(t)$

is spiral(-shaped) solution if $\mathrm{T}(\mathrm{t})$ is aperiodic in-time solution of (2). In this proceeding
we consider more special spiral solution of the form

$\Gamma(t)=\{(r\cos\theta(r,t),r\sin\theta(r,t))|\rho\leq r\leq R\}$ (4)

where $r=|x|$ and 0represents the argument or the angle of $x\in \mathrm{R}^{2}$ .

Definition. We call $\Gamma(t)$ a spiral solution of (2) of $\theta(r,t)$ in (4) if $\theta(r,t)$ is monotone
with respect to $r$ , and periodic in time $t$ , that is, $\mathrm{f}\mathrm{f}\mathrm{l}e\mathrm{r}\epsilon$ exists $T>0$ such that $\theta(r,t+T)=$

$\theta(r,t)+2\pi$ for all $t>0$ .

We remark that other kind of spirals, such as those are not included in above category,
do exist in realty; certain crystals usually involve facets, where the angle 0is not a
monotone function of $r$ . It is not expected that aspiral solution of form (4) always
exists unless anisotropic effect is small. We here confine ourselves to investigating the
existence of spirals within the above somewhat restricted family when anisotropic effect
is small. Our main results read as follows
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Figure 3: The representation of the form (4)

Main Theorem. (Eistence of a spiral solution). Assume that $M$ and $\gamma$ are smooth
on a unit circle. Assume that th$\iota e$ equation (2) is close to isotropy in the sense defined
in Section 3below. Then there $e$$\dot{m}ts$ a spiral solution $\hat{\Gamma}(t)$ of (2), which is unique up to
translation of time.

The assumption that the equation (2) is close to isotropy is necessary to obtain adobal-
in-time solution of form (4).

We briefly describe our strategy of the proof. First we derive the equation for $\theta(r,t)$

appeared in the formula (4), and establish its gradient estimates under the condition that
the equation (2) is close to isotropy in some sense. The precise assumption is presented
in Section 3. The gradient estimate is aconsequence of the use of the weak maximum
principle, and plays akey role to obtain aglobal-in-time solution to (2). Next, we show
atime monotonicity of the infiinum of $\theta(r,t)$ on $\overline{I}:=\{r\in \mathrm{R} |\rho\leq r\leq R\}$ and an
rder-preserving property of $\theta$ . The strong maximum principle is involved in the proof.

Based on the gradient estimate as well as these properties on 0we apply the theory
developed in [14] to obtain atime periodic solution, which is unique up to translation of
time.

In [14] they studied the Neumann problem for the Allen-Cahn type equation

$u_{t}=\Delta u+g(u-\theta)$ , $x\in\Omega$

when $g$ is $2\pi$-periodic function. Here 0denotes the angle of $x$ . The function $g$ is the
derivative of amulti-well potential and $\int_{0}^{2\pi}g\{v$)$dv$ $>0$ . They proved the unique existence
of aspiral traveling wave solution $u$ in the sense that $u$ is of the form

$u(x,t)=\varphi(r,\theta-\{vt)$ $+\omega t$

with some $\omega$ $>0$ (independent of $x$ and $t$) and afunction $\varphi$ with $r=|x|$ . In [15] a
similar result is derived for more general semilinear parabolic equations and it is proved
that such asolution is asymptotically stable. To construct aspiral solution, they use
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strong maximum principle in asmart way. We shall use their argument in the proof of
Theorem 1as mentioned in Section 4. In [14] they also prove the existence of rotating
solution for (2) when it is isotropic (i.e. $\gamma(p)=|p|$ , $M(n)\equiv 1$ ) by ashooting $\arg\iota \mathrm{u}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}$

for an ordinary differential equation. We remark that such an ODE argument does not
work when the equation is anisotropic (see Remark 4).

We take this opportunity to mention several related works on spirals. There are
numerical calculations based on the Allen-Cahn equation by A. Karma and M. Plapp
[9], R. Kobayashi [10]; the latter also treats the case when there are several dislocation.
In this case two steps may collide. To treat such aphenomena two level set methods
are proposed numerically by P. Smereka [18] and analytically by T. Ohtsuka [17]; their
methods are different each other. Other aspects of spiral shaped solutions for various
interface equations, we refer for instance to [5, 6, 7, 8, 20] and references therein.

