Universal bound for isogenies of elliptic curves over number fields

東京大学・大学院数理科学研究科 河村 隆 (Takashi Kawamura)
Graduate School of Mathematical Sciences,
University of Tokyo

1 Introduction

Let E and E' be isogenous elliptic curves defined over a number field k of degree d. Masser and Wüstholz [6] proved the existence of a constant c depending effectively only on d such that there is an isogeny between E and E' whose degree is at most $c\{w(E)\}^4$, where $w(E) = \max\{1, h(g_2), h(g_3)\}$ when E is identified with its Weierstrass equation $y^2 = 4x^3 - g_2x - g_3$. Here h denotes the absolute logarithmic Weil height. But they did not give an explicit formula of c. The purpose of this paper is to express c as an explicit function of d bounded by a polynomial when E has no complex multiplication. The main result is as follows.

Theorem. Given a positive integer d, there exists a constant $c(d)$ depending only on d with the following property. Let k be a number field of degree at most d, and let E be an elliptic curve defined over k without complex multiplication. Suppose E is isogenous to another elliptic curve E' defined over k.

(i) Then there is an isogeny between E and E' whose degree is at most $c(d)\{w(E)\}^4$, where

$$c(d) = 6.55 \times 10^{94}\left\{\max\{1.09 \times 10^7d^{1.45}, 15.5 \max\{\log(88.8d + 2.8), 38.4\} + 342.3\}^{1.45}, 1.82 \times 10^{63}\right\}^{210}(11.4d + 55.3)^{20}.$$

In particular the function $c(d)$ in d increases as $1.9 \times 10^{1956}d^{325}$ when d goes to infinity.

(ii) $c(1) = 8.2 \times 10^{13415}$ when $d = 1$, i. e., $k = \mathbb{Q}$.

We proceed along the line of [6]. Main devices in calculating c are as follows. First we distinguish five constants which are unified as c_3 in [6, Lemma 3.3.] and those in [6, Lemmas 3.4 and 4.4]. Secondly we improve the relative degree of the field generated by the values of Weierstrass p-functions and their derivatives over k from 81 to 36.
Pellarin [8] found an upper bound of the form $4.2 \times 10^{61} d^4 \max\{1, \log d\}^2 h(E)^2$, where $h(E) = \max\{1, h(j)\} + \max\{1, h(1, g_2, g_3)\}$ and j is the j-invariant of E. But his Lemme 3.2 seems to contain some mistakes, because the cardinality of \mathbb{C}-linear independent monic monomials X^λ on G such that $\lambda \leq \underline{D}$, $M_{\underline{D}}$, is $\prod_n (D_n + 1)$ on line 21 of page 219. This lemma is used in the proof of Proposition 3.1, and plays a crucial role in the main estimate. We hope that his proof will be corrected.

2 Preliminary estimates

Let Ω be a lattice in the complex plane. Let (ω_1, ω_2) be a basis of Ω such that $\tau = \omega_2/\omega_1$ belongs to the standard fundamental region for the modular group. So $|\tau| \geq 1$, $x = \text{Re } \tau$ satisfies $|x| \leq \frac{1}{2}$, and $y = \text{Im } \tau$ satisfies $y \geq \frac{\sqrt{3}}{2}$. Let A be the area of the unit of Ω, which equals $y|\omega_1|^2$. Let g_2 and g_3 be the invariants of Ω, let $p(z)$ be the corresponding Weierstrass function, and $\gamma = \max\{|\frac{1}{4}g_2|^{\frac{1}{2}}, |\frac{1}{4}g_3|^{\frac{1}{3}}\}$.

Lemma 2.1. There exists a function $\theta_0(z)$ such that $\theta(z) = \gamma \theta_0(z)$ and $\tilde{\theta}(z) = p(z)\theta_0(z)$ are entire functions, with no common zeros, that satisfy

$$|\log \max\{|\theta(z)|, |\tilde{\theta}(z)|\} - \pi|z|^2/A| < 10.5y.$$ for all complex z.

Proof. This is [4, Lemma 3.1] except for the estimation of the constant on the right-hand side of the inequality, which is 10.5. q. e. d.

Lemma 2.2. Let z be a complex number not in Ω, and $||z||$ be the distance from z to the nearest element of Ω. Then

$$|p(z) - p(\omega_2/2)| < 77244||z||^{-2}.$$ Proof. This is [6, Lemma 3.2] except for the estimation of the constant on the right-hand side of the inequality, which is 77244. q. e. d.

