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1 Introduction.

In this paper, we study the regularity properties of solutions of two types
of degenerate elliptic problems. The first problem concerns with Lipschitz
continuities and semi-concavities of solutions of a class of fully nonlinear
degenerate elliptic second-order partial differential equations. (Collaboration
with I. Capuzzo-Dolcetta.) The second problem concerns with a uniform
gradient estimate for solutions of a class of second-order partial differential
inequalities. We give typical examples which represent each problems.

Example 1.1. (Lipschitz continuities, semi-concavities for a fully non-
linear degenerate elliptic PDE.) Let u be a solution of

M—Ayu+ |Vou| - f(z)=0 in z=(,2")€QCRY, (1)

where Agu = T, &%, [Voru| = /TN, 0 2£)2, A > 0 a constant, N =
m+n (m,n > 0), Q an open domain in RN, and f(z) a bounded Lips-
chitz continuous function in 2. Then, provided that u is bounded in Q2 (i.e.
|u|Loy<3IM, which is true when A > 0 and Q is bounded), the following
regularity properties hold for u. The directional Holder (including Lipschitz)
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continuities in the first m variables : for any 6 € (0, 1], there exists a constant
C > 0 depending on 0 and M such that

u(#, ")~ uly,")\<Ol ~ ) V', €R™, o <R,
such that (2',2"), (/,2)e Q. @)

Moreover, if @ = RYN and X > 0, the directional semi-concavities in the first
m variables : there exists a constant C > 0 depending on M > 0 such that

lu(z’ + 1, z") 4+ u(z’ — I, z") — 2u(z’, z")|<C|H|?
vz',h' e R™, 2" € R" 3)

The "full” Holder (including Lipschitz) continuities in the whole variables :
for any 6 € (0,1], there ezists a constant C > 0 depending on 6 and M such

that
lu(z) — u(y)|<Clz — y|° vz,y € RV. (4)

Example 1.2. (Interior gradient estimate for a system of second-order
partial differential inequalities.) Consider any functions u(z1, z2,73) € C*(Q)
which satisfy the following inequalities in (21, Z2,z3) € Q.

0%u

~ 82,013 <Co,
6%u '
~oa <Co,
0 ,0u Ou ou
—61:3(61:1 + Oz, +55;)SC°’

where Cy > 0 is a constant. Then, if suppu CC S, there exists a constant
C > 0 which depends on the matriz A and Cy such that

IVu| < C.

We treat in below general class of operators including Examples 1.1, 1.2.
First, for the Lipschitz continuity and semiconcavity for degenerate elliptic
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operators, we consider the class which satisfies the assumptions (A1)-(A4)
stated in below. Let F(z,u, p, R) be a real-valued continuous function defined
in=0xR xR xSV, where N =m +n (m,n > 0), Q an open domain
in RY, and S" the set of N x N real valued symmetric matrices. We assume
the following conditions for F'.

(A1) There exists a constant ¥ > 0, 0 < p < 2 and Cj such that

F(z,u,p, A)<F(z,u,p, B) — vTr(A' - B') + Co(lpl* + 1) (5)

vz e, YueR, VpeRY, VA, BeSY, suchthat

A Ap B' B
’ > / ! / m —_ = .
A2 B4, B es™), A (An A22)’ B (B21 B

(A2) There exists a constant C; > 0 such that
IF(zv u, p, A) - F(ya u,p, A) |S.Cl + w(lm - yl)lm - yl‘rlpl|2+1'
+u(lz — y))IA'|
vr,yeQ, VueR, Vp=(p,p') e R™xR"

A Ap N ' am
— S
VA ( A Agy ) eS8 (A es™),

where 0<7<l, w(-), pu(-):[0,00) = R*N{0}, such that
: _ . _ (o)
Llﬁ)xw(a)—o, Llﬁ)lp(a)-o, Lo———-—a do < o0

(A3) F is the Hamilton-Jacobi-Bellman operator, i.e.