\S 2. Derivation of the equation
Let us derive the equations for $\theta(r,t)$ in the expression (4) of $\Gamma(t)$ . Since $\gamma$ is $\mathrm{h}\mathrm{o}\mathrm{m}\triangleright$

geneous of degree 1, we first get
$\langle\nabla\gamma(p),p\rangle=\gamma(p)$ . (5)

for $p\in \mathrm{R}^{2}$ . Let $p^{[perp]}$ be rotation of $p\mathrm{b}\mathrm{y}-\pi/2$. We observe that

$\nabla\gamma(p)=\langle\nabla\gamma(p), \frac{p}{|p|}\rangle\frac{p}{|p|}+\langle\nabla\gamma(p), \frac{p^{[perp]}}{|p^{[perp]}|}\rangle\frac{p^{[perp]}}{|p^{[perp]}|}$ .

Since $|p|=|p^{\mathrm{L}}|$ , we obtain
$|p|^{2}\nabla\gamma(p)=\langle\nabla\gamma(p),p\rangle p+\langle\nabla\gamma(p),p^{[perp]}\rangle p^{[perp]}$ . (6)

Combining (5) and (6), we are led to
$|p|^{2}\nabla\gamma(p)=\gamma(p)p+\langle\nabla\gamma(p),p^{[perp]})p^{[perp]}$ . (7)

Here, the unit normal vector $n$ and the unit tangent vector $\tau$ of $\Gamma(t)$ is represented as

$n=n(r, \theta,\theta_{r})=\frac{1}{(1+r^{2}\theta_{r}^{2})^{1/2}}$ $(\begin{array}{lll}-\mathrm{s}\mathrm{i}\mathrm{n}\theta-r\theta_{r} \mathrm{c}\oe \theta\mathrm{c}\oe\theta-r\theta_{r} \mathrm{s}\mathrm{i}\mathrm{n}\theta \end{array})$,

$\tau$ $= \tau(r, \theta, \theta_{r})=(n(r, \theta,\theta_{r}))^{[perp]}=\frac{1}{(1+r^{2}\theta_{r}^{2})^{1/2}}$ $(\begin{array}{l}\mathrm{c}\mathrm{o}\mathrm{s}\theta-r\theta_{r}\mathrm{s}\mathrm{i}\mathrm{n}\theta\mathrm{s}\mathrm{i}\mathrm{n}\theta+r\theta_{r}\mathrm{c}\mathrm{o}\mathrm{s}\theta\end{array})$ .

This implies
$\frac{\partial n}{\partial\theta}=-\tau$ , $\frac{\partial\tau}{\partial\theta}=n$ .

Setting $\hat{\gamma}(\theta):=\gamma(n(\cdot,\theta, \cdot))$ , we find

$\sqrt{}^{\wedge}(\theta)=\langle\nabla\gamma(n), \frac{\partial n}{\partial\theta}\rangle=-\langle\nabla\gamma(n),\tau\rangle$ (8)

where ’denotes the derivative with respect to $\theta$ . Thus, by virtue of (7) and (8), we are
led to

$\nabla\gamma(n)=\gamma(n)n-\wedge\sqrt(\theta)\tau=\hat{\gamma}(\theta)n-\wedge\sqrt(\theta)\tau$. (9)
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We also note

$\partial_{\epsilon}\tau=\frac{\frac{1}{(1+r_{1}^{2}\theta_{r}^{2})^{1/2}}}{(1+r^{2}\theta_{r}^{2})^{1/2}}\frac{\frac{\partial n}{\partial\tau\partial r}}{\partial r}=\partial_{s}n==\frac{r\theta_{rr}+r^{2}\theta_{r}^{3}+2\theta_{r}}{\frac{r\theta-}{}rr+r^{2}\theta_{r}^{3}+2\theta_{r}n’(1+r^{2}\theta_{r}^{2})^{3/2}(1+r^{2}\theta_{r}^{2})^{3/2}},.\tau$

,

Then, by (3) and (9), we derive

$\kappa_{\gamma}$
$=$ $-\mathrm{d}\mathrm{i}\mathrm{v}_{s}(\hat{\gamma}(\theta)n-\wedge\sqrt(\theta)\tau)$

$=$ $-\langle\partial_{s}(\hat{\gamma}(\theta)n-\wedge\sqrt(\theta)\tau)$, $\tau)$

$=$ $- \{-\hat{\gamma}(\theta)\frac{r\theta_{rr}+r^{2}\theta_{r}^{3}+2\theta_{\mathrm{r}}}{(1+r^{2}\theta_{r}^{2})^{3/2}}-\partial_{\delta}\hat{\gamma}’(\theta)\}|\tau|^{2}$ .