Let d be a positive integer, and k be a number field of degree at most d. Moreover, g_2 and g_3 are assumed to lie in k, and $w = \max\{1, h(g_2), h(g_3)\}$.

Lemma 2.3. There are constants $c_{1,i}$ ($1 \leq i \leq 5$), depending only on d, such that

(i) $c_{1,1}^{-w} \leq \gamma < c_{1,1}^w$,

(ii) $y < c_{1,2}w$,

(iii) $\max\{1, \log d\}^2 h(E)^2 < 10.5y$.

Proof. This is [6, Lemma 3.2] except for the estimation of the constant on the right-hand side of the inequality, which is 77244. q. e. d.
\[(iii) \ A > c_{1,3}^{-w}, \]
\[(iv) \ |\omega_{1}| > c_{1,4}^{-w}, \]
\[(v) \ A^{-1}|\omega_{2}|^{2} < c_{1,5}w, \]
where \(c_{1,1} = 2e^{0.5d} \), \(c_{1,2} = 3.2d + 1.2 \), \(c_{1,3} = 16.6e^{3.8d} \), \(c_{1,4} = 4.37e^{1.9d} \), and \(c_{1,5} = 3.2d + 1.5 \).

Proof. This is [6, Lemma 3.3] except for the estimation of the constants \(c_{1,i} (1 \leq i \leq 5) \).

\[q. \ e. \ d. \]

Lemma 2.4. There are a constant \(c_{2} \) depending only on \(d \) and a positive integer \(b < 2.22^{w} \) with the following properties. Suppose \(n \) is a positive integer, \(\zeta \) is an element of \(\Omega/n \) not in \(\Omega \), and write \(\xi = p(\zeta) \). Then

(i) \(\xi \) is an algebraic number of degree at most \(dn^{2} \) with \(h(\xi) < 8.55w \),
(ii) \(bn^{2}\xi \) is an algebraic integer, and \(|\xi| < c_{2}^{w}n^{2} \),

where \(c_{2} = 2.951 \times 10^{6} \exp(3.8d) \).

Proof. When \(\frac{1}{4}g_{2} \) and \(\frac{1}{4}g_{3} \) are algebraic integers, from the proof of [6, Lemma 3.4] \(\xi \) has degree at most \(dn^{2} \), and \(n^{2}\xi \) is an algebraic integer. In the general case we can find a positive integer \(b_{0} \leq (\sqrt[3]{2}e^{\frac{1}{6}})^{w} \) such that \(\frac{1}{4}b_{0}^{4}g_{2} \) and \(\frac{1}{4}b_{0}^{6}g_{3} \) are algebraic integers. These correspond to the lattice \(\Omega_{0} = \Omega/b \circ \) with Weierstrass function \(p_{0}(z) = b_{0}^{2}p(b_{0}z) \). So \(\xi_{0} = p_{0}(\zeta/b_{0}) \) has degree at most \(dn^{2} \), and \(n^{2}\xi_{0} \) is an algebraic integer. As \(\xi = b_{0}^{-2}\xi_{0} \), \(n^{2}\xi_{0} = b_{0}^{2}n^{2}\xi \) is an algebraic integer, \(b_{0}^{2}n^{2}\xi \leq (\sqrt[3]{4}e^{\frac{1}{3}})^{w}n^{2}\xi < 2.22^{w}n^{2}\xi \), and \(\xi \) is an algebraic number of degree at most \(dn^{2} \).

The Néron-Tate height \(q(P) \) of the point \(P \) in \(\mathbb{P}^{2} \) with projective coordinates \((1, p(\zeta), p'(\zeta)) \) satisfies \(q(P) = 0 \). By [3, Lemme 3.4] the Weil height \(h(P) \) satisfies \(h(P) \leq q(P) + 3w + 8 \log 2 \leq (3 + 8 \log 2)w \). So \(h(\xi) \leq h(P) < 8.55w \).

By Lemma 2.2

\[|\xi| < |p(\omega_{2}/2)| + c_{3}\|\zeta\|^{-2}, \quad (1) \]

where \(c_{3} = 77244 \). As \(p(\omega_{2}/2) \) is a root of \(4x^{3} - g_{2}x - g_{3} = 0 \), from Cardano's Formula \(|p(\omega_{2}/2)| \leq (|g_{3}| + \sqrt{|g_{3}|^{2} + |g_{2}|^{3}/27})^{\frac{1}{3}} < (1.3e^{\frac{d}{2}})^{w} \).