F(z,u,Vu, Vi) = 81613{ Z e 66269:, Eb"( ) oo,

+c*(z)u — f*(z)}z € Q, (6)

where A a given set (controls), (agj(z)) € SV (a € A) non-negative matrices
such that there exist N x k matrices Z* (a € A)

(ag;(x)) = 2(z)TE*(x) Vz € Q,

v*(z) =(bg(z)) € RY, c*(z) € R, such that (af), b*, c*, f* € WH=(RV) for
Va € A, and there exists a constant Cy > 0 such that

Slég |a?jlwz,co(RN), Ib?lwa,oo(nzv), |Calw2,ao(RN), ‘falw2,ao(RN) < C'2
[ ]

Va € A. (7
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(A4) F is directionally coercive in the following sense, i.e.

lim F(z,u,p,A) =00 for p=(¢,p"), peR™ p'ecR"

lp"|—o0

uniformly in (z,u,p,A) € AxRxR™ xSV, (8)
In some case, we assume the following stronger condition than (A1).

(A1)’ There exists a constant v’ > 0, 0 < p < 2 and Cj such that

F(z,u,p, A)<F(z,u,p, B) —vTr(A' — B') + Co(|pl* + 1) (9)
vz e, VvueR, VYpeRN, VA BeSV,
such that Tr(A'— B’) > 0(A',B' € 8™),

A’ A12 B' BlQ
A= B = .
( An A ) ’ ( By, Bp
Under the above assumtions, we consider

F(z,u,Vu,V%u) =0 in , (10)

and assume the boundedness of u, i.e. there exists a constant M > 0 such
that

sup |u|<M. (11)

z€fl

In [5], some sufficient confitions for (11) is given. Now, we state the main

results of this paper. Remark that the operator in Example 1.1 satisfies
(A1)-(A4).

Proposition 1.1 Let F' satisfy (A1) and (A2), u be a solution of (10)
and assume that (11) holds. Then, u satisfies the followings.
(i) Let Q@ = RN. For any 6 € (0,1)], there ezisis a constant C > 0 which
depends on 0, F and M, such that

u(e’, ") — uy',2")I<Cle’ —¢/|°  Vz',y' €R™, 2"€R".  (12)

(ii) Let Q be a bounded open domain in RN, and assume that (A1)’ holds
in place of (A1). For any 6 € (0,1], for any § > 0, and for Qs = {z €
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Q|dist(z, 8Q) > 8}, there exists a constant Cs > 0 which depends on 8, é, F
and M > 0,

I'LL(:L'I,.’E”) _ U(y',z")l_<_05[z" _ yl|0 V.’L‘I,y’ e Rm, mll € Rn,
such that (z',z"), (,2")e Q5. (13)

(iii) Let (2 be an open domain in RY, and assume that there ezists 6 € (0, 1]
and a constant Cy > 0 such that

lu(z',z") — u(¥/,2")|<Colz’ — /| Vz',¥’ €eR™, z"€R",
such that (2',z"), (¥,2")e 8Q. (14)

Then, there ezists a constant C > 0 which depends on F, M > 0 and C,,
such that,

lu(z’, z") — uw(y/,2")|<C|r’ - ¥|® V',y eR™, 2" €R",
such that (z',2"), (¥,z")e . (15)

Theorem 1.2 Let Q = RN, F satisfy (A1), (A2), (A3). Letu = u(z', z")
be a solution of (10), continuous in " € R™, and assume that (11) holds.
Assume also that there exists a large enough number p > 0 such that

x)>p VeeRY, acA (16)
Then, u satisfies the following.

(i) There exists a constant C > 0 which depends on F, M and p, such
that

lu(z’ + K, z") + u(z’ - K, z") - 2u(z’, z")|<C|H|?
VoK €R™, z'€R* (17)

(i) Let F satisfy (A4). For any 0 € (0,1], there exists a constant C > 0
which depends on 0, F, M and u, such that

lu(z) — u(y)|<Clz — y|° vz,y € RV, (18)
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Remark 1.2. The number x > 0 in Theorem 1.2 depends on M in (4)
and C; in (7). In some special cases, Theorem 1.2 holds with p = 0.

Next, as for the uniform interior gradient estimate for solutions of general
class of systems of second-order partial differential inequalities, we state the
following results.