On the other hand, differentiating the both sides of (8) with respect to the arclength
parameter $s$ , we deduce that

$\partial_{\epsilon}\wedge\sqrt(\theta)=\frac{r\theta_{\mathrm{f}r}+r^{2}\theta_{r}^{3}+2\theta_{r}}{(1+r^{2}\theta_{r}^{2})^{3/2}}\{\langle(\nabla^{2}\gamma(n))\tau, \tau\rangle -\langle\nabla\gamma(n), n\rangle\}$ . (10)

Moreover, differentiating the both sides of (8) with respect to 0, we obtain
$\hat{\gamma}’(\theta)=\langle(\nabla^{2}\gamma(n))\tau,\tau\rangle-\langle\nabla\gamma(n), n\rangle$. (11)

Thanks to (10) and (11), we are led to

$\partial,\wedge\sqrt(\theta)=\frac{r\theta_{rr}+r^{2}\theta_{r}^{3}+2\theta_{r}}{(1+r^{2}\theta_{r}^{2})^{3/2}}\wedge\sqrt{}’(\theta)$ ,

from where we conclude that

$\kappa_{\gamma}=(\hat{\gamma}(\theta)+\hat{\gamma}’(\theta))\frac{r\theta_{rr}+r^{2}\theta_{r}^{3}+2\theta_{r}}{(1+r^{2}\theta_{r}^{2})^{3/2}}$ . (12)

Consequently, since the normal velocity of $\Gamma(t)$ is

$V= \langle\frac{\partial\Gamma}{\partial t},n)=\frac{r\theta_{t}}{(1+r^{2}\theta_{r}^{2})^{1/2}}$ ,

so that the interface equation (2) become

$\{$

$\theta_{t}=M(n)(\frac{a(n)(r\theta_{\Psi}+r^{2}\theta_{r}^{3}+2\theta_{r})}{r(1+r^{2}\theta_{r}^{2})},+\frac{V_{0}(1+r^{2}\theta_{r}^{2})^{1/2}}{r})$ ,

$\theta_{r}(\rho,t)=\theta_{r}(R,t)=0$.
(13)

where $a(n):=D_{0}(\gamma(\theta)+\sqrt{}’(\theta))=D_{0}\langle[\nabla^{2}\gamma(n)]\tau,\tau)$ .
Remark 1. (Local $e\dot{m}$tenoe of the solution of (13)), We describe the local existence of
the solution of (13). By using the optimal regularity theory of analytic semigroups as in
[13], we get aunique and smooth local-in-time solution of (13) with existence time $T$,
which depends on $1/||\theta_{\mathrm{O}}||c^{1+a}(J)$ . This implies that if we obtain $C^{1+\alpha}- \mathrm{a}$ priori estimate
of the solution $\theta(\cdot,t)$ for $t>0$ , there exists aunique global-in-time solution of (13). $\square$
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\S 3. Gradient estimate
The goal of this section is to obtain the gradient estimate. For this purpose, we first

provide the precise assumption that the equation of (13) is close to isotropy.
For $\lambda$ , $\mu$ , $\epsilon$ $>0$ and $\Lambda<\infty$ , we assume

(A-1) A $\leq M(p)\leq \mathrm{A}$ and $\mu\leq a(p)\leq \mathrm{A}$ for all $p\in \mathrm{S}^{1}$ ,

(A-2) $| \frac{\langle\nabla M(p),p^{[perp]})}{M(p)}|+|\frac{\langle\nabla a(p),p^{[perp]}\rangle}{a(p)}|\leq\epsilon$ for all $p\in \mathrm{S}^{1}$ .

If (A-2) holds for small $\epsilon$ $>0$ , this implies that $M$ and $a$ are close to isotropy. The next
proposition is the main ingredient of our current exposition.

Proposition 1. (Gradient estimate). Let

$\epsilon_{*}=\frac{\mu\rho}{2R^{2}V_{0}(d+\sqrt{d^{2}-1})}(>0)$

where
$d=1+ \frac{2R^{2}}{\rho^{2}}(2+\frac{RV_{0}}{\mu})(>1)$ .

Assume that $M(n)$ and $a(n)$ satisfy (A-l) and also fulfill (A-2) for some $\epsilon$ $\in(0,\epsilon_{*}]$ .
Then if $\theta(r,t)$ is a solution of (13) with the initial data $\theta(\cdot,0)=\theta_{0}$ such $that-L\leq$

$\theta_{0r}\leq 0$ for $L\in[L_{1}, L_{2}]_{f}$ the gradient $estimate-L\leq\theta_{r}(\cdot,t)\leq 0$ holds for $t>0$ . Here,
constants $L_{1}$ and $L_{2}(0<L_{1}\leq L_{2})$ are solutions of quadmtic equation

$\frac{2\epsilon}{\rho}(2+\frac{RV_{0}}{\mu})L^{2}-(\frac{1}{R^{2}}-\frac{2\epsilon V_{0}}{\mu\rho})L+\frac{V_{0}}{\mu\rho^{2}}=0$ . (14)

Remark $\mathrm{Z}$ If $0<\epsilon\leq\epsilon_{*}$ , the quadratic equation (14) has two positive real-valued
solutions. Indeed, (14) has two positive real-valued solutions if and only if

$\frac{1}{R^{2}}-\frac{2\in V_{0}}{\mu\rho}>0$ , and $( \frac{1}{R^{2}}-\frac{2\epsilon V_{0}}{\mu\rho})^{2}-4\cdot\frac{2\epsilon}{\rho}(2+\frac{RV_{0}}{\mu})\cdot\frac{V_{0}}{\mu\rho^{2}}\geq 0$.