By Lemma 2.3(iv) \(\|\zeta\|^{-2} \leq n^{2}|\omega_{1}|^{-2} < n^{2}c_{1,4}^{2w} \). From (1)

\[|\xi| \leq (1.3e^{\frac{d}{2}})^{w} + c_{3}c_{1,4}^{2w}n^{2} < (2.951 \times 10^{6} \exp(3.8d))^{w}n^{2} = c_{2}^{w}n^{2}. \]
3 The Main Proposition: construction

Let E and E^* be elliptic curves defined over \mathbb{C}, and Ω and Ω^* be their period lattices respectively. Let φ be an isogeny from E^* to E. It is said to be normalized if it induces the identity on the tangent spaces. Then $\Omega^* \subset \Omega$, and $[\Omega : \Omega^*]$ is the degree of φ. It is said to be cyclic if its kernel is a cyclic group.

Main Proposition. Given a positive integer d, there exists a constant $c_4(d)$ depending only on d, with the following property. Let k be a number field of degree at most d, and let E and E^* be elliptic curves defined over k without complex multiplication. Suppose there is a normalized cyclic isogeny φ from E^* to E of degree N. Then there is an isogeny between E and E^* of degree at most $c_4(d)\{w(E) + w(E^*) + \log N\}^4$, where

$$c_4(d) = 1.47 \times 10^{16}[\max\{5910d[15.5\max\{\log(7.4d + 2.8), 38.4\} + 342.3\}]^{1.45}, 1.82 \times 10^{63}]^{42}.$$

Before the proof of Main Proposition we need Lemmas 3.1-3.5. The body of the proof is described in Section 4.

Let (ω_1, ω_2) and (ω_1^*, ω_2^*) be bases of Ω and Ω^* respectively such that $\tau = \omega_2/\omega_1$ and $\tau^* = \omega_2^*/\omega_1^*$ lie in the standard fundamental region. Then there are integers m_{ij} ($i, j = 1, 2$) such that

$$\omega_1^* = m_{11}\omega_1 + m_{12}\omega_2, \quad \omega_2^* = m_{21}\omega_1 + m_{22}\omega_2$$

(2) and $m_{11}m_{22} - m_{12}m_{21} = N$. Write $h = w(E) + w(E^*) \geq 2$.

Lemma 3.1. We have $|m_{ij}| < (7.4d + 2.8)N^{\frac{1}{2}}h$ ($i, j = 1, 2$).

Proof. This is [6, Lemma 4.1] except for the estimation of the constant on the right-hand side of the inequality, which is $7.4d + 2.8$. q. e. d.

Let C be a sufficiently large constant depending only on d, $L = h + \log N$, $D = [C^{20}L^2]$ and $T = [C^{39}L^4]$. Let $p(z)$ and $p^*(z)$ be the Weierstrass functions corresponding to Ω and Ω^* respectively. For $t > 0$ and independent variables z_1 and z_2 let $D_t(t)$ be the set of differential operators of the form

$$\partial = (\partial/\partial z_1)^{t_1}(\partial/\partial z_2)^{t_2} (t_1 \geq 0, t_2 \geq 0, t_1 + t_2 < t).$$

Lemma 3.2. There is a nonzero polynomial $P(X_1, X_2, X_1^*, X_2^*)$ of degree at most D in each variable, whose coefficients are rational integers of absolute values at most $\exp(c_5TL)$, such that the function

$$f(z_1, z_2) = P(p(z_1), p(z_2), p^*(m_{11}z_1 + m_{12}z_2), p^*(m_{21}z_1 + m_{22}z_2))$$
satisfies $\partial f(\omega_1/2, \omega_2/2) = 0$ for all ∂ in $D_i(8T)$, where

$$c_5 = 156 \log C + 12 \max\{\log(7.4d + 2.8), 38.4\} + 251.3.$$

Proof. Let M denote any monomial of degree at most D in each of the four functions appearing in f, that is,

$$M = \{p(z_1)\}^{d_1}\{p(z_2)\}^{d_2}\{p^*(m_{11}z_1 + m_{12}z_2)\}^{d_3}\{p^*(m_{21}z_1 + m_{22}z_2)\}^{d_4}$$