Theorem 1.3 Let Q be a domain in RV, let A = (Ay)1<ijcn, where
A;ii(z) € L*(Q) (1<i,j<N) real valued functions defined in T €  which
satisfy the following conditions.

sup |4;(z)|<Cr 1<6,§<N, (19)
€

|detA|™' <Cs, (20)

where C,, C3 > 0 are constants. Suppose that a real valued function u(z) €
C?(2) such that suppu CC Q satisfies the following inequalities

254,200 in zen, for l<icN, (1)
oz; Ja:L'j Bt T 19 -

i j=1

where C3 > 0 is a constant. Then, there exists a constant C > 0 depending
on the matriz (A;;) and the constant C3 > 0 such that

sup |Vu(z)|<C. (22)
zeql

Theorem 1.4 Let Q be a N dimensional torus TV= RN /ZN= [0,1]V,
let A = (Aii)lsi.jsN: where A,;_,' = A,-j(z)e L°°(Q) (1_<_Z,J_<_N) real valued
periodic functions defined in x € Q which satisfy the following conditions.

sup |4;;(z)|<Cy 1<i, j<N, (23)
ze}

\det Al <C, (24)
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where Cy, Cy > 0 are constants. Suppose that a real valued function u(z) €
C?*(Q) is periodic and satisfies the following inequalities

_9 (iv:A.'-éy—)( )KC3 in €, for 1<i<N (25)
. oz; ’ax,- Tisls 0 " ==

=1

where C3 > 0 is a constant. Then, there exists a constant C > 0 depending
on the matriz (A;;) and the constant C3 > 0 such that

sup |Vu(z)|<C. (26)

We remark that Example 1.2 is a special case of Theorem 1.3.

Some regularity results for degenerate elliptic second-order P.D.E.s are known
in works of N.V. Krylov [11], P.-L. Lions [12]. See M. Arisawa (1}, [2], [4], I.
Capuzzo-Dolcetta and A. Curti [8], too. Different from the uniformly elliptic
second-order P.D.E.s, as in D. Gilbarg and N.S. Trudinger [9] and X. Cabre
and L. Caffarelli [7], there seems to be no general theory to treat regularities
of degenerate elliptic cases. In below, we give the proof of Proposition 1.1
for the class of operators satisfying (A1)-(A4) (occassionally (A1)’). For the
proofs of Thorems 1.2, 1.3 and 1.4, and the other detailed results related to
this paper, we refer the readers to M. Arisawa and I. Capuzzo-Dolcetta (3],
and M. Arisawa [1]. We use the comparison argument of viscosity solutions
introduced by H.Ishii and P.-L. Lions in [10], to study the regularities in
Proposition 1.1 and Theorem 1.2. (See also [6].)

2 Directional Holder (Lipschitz) continuities.

The proof of Proposition 1.1. is given in this section.

Proof of Proposition 1.1.
(i) We prove the directional Lipschitz continuities of u (i.e.f = 1 in (12)). In
(A2), we may assume that u(r) > r for any r > 0. Put I(r) = [y ds fo E%Qda
for r > 0. Since lI'(r) = f5 Ef,ﬂda is monotone increasing in r > 0, there
exists ro > 0 such that I'(r) = . Let K > 0 be an arbitrarily fixed number
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to be determined later. Remark that for 7o > 0, since rl'(r) > i(r),

K|z'|
2

Now, let r = 7o/ K and choose C' > 0 so that 2M <C'ry/2. It is clear that

> I(K|z'|) Vz'’ € R™ suchthat K|z/|<ro.

u(e, o) — uy,a")< 5 Ko’ ~ /| (27)

for Vz',y’ € R™,z" € R*, suchthat |2/ —y/|>r
Therefore, if there exists K > 0 such that
u(z',z") — u(y,2")<C'K|z’ - | - C'l(K|z' - ¥/]) (28)

V', e R™, z" € R", suchthat |z’ —y/|<r,

the proof ends, since we may take C = C'K in (12). We prove (28) by a
contradiction argument, and thus assume that for any K > 0,

sup {u(z’,z") — u(y',2") - C'K|z' — /| (29)

z’.y'ER'",z"ER".Im’—y'is_r
~C'l(K|z' - y|)} >0,
and shall look for a contradiction. For a > 0, 8 > 0, put
Pop(2', 2", ¥, y") = u(r', 2") —u(y/,y") — C'Klz’ — /| + C'UK]|Z' - |)
—ajz” - y'|? - B(lz* + |yI?) (30)
in Vr=(z,2"),y=(,y") € RY suchthat |z'—¢/|<r.