These conditions holds for $0<\Xi$ $\leq\epsilon_{*}$ . We also stress that $\epsilon$ in (A-2) is determined a
posteriori from $\epsilon_{*}$ in Proposition 1. 0

Proof of Proposition 1. Differentiating both sides of (13) and setting $v:=\theta_{r}$ , we have

$\alpha(r,t)v,.r+\beta(r,t)v_{r}+\gamma(r,t)v-v_{t}=\frac{M(n)V_{0}}{r^{2}(1+r^{2}v^{2})^{1/2}}\geq 0$,
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$\alpha(r,t)$ $=$ $\frac{M(n)a(n)}{1+r^{2}v^{2}}$ ,

$\beta(r,t)$ $=$ $M(n)a(n) \frac{2+r^{4}v^{4}-2r^{3}vv_{r}-r^{2}v^{2}}{r(1+r^{2}v^{2})^{2}}$

$-M(n)a(n)( \frac{\langle\nabla M(n),\tau\rangle}{M(n)}+\frac{\langle\nabla a(n),\tau\rangle}{a(n)})\frac{r^{2}v_{r}+2rv(2+r^{2}v^{2})}{r(1+r^{2}v^{2})^{2}}$

$+ \frac{M(n)V_{0}}{(1+r^{2}v^{2})^{1/2}}(v-\frac{(\nabla M(n),\tau\rangle}{M(n)})$ ,

$\gamma(r,t)$ $=$ $- \frac{M(n)a(n)}{r^{2}}(1+\frac{1+3r^{2}v^{2}}{(1+r^{2}v^{2})^{2}})$

$-M(n)a(n)( \frac{\langle\nabla M(n),\tau\rangle}{M(n)}+\frac{\langle\nabla a(n),\tau\rangle}{a(n)})\frac{(2+r^{2}v^{2})^{2}v}{(1+r^{2}v^{2})^{2}r}$

$- \langle\nabla M(n),\tau\rangle\frac{V_{0}(1+r^{2}v^{2})^{1/2}(2+r^{2}v^{2})}{r(1+r^{2}v^{2})}$

with $v=v(r,t)$ , $n$ $=n(r,t)$ , and $\tau=\tau(r,t)$ . Since $\alpha(r,t)>0$ and $|\alpha(r,t)|$ , $|\beta(r,t)|$ ,
$|\gamma(r,t)|<\infty$ , we call appeal to the weak maximum principle; we deduce that $v(\cdot,t)\leq 0$

for $t>0$ if the initial data of $v$ satisfies $v(\cdot, 0)\leq 0$. That is, we are led to $\theta_{r}(\cdot,t)\leq 0$ for
$t>0$ if the initial data $\theta_{0}$ satisfies $\theta_{\mathit{0}r}\leq 0$ .

Next, we prove that if the initial data $\theta_{0}$ satisfies $\theta_{0\mathrm{r}}\geq-L$ for $L\in[L_{1}, L_{2}]$ , the
minimum of $\theta_{r}(\cdot,t)$ is estimated $\mathrm{b}\mathrm{y}-L$ for $t>0$ . To prove this, we set $w:=-v-L$.
Then $w$ satisfies

$\hat{\alpha}(r, t)w_{rr}+\hat{\beta}(r,t)w_{r}+\hat{\gamma}(r,t)w-w_{t}$

$=$ $\frac{M(n)a(n)}{r^{2}}(1+\frac{1+3r^{2}(w+L)^{2}}{(1+r^{2}(w+L)^{2})^{2}})\cdot L$

-

$\cdot$

$\frac{M(n)a(n)}{r}(\frac{\langle\nabla M(n),\tau\rangle}{M(n)}+\frac{\langle\nabla a(n),\tau\rangle}{a(n)})\frac{(2+r^{2}(w+L)^{2})^{2}}{(1+r^{2}(w+L)^{2})^{2}}\cdot L^{2}$

$+ \frac{M(n)V_{0}(1+r^{2}(w+L)^{2})^{1/2}}{r}\cdot\frac{\langle\nabla M(n),\tau\rangle}{M(n)}\cdot\frac{2+r^{2}(w+L)^{2}}{1+r^{2}(w+L)^{2}}\cdot L$