with $0 \leq d_i \leq D$ ($1 \leq i \leq 4$), and let ∂ be any operator of $D_i(8T)$. Then ∂M can be written as a polynomial in the four numbers m_{ij} ($i, j = 1, 2$) and the twelve functions obtained from the above four by replacing the Weierstrass functions by their first and second derivatives. From Baker's Lemma [2, Lemma 3]

$$\frac{d^j}{dz^j}\{p(z)\}^k = \sum u(t, t', t'', j, k)\{p(z)\}^t\{p'(z)\}^{t'}\{p'(z)\}^{t''},$$

where the sum is taken over nonnegative integers t, t' and t'' which satisfy $2t + 3t' + 4t'' = j + 2k$, and $u(t, t', t'', j, k)$ are integers of absolute values at most $j!48^j(7!2^8)^k$. So the total degree of ∂M is at most $3D + 8T - 1 + 0.5 \times (8T - 1) + D < 12(D + T)$. And its coefficients are integers of absolute values at most $(8T - 1)!48^{8T-1}(7!2^8)^D < T^{8T}(2^{56} \times 3^8)^{D+T}$.

By Lemma 3.1 we have $\log |m_{ij}| < (\log c_6 + 1)L/2$, where $c_6 = 7.4d + 2.8$. From (2) the twelve functions at $(z_1, z_2) = (\omega_1/2, \omega_2/2)$ take the values

$$p^{(t)}(\omega_j/2), p^{*(t)}(\omega_j^*/2) \quad (t = 0, 1, 2; \ j = 1, 2).$$

By Lemma 2.4 $h(p(\omega_j/2))$ and $h(p^*(\omega_j^*/2))$ are at most $8.55L$. Both $p'(\omega_j/2)$ and $p''(\omega_j^*/2)$ are zero. And

$$h(p''(\omega_j/2)) = h(6p(\omega_j/2)^2 - g_2/2) \leq 2h(p(\omega_j/2)) + h(g_2) + \log 12 + \log 2 < 19.7L.$$

So does $h(p''(\omega_j^*/2))$. Thus m_{ij} and the values of the twelve functions have heights at most $c_7 L$, where

$$c_7 = \max\{0.5 + 0.5 \log(7.4d + 2.8), 19.7\}.$$

As $p(\omega_j/2)$ and $p^*(\omega_j^*/2)$ are roots of cubic equations with coefficients in k, and $p''(\omega_j/2)$ and $p''(\omega_j^*/2)$ lie in the field generated by $p(\omega_j/2)$ and $p^*(\omega_j^*/2)$ over k, these values lie in k' whose degree is at most $36d$.

The conditions of Lemma 3.2 amount to $R = 4T(8T+1)$ homogeneous linear equations in $S = (D + 1)^4$ unknowns with coefficients in k'. By
Siegel's Lemma [1, Proposition], if $S \geq 2 \times 36dR$, these can be solved in rational integers, not all zero, of absolute values at most $S \exp(c_8)$, where c_8 is the height of linear equations. To satisfy the condition $S \geq 72dR$ it suffices that

$$C^{80}L^{8} > 2305dC^{78}L^{8}, \text{ so } C > 48.1\sqrt{d}. \quad (3)$$

Next we calculate c_8. By Lemma 2.4 there is a positive integer $b \leq 2.22^w$ such that $4bp(\omega_j/2)$ is an algebraic integer. Since $p''(\omega_j/2) = 6p(\omega_j/2)^2 - g_2/2$, and there is a positive integer $b_2 \leq e^w$ such that b_2g_2 is an algebraic integer, $16b^2b_2p''(\omega_j/2)$ is an algebraic integer. If we multiply ∂M at $(z_1, z_2) = (\omega_1/2, \omega_2/2)$ by an integer at most $(16 \times 2.22^2L e^L)^{12(D+T)}$, every term is an algebraic integer. As $h(\sum_{i=1}^{n}a_i) \leq \max h(a_i) + \log n$ for algebraic integers a_i, $S \exp(c_8) \leq (D + 1)^4(16 \times 2.22^2L e^L)^{12(D+T)} T^{8T}(2^{56} \times 3^8)^{D+T} \exp\{12c_7(D + T)L\} \exp(c_5TL)$. \qquad \text{q. e. d.}

Let $\theta_0(z)$ and $\theta_0^*(z)$ be the functions in Lemma 2.1 corresponding to $p(z)$ and $p^*(z)$ respectively. So the function

$$\Theta(z_1, z_2) = \{\theta_0(z_1)\theta_0(z_2)\theta_0^*(m_{11}z_1 + m_{12}z_2)\theta_0^*(m_{21}z_1 + m_{22}z_2)\}^D$$

is entire. Let $F(z_1, z_2) = \Theta(z_1, z_2)f(z_1, z_2)$.