Let ()5, 2%3), (Yop Yap) be its maximum point. From (27), remark that
|25 — Yapl < T, Thp # Yas» and that for 3 > 0 fixed small enough, from (29)

o|zhs — yagl? =0 as o — 00,

"(-"3;;3,552:3) - “(U::;s, (1/3) -CK |-73::p - y;pl + CII(K lm::ﬂ - U:xpl) > 0.
Put

o, 2"y, y") = C'Kle' — /| = C'UK|a' — /) + ela” — ' + B(I=l + ly[*),
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and calculate at z,5 = (a:i,[,, Tog)s Yas = (Yng Yap) ( Tos # Yas)s
P = Vo o(Ths Tag, Ynss Yap)

-————y-‘fﬂ—l C'KlU(K|z,5 — yf,ﬂl)l Vo]
aﬂ af

P” = Vz”(p(zaﬁ7 afd) yaﬁ) y;ﬂ) = Za(zaﬁ ) + 2:3zaﬂ’
7= pr(z‘:,p, -’EZa: ylaﬁ7 yZﬂ)

= C’K yl + 2:6zaﬂ)

— KT _ oK (Kol - z/,.ﬂl)—ﬂ‘-’;—-—”-“-"— 264
Zop ~ U] s = Ug]

0" = Vyrp(Thp, Tap, Yaps Yas) = 20(Top — Yas) — 2BYap
p= (plap”)7 q= (q’a q”) € RN,

‘ C'K C'K  (Tog = Yos) ® (Tog = Yap)
BI — V:: — I - aff af af af
T gl TThp—apl | [Zes — Yapl?
_C'KU(K|zog = Yapl) - (Tap = Yap) @ (Tag — yi.p)}
[T — Yasl |T0s = Yapl™?
—C K (K| — yal) Z22 li’“ﬂ) ® (mTﬂ’ Yoo) | apresm.  (a1)
m—
Set ) o
_[( B N
B‘( 0 2aI+2BI)€S '
From the theory of viscosity solutions, there exist X, Y € SV such that
X 0 B -B
(59)<(% 7). (32
and that
F(zaﬂa b, X)SO') F(yaﬂ:q$ —'Y) 2 0. (33)

By writing X, Y as follows

X, Xm Y’ },12 7 !
X = = X ,Y e Sm,
(X21 Xzz)’ Y (Ym Yzz)’



we get from (32),
(x2)(5 ) e
, X' +Y'<0, X' +Y'<2B +44I.
Thus, from (A1),
F(Taps 0, —Y) — F(Yap, p, X)<VTH(X' +Y') + Colp - gl',  (35)
and combining this with (33), we have

0 2 F(a’aﬂ’pix) - F(‘”uﬂ,‘]y "'Y) + F(maﬂ7 q, —Y) - F(yaﬁa q, —Y)
> —uTr(X'+Y") — Colp — ¢l — w(|Tap — Yap|)|Zap — Yasl"lP|*"

~C1 = i(|Zap — Yas Y] (36)

Since there exists a constant L > 0 depending only on m such that
Y|l < L{Te(X’ +Y")| + B’ + BI||}|Te(X’ + Y")|3}

< L{|Tx(X" +Y")| + ||B’ + BI|]}.
Thus, from (36),
0>  —¥Tx(X'+Y") = Colp — I — w(|Zap ~ Yasl)|Zas — Yas|"Ip'[**"

—Cy - u(lzls — Yap) (1B + BI|| + |TH(X' + Y7)]). @37

Remark that

IP|<C'K (1 — V(K|z4s = Yapl)) + 28|20,

and that there exists a constant C > 0 such that

C'K /
|B|<C———— (1 = U(K|zhp — Yapl) + m(K|zos — Yapl))
xaﬂ y:xﬁl

?

C'K
Scm(l + u(K|zos — Yapl)-
By putting the above into (37), and by letting 3 — 0, we have

v 'K (K | — Uhs
2 K I-foﬂ - y:xﬁl

Y ITe(xX’ + ") + ) cii(at — voa X +¥)
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UC’K"’M(I:v;ﬂ - y;pl)

+C; +
szﬁ - aﬂl

(1 + w(K|zis — Yasl))

+(C'K )2+Tw(|37;ﬂ — Yo |Tos — Yasl™ (38)

For P = (x:; "'y:; )®(lz:, "y:, )

|-"’a,s" .,pl ’

Tr(X'+Y)<TTP(X' 4+ Y') < —C'K"(K|zhs — tag))

_ CKu(K |5 = th)
[ — Vgl

and taking account this in (38), we get a contradiction for the choice of large
enough K > 0. Therefore, we proved the directional Lipschitz continuities
of u.