$- \frac{M(n)V_{0}}{r^{2}(1+r^{2}(w+L)^{2})^{1/2}}$

$\geq M(n)a(n)\{\frac{1}{R^{2}}L-\frac{4\epsilon}{\rho}L^{2}-\frac{2\epsilon V_{0}(1+R(w+L))}{\mu\rho}L-\frac{V_{0}}{\mu\rho^{2}}\}$

where $\hat{\alpha},\hat{\beta}$ and $\hat{\gamma}$ are represented by putting $-w-L$ instead of $v$ in $\alpha$ , $\beta$, and $\gamma$,
respectively. Transposing the term of to in the right hand side to the left hand side, we
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$\hat{\alpha}(r,t)w_{rr}+\hat{\beta}(r,t)w_{r}+(\hat{\gamma}(r,t)+\frac{2\epsilon RV_{0}L}{\mu\rho})w-w_{t}$

$\geq-M(n)a(n)\{\frac{2\epsilon}{\rho}(2+\frac{RV_{0}}{\mu})L^{2}-(\frac{1}{R^{2}}-\frac{2\epsilon V_{0}}{\mu\rho})L+\frac{V_{0}}{\mu\rho^{2}}\}$ (15)

$=:-M(n)a(n)Q(L)$ .

According to the condition of $L$ , we find that $Q(L)\leq 0$ . Since $M(n)$ and $a(n)$ are
positive, it follows that

$\hat{\alpha}(r,t)w_{rr}+\hat{\beta}(r,t)w_{r}+(\hat{\gamma}(r,t)+\frac{2\epsilon RV_{0}L}{\mu\rho})w-w_{t}\geq-M(n)a(n)Q(L)\geq 0$.

Using the weak maxim um principle for this equation, we obtain that $w(\cdot, t)\leq 0$ for $t>0$
if the initial data of $w$ satisfies $\mathrm{w}(-, 0)\leq 0$. The proof is now complete. $\square$

\S 4. Existence of spiral solutions
In this section, our goal is to obtain aperiodic-in-time solution of (13). For this

purpose, we shffi apply the idea of [14]. Let us first derive the useful properties on $\theta$ .
Lemma $\mathrm{L}$ $(i)$ (Monotonicity for time). Let $\theta(\cdot,t)$ be solutions of (13) with the initial
data $\theta_{0}$ and $m(t):= \inf\{\theta(r,t)|\rho\leq r\leq R\}$ . Assume that $\theta_{\mathrm{O}r}\leq 0$ . Then there exists $a$

constant $\nu>0$ such that
$\frac{d}{dt}m(t)\geq\nu$ for $t>0$ .

(ii) (Order-preserving). Let $\theta^{(1)}(\cdot,t)$ and $\theta^{(2)}(\cdot,t)$ be solutions of (13) with the initial
data $\theta_{0}^{(1)}$ and $\theta_{0}^{(2)}$ , respectively. If $\theta_{0}^{(1)}\leq\theta_{0}^{(2)}$ with $\theta_{0}^{(1)}\not\equiv\theta_{0}^{(2)}$ , then the order is preserved
for $t>0_{f}i.e.\mathrm{J}$

$\theta^{(1)}(\cdot, t)<\theta^{(2)}(\cdot, t)$ for $t>0$ .
Proof. We first prove (i). By virtue of Proposition 1, we have $\theta_{r}(\cdot,t)\leq 0$ for $t>0$ .
This implies that

$\inf_{\rho\leq r\leq R}\theta(r,t)=\theta(R,t)(=:m(t))$ .

Letting $r\uparrow R$ in (13), we have

$\theta_{t}(R, t)=M(n)(a(n)\theta_{\tau},(R,t)+\frac{V_{0}}{R})$ . (16)

Now we claim that

$\theta,(R,t)\geq 0$ for $t>0$ . (17)

In fact, suppose that $\theta_{rr}(R, t)<0$ . Then there exists aconstant $\delta>0$ such that
$\theta_{rr}(r,t)<0$ for $R-\delta$ $<r\leq R$. Since Or(R, t)$)=0$, we see that $\theta_{r}(r,t)>0$ for
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$R-\delta<r\leq R$ . This contradicts $\theta_{r}(r,t)\leq 0$ for $\rho\leq r\leq R$ , which verifies (17). In view
of (16) and (17), we thus obtain

$\theta_{t}(R, t)\geq M(n)\frac{V_{0}}{R}\geq\frac{\lambda V_{0}}{R}>0$ .

Since $\theta$ is a $C^{1}$-function with respect to $t$ for $t>0$ , the desired inequality is established,

(ii) is proved by using the strong maxim um principle. We may safely omit the details.
$\square$

Moreover we obtain the estimate of $\theta$ as follows.