Lemma 3.3. The function $F(z_1, z_2)$ is entire. Further, for any complex number z and any operator ∂ in $D_i(4T + 1)$ we have

$$|\partial F(\omega_1z, \omega_2z)| < \exp\{c_9L(T + D|z|^2)\},$$

where

$$c_9 = 234\log C + 154.8d + 2\log(7.4d + 2.8) + 12\max\{\log(7.4d + 2.8), 38.4\} + 423.5.$$

Proof. Let $\gamma, \gamma^*, \theta, \theta^*, \tilde{\theta}, \tilde{\theta}^*$ be as in Lemma 2.1 corresponding to p, p^*. Then $F(z_1, z_2)$ can be expressed as a polynomial in the eight functions

$$\gamma^{-1}\theta(z_i), \tilde{\theta}(z_i), \gamma^{-1}\theta^*(m_{i1}z_1 + m_{i2}z_2), \tilde{\theta}^*(m_{i1}z_1 + m_{i2}z_2) \ (i = 1, 2), \quad (4)$$

so it is entire. It is the quadrihomogenized version of P in Lemma 3.2.
Let $M_0 = \max |m_{ij}|$, $A_0 = \min(A, A^*)$, and $\delta = M_0^{-1}A_0^{\frac{1}{2}}$, where A and A^* are determinants of Ω and Ω^* respectively. For any complex number z let z_1 and z_2 be complex numbers satisfying

$$|z_i - \omega_i z| = \delta \quad (i = 1, 2). \quad (5)$$

We claim that $|F(z_1, z_2)| < \exp\{c_{10}L(T + D|z|^2)\}$, where $c_{10} = 156 \log C + 147.2d + 12 \max\{\log(7.4d + 2.8), 38.4\} + 404.3$. By Lemma 2.1

$$\log \max\{|\theta(z_i)|, |\tilde{\theta}(z_i)|\} < 10.5y + \pi A^{-1}|z_i|^2$$

$$\leq 10.5(y + A^{-1}\delta^2 + A^{-1}|\omega_i|^2|z|^2) \quad (i = 1, 2).$$

As $A^{-1}\delta^2 \leq M_0^{-2} \leq 1$, from Lemma 2.3(i)(ii)(v) the first two functions in (4) have absolute values at most

$$c_{1,1}L \exp\{10.5(c_{1,2}L + 1 + c_{1,5}L|z|^2)\} < \exp\{(11.5c_{1,5} + 5.25)L(1 + |z|^2)\},$$

for $c_{1,5} > c_{1,2} > \log c_{1,1}$. The last two expressions in (4) are estimated similarly. From (2) and (5) $z_i^* := m_{i1}z_1 + m_{i2}z_2$ satisfy $|z_i^* - \omega_i^* z| \leq 2M_0\delta \quad (i = 1, 2)$. Thus

$$\log \max\{|\theta^*(z_i^*)|, |\tilde{\theta}^*(z_i^*)|\} < 10.5(y^* + 4M_0^2A^{*-1}\delta^2 + A^{*-1}|\omega_i^*|^2|z|^2)$$

$$(i = 1, 2).$$

By Lemma 2.3 the last two functions have absolute values at most

$$c_{1,1}L \exp\{10.5(c_{1,2}L + 4 + c_{1,5}L|z|^2)\} < \exp\{(11.5c_{1,5} + 21)L(1 + |z|^2)\}.$$

By Lemma 3.2

$$|F(z_1, z_2)| < \exp(c_{5}TL) \exp\{(46c_{1,5} + 84)DL(1 + |z|^2)\}(D + 1)^4$$

$$< \exp(c_{10}L(T + D|z|^2)), $$

which is the claim.