(ii) Here, we prove the claim for the case of directional Holder continuities
(ie. 8 € (0,1) in (13)). The case of directional Lipschitz continuities can be
treated similarly as in (i). Let & > 0 be fixed. Take a point 2 € 0;. We
shall prove the existenxe of C’' > 0 and L > 0 such that

u(zr’ KL'”) _ u(yl’ xll)scl|$l _ ylla + le _ z|2
for Va',y €R™, 2" €R", |2/ -¢/[<6, |z - 2(<6, (39)

for by putting z = z, (39) leads

u(a;’,:c") _ u(y’,z")g_Clm’ - yl|9
for Vz=(2',2"), y=(¥,2") € Us(2). (40)
Since we can take a finite number of points z; € 8Qys (1<i<k), such that
NE_,Us(z) D 0y, (40) for each 2; (1<i<k) leads (13) in Q5. Take C' > 0
and L > 0 so that
C'6° >2M, Lé&*>2M, C'9(1-6)> L. (41)

We use the argument by contradiction, and thus assume the existence of two
points z = (2/,2"), y = (¢, z") such that |z’ — ¥'|<9, |z — 2]<6,

u(@,2") — u(y,z") > C'la’ — /|’ + Llz — 2", (42)
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From the choices of C' > 0 and L > 0, clearly
' — | <48, |z—2z| <

Put
As = {(z,y) e RY xRM||’ - ¢/|<é, |z - 2|<6},

and let (Z',7"), (7,Z") be a maximum point of

u(@,z") — u(y,z") - C'le’ — /|’ — Ljz ~ 2|
in vz, €eR™, z"€R", suchthat |2/ —9|, |z—2z|<d, (43)

where the maximum value is positive. For a > 0, put

(2, 2"y, y") = w(@,2") - u(y,y") - C'|lz' = /|° - Liz - 2|
——al:c” _ le|2 in Ka, (44)

and let (z/,,z"), (/,,y") be its maximum point in As. The usual argument
leads: there exist 7/, ¥ € R™, 7’ € R such that

. =T, YT, ozt —yiP -0, ziyl-7, as a — oo.

Put
(P(ml,wll,yl,yﬂ) — Cl|zl _ yl|9 + le - ZIQ + ala:” _ yn|2_

Calculate at z, = (zl,,Z0h), Ya = (Y4, Y5), the following
P =Vop(To, o)y 4= Vyo(Yas Ya)s

V2 o = C'6(0—2)% ;{_3;’_-9’ + 0|, — o, |21, + 2L,
V?,r P = ’
Vggz,é(p = 2LIn + ZaIn,

and set

U —
B = Clo(a _ 2) (ma ya) ® (m,a ya) + Clelzla _ y;|9—2Im_

|z — valt~?

From the theory of viscosity solutions, there exist X,Y € SV such that

B'+2LI, o) -B 0
X O (0] 2LI, +2al, O -2al,
(59)<| % A

0 -2al, O 2al,
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and that

F(xaap, X)S_O, F(yOz) q, _“Y) 2 0. (46)
Writing
X' X12 YI Y12 ! !
X = ) = ’ X', Y'e s™,
(Xn Xzz) Y (Yn Yz
from (45),
X 0 B'+2LI,, -B
(O Y!)S( —-B B’ )$ (47)
and,
X'+Y' -2LI,.<0, X'+Y'—2LI,<2B'.
Hence,
Te(X' +Y' — 2LI,)<C'0(0 — 1)|z!, — y.I°2,
and from (41),

Te(X'+Y")<2Lm+C'0(0 — 1) |z, — ¢, [° 2 <r~}(2Lr*m 4+ C'6(8 - 1)r°). (48)
From (46), (A1), (A1), and (A2),

0 Z F(zcnp7X) - F(ya1q7 —Y)
= F(za’p’X) - F(ma,p) _Y) + F(xavpa —Y) - F(ytnq’ _Y)
> -VTr(X'+Y')-C - W(|Za — Ya|)|Ta — yalrlp,lz-w — p(|za — ya)IY],
and we obtain
VITH(X' +Y")|<C"{1 + w(|Za — Yal)|Za — %l 171" + p(|za — val)(|1B'||¥
+|Tr(X + Y — 2LI)|3)|Te(X + Y — 2LI)|3}.

As in (i), by comparing the order in r of the both hand sides of the inequality,
we get a contradiction. Thus, we proved (40).

(iii) The proof can be obtained by repeating a similar argument as in (ii),
by taking z in (39) on 852, and we do not write it here.
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