Lemma 2. Let $\theta(\cdot,t)$ be solutions of (13) with the initial data $\theta_{0}$ . Assume that $\theta_{\mathit{0}r}\leq 0$ .
Then we have

$\theta_{0}(R)+\nu_{1}t\leq\theta(\cdot, t)\leq\theta_{0}(\rho)+\nu_{2}t$ for $t>0$ .
where $\nu_{1}=\lambda V_{0}/R$ and $\nu_{2}=\Lambda V_{0}/\rho$ .
Proof. By Proposition 1we see $\theta_{r}(\cdot, t)\leq 0$ for t $>0$ . Then we have

$\theta(R,t)\leq\theta(r,t)\leq\theta(\rho,t)$ for $\rho\leq r\leq R$ .
It follows from Lemma $1(\mathrm{i})$ that $\theta_{0}(R)+\nu_{1}t\leq\theta(R,t)$ . On the other hand, applying the
similar argument to the proof of Lemma $1(\mathrm{i})$ , $\theta_{rr}(\rho,t)\leq 0$ is verified. Letting $r$ a $\rho$ in
(13), we have

$\theta_{t}(\rho,t)=M(n)(a(n)\theta_{rr}(\rho,t)+\frac{V_{0}}{\rho})\leq M(n)\frac{V_{0}}{\rho}\leq\frac{\Lambda V_{0}}{\rho}$ .

This implies that $\theta(\rho,t)\leq\theta_{0}(\rho)+\nu_{2}t$ and completes the proof. $\square$

Remark 3. (Global $e\dot{m}$tence of the solution of (13)). According to the theory of
parabolic equations (see [11, 12]), the H\"older norm of the gradient is estimated by a
constant depending on the maximum norm of the gradient and some given constants in
the assumptions for $M(n)$ and $a(n)$ . Thus the existence of the global-in-time solution
of (13) is assured by Remark 1, Proposition 1, and Lemma 2. The uniqueness of the
solution of (13) is also assured by the order preserving property. Cl

We set
$D=\{\psi\in C^{1+a}(I\gamma |-L\leq\psi_{r}\leq 0, \psi_{r}(\rho)=\psi_{r}(R)=0\}$

where $I=\{r\in \mathrm{R} |\rho<r<R\}$ and define the map $\Phi_{t}$ on $D$ as

$\Phi_{t}(\theta_{0})=\theta(\cdot, t)$ for each $t>0$ (18)

where $\theta(\cdot,t)$ is the solution of (13) with the initial data $\theta(\cdot, 0)=\theta_{0}$ . Note that if the
initial data $\theta_{0}$ is in 7), then we have the estimates of $\theta_{r}(\cdot, t)$ and $\theta(\cdot, t)$ for $t>0$ by
Proposition 1and Lemma 2; that is, there exists aunique global-in-time solution of (13)
(see Remark 3). Moreover, if the initial data $\theta_{0}$ is in $D$ , the solution $\theta(\cdot,t)$ stays also in
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V. The definition of the mapping $\Phi_{t}$ and the uniqueness of the solution of (13) imply
that a $\mathrm{f}\mathrm{a}$ mily of the mappings $\Phi_{t}$ from $V$ to itself satisfies the semigroup property:

$\Phi_{0}(\theta)=\theta$ for all $\theta\in D$ , $\Phi_{t}\circ\Phi_{s}=\Phi_{t+\epsilon}$ for any $t$ , $s\in[0, \infty)$ . (19)

The invariance of (13) for $2\pi$-periodicity and the uniqueness of the solution of (13) justify
$\Phi_{t}(\theta\pm 2n\pi)=\Phi_{t}(\theta)\pm 2\mathrm{n}\mathrm{n}$ for any $t>0$ , $\theta\in D$ and $n\in \mathrm{N}$ . (20)

In addition, the standard parabolic estimate implies that $\Phi_{t}$ is acompact map on $V$ for
each $t>0$ . Recalling Lemma $1(\mathrm{i}\mathrm{i})$ , $\Phi_{t}$ is also order-preserving for each $t>0$, which
means that $\theta_{1}<\theta_{2}$ implies $\Phi_{t}(\theta_{1})<\Phi_{t}(\theta_{2})$ for each $t>0$ . To obtain aperiodic solution
of (13), we need the following proposition.