By the Cauchy Integral Formula

$$|\partial F(\omega_1 z, \omega_2 z)| = \left| \frac{t_1!t_2!}{(2\pi i)^2} \oint \oint \frac{F(z_1, z_2)}{(z_1 - \omega_1 z)^{t_1+1}(z_2 - \omega_2 z)^{t_2+1}} dz_1 dz_2 \right|$$

$$< t_1!t_2!\delta^{-(t_1+t_2)} \exp(c_{10}L(T + D|z|^2)), $$

where the integrals are around the circles (5). From Lemma 2.3(iii) and Lemma 3.1

$$\delta = M_0^{-1}A_0^{\frac{1}{2}} > (7.4d + 2.8)^{-1}N^{-\frac{1}{2}}h^{-1}c_{1,3}^{-\frac{3}{2}}$$

$$> \{6.72(7.4d + 2.8)^{\frac{3}{2}} \exp(1.9d)\}^{-L} =: c_{11}^{-L}. $$
$|\partial F(\omega_1 z, \omega_2 z)| < (4T)!c_{11}^{4LT}\exp\{c_{10}L(T + D|z|^2)\} < \exp\{c_9L(T + D|z|^2)\}$.

q. e. d.

Let Q be the unique integral power of 2 that satisfies

$$C^{17/8} < Q \leq 2C^{17/8}.$$

Lemma 3.4. For any odd integer q and $\zeta = q/Q$, we have

$$|\Theta(\omega_1\zeta, \omega_2\zeta)| > \exp(-84DLQ^2).$$

Further, for any ∂ in $D_i(4T + 1)$ such that $\partial f(\omega_1\zeta, \omega_2\zeta) \neq 0$, we have

$$|\partial f(\omega_1\zeta, \omega_2\zeta)| > \exp(-c_{12}TLQ^8),$$

where $c_{12} = 16d[290\log C + 15.5\max\{\log(7.4d + 2.8), 38.4\} + 342.3]$.

Proof. By Lemma 2.3(i) and Lemma 2.4(i)

$$\max\{\gamma, |p(\omega_j\zeta)|\} < \exp(8.55dhQ^2)(j = 1, 2).$$

From Lemma 3.1 and Lemma 2.3(ii)

$$|\theta_0(\omega_1\zeta)| > \exp(-10.5y - 8.55dhQ^2) > \exp\{-10.5d(1 + c_{1,2}/Q^2)hQ^2\},$$

and the same bound holds for $|\theta_0^*(\omega_j^*\zeta)| (j = 1, 2)$. Thus

$$|\Theta(\omega_1\zeta, \omega_2\zeta)| > \exp\{-4D \times 10.5d(1 + c_{1,2}/Q^2)hQ^2\} > \exp(-84DLQ^2),$$

for by (3) $Q^2 > C^{17/4} > 48^4d^2 > 3.2d + 1.2 = c_{1,2}$.

$\alpha := \partial f(\omega_1\zeta, \omega_2\zeta)$ is estimated as in the proof of Lemma 3.2. α is a polynomial in the $m_{ij} (i, j = 1, 2)$ and the twelve numbers $p(t)(\omega_j\zeta), p^{*(t)}(\omega_j^*\zeta) (j = 1, 2; t = 0, 1, 2)$. Let ∂M be as in the proof of Lemma 3.2, and ∂ be any operator of $D_i(4T + 1)$. From Baker's Lemma the total degree of ∂M is at most $6(D + T)$, and the absolute values of its coefficients are at most $T^{4T}(2^{24} \times 3^4)^{D+T}$.

By Lemma 2.4 there is a positive integer $b < 2.22^w$ such that $bQ^2p(\omega_j\zeta)$ is an algebraic integer. Since $p'(\omega_j\zeta)^2 = 4p(\omega_j\zeta)^3 - g_2p(\omega_j\zeta) - g_3$, and there is a positive integer $b_3 \leq e^w$ such that b_3g_3 is an algebraic integer, $(b^3b_2b_3)^{1/2}Q^3p'(\omega_j\zeta)$ is an algebraic integer. And $2b^2b_2Q^4p''(\omega_j\zeta)$ is an algebraic integer. If we multiply ∂M at $(z_1, z_2) = (\omega_1\zeta, \omega_2\zeta)$ by
a positive integer at most \((2 \times 2^{22L}e^{1.5L}Q^{4})^{6(D+T)}\), every term is an algebraic integer. By Lemma 2.4 \(h(p(\omega_{j}\zeta))\) and \(h(p^{*}(\omega_{j}^{*}\zeta))\) are at most \(8.55L\), thus at \((z_{1}, z_{2}) = (\omega_{1}\zeta, \omega_{2}\zeta)\),

\[
\exp(h(\partial M)) \leq \left(2 \times 2^{22L}e^{1.5L}Q^{4}\right)^{12(D+T)}17H_{6(D+T)}T^{4T}(2^{24} \times 3^{4})^{D+T}\exp\{6c_{7}(D + T)L\}.
\]