Proposition 2. Let $\{\Phi_{t}\}_{t\in[0,\infty)}$ be a family of mappings $\Phi_{t}$ defined by (18). Then there
exists a unique $T_{0}>0$ such that $\varphi+2\pi=\Phi_{T_{0}}(\varphi)$ for some function $\varphi\in D$ .
In order to prove this proposition, we apply the idea of [14].
Proof. Let 0be asolution of (13) with the initial data $\theta(\cdot, 0)=\theta_{0}\in?)$ . According to
Proposition 1, we have

$\max\{\theta(r,t)|r\in\overline{I}\}-\min\{\theta(r,t)|r\in\overline{I}\}\leq 2LR$ for $t>0$ .
Set $\theta_{k}(r):=\theta(r, k)$ $-2\pi n_{k}$ and choose $n_{k}\in \mathbb{Z}$ satisfying

$\theta_{k}(r)\in[0,2LR+2\pi]$ .

Note that $\theta_{k}\in D$ . Let $s\in(0,1)$ be fixed. Since $\{\Phi_{s}(\theta_{k})\}_{k=1}^{\infty}$ is relatively compact
in $C^{1+a}(\overline{I})$ for each $s\in[\epsilon, 1)$ where $\epsilon$ $>0$ is arbitrary, there exists asubsequence
$\{\Phi_{s}(\theta_{k_{\mathrm{j}}})\}_{j=1}^{\infty}\subset\{\Phi_{s}(\theta_{k})\}_{k=1}^{\infty}$ and afunction $\varphi\in C^{1+\alpha}(\overline{I})$ such that

$||\Phi_{s}(\theta_{k_{\mathrm{J}}})-\varphi||_{C^{1}}+\alpha(I\gammaarrow 0$ as $jarrow\infty$ .
Note that also $\varphi\in D$ because aconstant $L>0$ is independent of time $t$ .

We first show that $\varphi+2\pi\leq\Phi_{T}(\varphi)$ for a $T>0$ . Lemma $1(\mathrm{i})$ implies that $\theta_{0}+2\pi<$

$\theta(\cdot, T)$ for a $T>0$ . Using Lemma 1(ii) and (19), $\Phi_{s+k_{\mathrm{j}}}(\theta_{0})+2\pi<\Phi_{s+k_{\mathrm{j}}+T}(\theta_{0})$ . Adding
$-2\pi n_{k_{J}}$ to the both side of this inequality and recalling $\Phi_{\epsilon+k_{j}}(\theta_{0})-2\pi n_{k_{\acute{\mathrm{J}}}}=\Phi_{s}(\theta_{k_{\acute{f}}})$ , we
have

$\Phi_{s}(\theta_{k_{j}})+2\pi<\Phi_{T}(\Phi_{\epsilon}(\theta_{k_{J}}))$ .
Letting $j\uparrow\infty$ , we see $\varphi+2\pi$ $\leq\Phi_{T}(\varphi)$ .

Now we define
$T_{0}:= \inf\{t\geq 0|\varphi+2\pi\leq\Phi_{t}(\varphi)\}$ .

It is the completely same argument as in [14, Section 3] to prove that $\varphi+2\pi=\Phi_{T\mathrm{o}}(\varphi)$

and $T_{0}>0$ is unique. Thus we omit their proof. $\square$

Proposition 2implies the following theorem.

Theorem 1. (Existence of a periodic-in-time solution). There exists a periodic-in-time
solution $\hat{\theta}$ of (13) satisfying $\theta\wedge(\cdot,t)$ $\in D$ for t $\in \mathrm{R}$ , which is unique up to translation of
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Remark 4When (2) is isotropic, the equation for 0is denoted by

$\{$

$\theta_{t}=\frac{D_{0}(r\theta_{rr}+r^{2}\theta_{r}^{3}+2\theta_{r})}{r(1+r^{2}\theta_{r}^{2})}+\frac{V_{0}(1+r^{2}\theta_{\mathrm{r}}^{2})^{1/2}}{r}$ ,

$\theta_{r}(\rho,t)=\theta_{r}(R, t)=0$ .
(21)

According to [14], the periodic-in-time solution of (21) is represented precisely as

$\hat{\theta}(r,t)=\xi(r\cdot)+\omega t$

for some function $\xi(r)$ and some constant $\omega$ . Indeed, setting $h(r):=r\xi’(r)$ , the problem
is reduced to solve the following ordinary differential equation:

$h’=f(r, h;\{v)$ , $h(\rho)=h(R)=0$ ,

where
$f(r,h; \omega)=\frac{1}{D_{0}}(1+h^{2})\{-V_{0}(1+h^{2})^{1/2}-D_{0}\frac{h}{r}+r\omega\}$ .