\(\alpha\) is a linear combination of \(\partial M\) with rational integer coefficients whose absolute values are at most \(\exp(c_{5}TL)\). So

\[
h(\alpha) \leq \log(D + 1)^{4} + c_{5}TL + h(\partial M) < [290 \log C + 15.5 \max\{\log(7.4d + 2.8), 38.4\} + 342.3]TL.
\]

Next we estimate the degree of \(\alpha\), \(\deg \alpha\). Since

\[
Q(\alpha) = Q(p^{(t)}(\omega_{j}\zeta), p^{*(t)}(\omega_{j}^{*}\zeta)) (j = 1, 2; t = 0, 1, 2) \subset k(p(\omega_{j}\zeta), p^{*}(\omega_{j}^{*}), p'(\omega_{j}\zeta), p^{*'}(\omega_{j}^{*}\zeta)),
\]

the degrees of \(p(\omega_{j}\zeta)\) and \(p^{*}(\omega_{j}^{*}\zeta)\) are at most \(dQ^{2}\) by Lemma 2.4(i), and \([k(p(\omega_{j}\zeta), p'(\omega_{j}\zeta)) : k(p(\omega_{j}\zeta))]\) \(\leq 2\),

\[
\deg \alpha = [Q(\alpha) : Q] \leq d(Q^{2})^{4}2^{4} = 16dQ^{8}.
\]

Hence \(|\alpha| \geq \exp\{-\deg \alpha h(\alpha)\} > \exp(-c_{12}TLQ^{8})\). q.e.d.

Lemma 3.5. If \(C\) satisfies \(C > (256/\log 2)c_{12}\) with the constant \(c_{12}\) in Lemma 3.4, then for any odd integer \(q\) and any \(\partial\) in \(D_{i}(4T+1)\) we have \(\partial f(q\omega_{1}/Q, q\omega_{2}/Q) = 0\).

Proof. Assume that there exist an odd integer \(q\) and an operator \(\partial\) in \(D_{i}(4T+1)\) such that \(\alpha = \partial f(\omega_{1}\zeta, \omega_{2}\zeta) \neq 0\) for \(\zeta = q/Q\). We can suppose that \(0 < \zeta < 1\), and that

\[
\alpha \Theta(\omega_{1}\zeta, \omega_{2}\zeta) = G(\zeta), \tag{6}
\]

where \(G(z) = \partial F(\omega_{1}z, \omega_{2}z)\) and \(\partial\) is of minimal order.

\(G^{(t)}(z)\) is a linear combination of the \(\partial f(\omega_{1}z, \omega_{2}z)\) for \(\partial\) in \(D_{i}(t + 1 + 4T)\), so by Lemma 3.2 and periodicity

\[
G^{(t)}(s + 1/2) = 0 \tag{7}
\]
for any integer t with $0 \leq t < 4T$ and any integer s. We apply the Schwarz Lemma to (7) for $0 \leq s < S$, where $S = |C^{18}L|$. Then $|G(\zeta)| \leq 2^{-4TS}M_{1}$, where M_{1} is the supremum of $|G(z)|$ for $|z| \leq 5S$. By Lemma 3.3 $M_{1} < \exp\{25c_{9}L(T + DS^{2})\} < \exp(50c_{9}LDS^{2})$. If $C > (25/\log 2)c_{9}$, then $\exp(50c_{9}LDS^{2}) < 2^{2TS}$, so $|G(\zeta)| < 2^{-2TS}$. By (6) and Lemma 3.4

$$|\alpha| < 2^{-2TS} \exp(84DLQ^{2}) < 2^{-TS},$$

where the second inequality follows, because $C > (84/\log 2)^{4/131}$. But also from Lemma 3.4 we have the lower bound

$$|\alpha| > \exp(-c_{12}TLQ^{8}).$$

If

$$C > (256/\log 2)c_{12}$$

$$= 5909d[290 \log C + 15.5 \max\{\log(7.4d + 2.8), 38.4\}$$

$$+ 342.3],$$

then $2^{TS} > \exp(c_{12}TLQ^{8})$, which contradicts (8) and (9). As $256c_{12} > 25c_{9}$, (10) implies that $C > (25/\log 2)c_{9}$. q. e. d.