On the other hand, when the equation is anisotropic, to find the periodic-in-time solution
can not be reduced to an ODE argument due to the functions $M(n)$ and $a(n)$ . $\square$

Proof of Theorem 1. Choose $\varphi\in D$ , which satisfies $\varphi+2\pi=\Phi_{T_{0}}(\varphi)$ , as the initial
data. Then, we can obtain asolution $\hat{\theta}$ of (13) with $\theta\wedge(\cdot,0)=\varphi$ and $\hat{\theta}(\cdot, t)\in D$ for $t\geq 0$ .
This solution fulfills

$\hat{\theta}(\cdot,t)+2\pi=\Phi_{t}(\varphi)+2\pi=\Phi_{t}(\varphi+2\pi)=\Phi_{t}(\Phi_{T_{0}}(\varphi))=\Phi_{t+T_{\mathrm{O}}}(\varphi)=\hat{\theta}(\cdot,t+T_{0})$ .

That is, 0is aperiodic solution of (13) for $t\geq 0$ . Using the uniqueness of the solution of
(13) and the periodicity of the map $\Phi_{t}$ , we can extend this periodic solution $\hat{\theta}$ to $t<0$ .
Note that $\Phi_{t}$ is also order-preserving for $t<0$ .

Finally we prove that this periodic solution is unique up to translation to the t-
direction for $t\in \mathrm{R}$ . The argument is essentialy similar to that of [14, Section 3].
However, since the argument in [14] is based on an abstract theory, we reproduce their
idea directly without appealing the abstract theory. Assume that $\hat{\theta}_{i}(\cdot,t)\in D(i=1,2)$

are the periodic solutions of (13) with the period $T_{0}>0$. We can take $\hat{\theta}_{1}(r, -kT_{0})$ $\leq$

$\hat{\theta}_{2}(r,0)$ for sufficiently large $k$ $\in \mathrm{N}$ . Rewrite $\hat{\theta}_{1}(r,t-kT_{0})$ as $\hat{\theta}_{1}(r, t)$ . Then $\hat{\theta}_{1}(r,0)\leq$

$\hat{\theta}_{2}(r, 0)$ . The order-preserving property implies $\hat{\theta}_{1}(r,t)\leq\hat{\theta}_{2}(r,t)$ for $r\in\overline{I}$ and $t\in \mathrm{R}$ .
We may consider the attainable time $t$ in the time interval $[0, T_{0}]$ instead of $\mathrm{R}$ by the
periodicity. Set

$s_{0}:= \sup\{s\geq 0|\hat{\theta}_{1}(r,t+s)\leq\hat{\theta}_{2}(r,t), r \in\overline{I}, t\in[0,T_{0}]\}$ .

Clearly $\hat{\theta}_{1}(r,t+s_{0})\leq\hat{\theta}_{2}(r,t)$ and it follows from the compactness of $\overline{I}\mathrm{x}[0,T_{0}]$ that
there exists $(r_{0},t_{0})\in I\mathrm{x}[0,T_{0}]$ satisfying $\hat{\theta}_{1}(r_{0}, t_{0}+s_{0})=\hat{\theta}_{2}(r_{0},t_{0})$ . Applying the strong
maximum principle, we have $\hat{\theta}_{1}(r,t+s_{0})\equiv\hat{\theta}_{2}(r,t)$ for all $r\in\overline{I}$ and $t\leq t_{0}$ . Using the
weak maximum principle as the initial time $t_{0}$ , we see $\theta\wedge 1(r,t+s_{0})\equiv\hat{\theta}_{2}(r,t)$ for all $r\in\overline{I}$

and $t\geq t_{0}$ . Thus, we obtain the desired result. $\square$
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Consequently, by virtue of Theorem 1, we can obtain the spiral solution of (2) of the
form (4), which completes the proof of Main Theorem.

Remark 5. (Stability of the spiral solution). We can derive the stability of the spiral
solution given by Main Theorem. That is, for any $\epsilon_{0}>0$ there exists a $\delta_{0}>0$ such that
if $d(\Gamma(0),\hat{\Gamma}(0))<\delta_{0}$ , then $d(\Gamma(t),\hat{\Gamma}(t))<\epsilon_{0}$ for all $t>0$ . Indeed, by means of applying
the similar argument as in [14, Section 3], we deduce that for any $\epsilon_{0}>0$ there exists a
$\delta_{0}>0$ such that $||\theta(\cdot, t)-\hat{\theta}(\cdot,t)||_{C(I\gamma}<\epsilon_{0}$ for allt $>0$ whenever $||\theta(\cdot, 0)-\hat{\theta}(\cdot,0)||_{C(\overline{I})}<\delta_{0}$.
Since

$d(\Gamma(t),\hat{\Gamma}(t))\leq C||\theta(\cdot, t)-\hat{\theta}(\cdot, t)||_{C(I\gamma}$ for all $t\geq 0$

where $C$ is apositive constant independent of $t$ , it follows that the spiral solution given
by Main Theorem is stable. $\square$
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