4 Proof of Main Proposition: deconstruction

Let $G = E^{2} \times E^{*2}$ embedded in \mathbb{P}^{81} by Segre embedding. Let ϵ be the exponential map from \mathbb{C}^{4} to G obtained from the functions $p(z_{1}), p(z_{2}), p^{*}(z_{1}^{*}), p^{*}(z_{2}^{*})$ and their derivatives for independent complex variables $z_{1}, z_{2}, z_{1}^{*}, z_{2}^{*}$. Define a subspace Z of \mathbb{C}^{4} by the equations

$$z_{1}^{*} = m_{11}z_{1} + m_{12}z_{2}, \quad z_{2}^{*} = m_{21}z_{1} + m_{22}z_{2}.$$

Write O_{G} for the zero of G, and let Σ and Σ_{0} be the sets of even and odd multiples of the point $\sigma = \epsilon(\omega_{1}/Q, \omega_{2}/Q, \omega_{1}^{*}/Q, \omega_{2}^{*}/Q)$ in G respectively. We use Philippon’s zero estimate.

Lemma 4. There is a connected algebraic subgroup $H = \epsilon(W) \neq G$ of G such that

$$T^{p}R\Delta < c_{13}D^{r},$$

where W is a subspace of \mathbb{C}^{4}, p is the codimension of $Z \cap W$ in Z, R is the number of points in Σ distinct modulo H, Δ is the degree of H, r is the codimension of H in G, and $c_{13} = 4.032 \times 10^{7}$.

Proof. By Lemma 3.5 there is a polynomial, homogeneous of degree D, that vanishes to order at least $4T + 1$ along $\varepsilon(Z)$ at all points of Σ_0, but does not vanish identically on G. Let $\Sigma(4) = \{\sum_{i=1}^4 \sigma_i | \sigma_i \in \Sigma\}$, so $\Sigma_0 = \sigma + \Sigma(4)$. From [5, Lemma 1] translations on an elliptic curve are described by homogeneous polynomials of degree 2. According to Philippon's zero estimate [9, Théorème 1], there exists a connected algebraic subgroup $H = \varepsilon(W) \neq G$ of G such that

$$T^\rho R\Delta \leq \deg G \times 2^{\dim G}(2D)^r.$$

As $\deg G = 3^{2\dim G} \times 4! = 2^3 \times 3^9$ and $r \leq 4$, $T^\rho R\Delta < c_13D^r$. q. e. d.

Now we can give the proof of Main Proposition. We want to find a nontrivial graph subgroup of an isogeny $E \to E^*$ of small degree. We consider the three cases $\rho = 2$, 1, 0 in (11).

When $\rho = 2$, $T^2 R\Delta < c_13D^r$. So

$$R < c_13D^rT^{-2} < 4.04 \times 10^7 C^2 D^{r-4} =: c_14C^2 D^{r-4}. \quad (12)$$

Thus $r = 4$, $H = O_G$, and $R = Q/2$. If

$$C > 2^8 c_14^8 \approx 1.817 \times 10^{63}, \quad (13)$$

then $Q/2 > C^{17/8}/2 > c_14C^2$ contradicting (12). Hence the case $\rho = 2$ is ruled out under (13).

Next when $\rho = 1$, $Z \cap W$ has dimension 1, so $r \leq 3$. If H is nonsplit, then by [8, Lemma 2.2] there is an isogeny of degree at most $9\Delta^2$ between E and E^*. From (11) $\Delta < c_13D^5T^{-1} < 4.04 \times 10^7 C^{21} L^2$. Thus we get an isogeny of degree at most

$$9 \times (4.04 \times 10^7)^2 C^{42} L^4 \approx 1.469 \times 10^{16} C^{42} L^4. \quad (14)$$

If H is split, we can not have $r = 3$ by the proof of [6, Proposition]. If $r \leq 2$, then $R = Q/2$ by [6, Lemma 5.2], and $R < c_13D^2 T^{-1} < c_14C$. The assumption of no complex multiplication is used to prove [6, Lemma 5.2] in applying Kolchin's Theorem. Since $C > (2c_14)^8/9$ from (13), $Q/2 > C^{17/8}/2 > c_14C$. Hence a contradiction.

Lastly when $\rho = 0$, then $Z \subset W$ and $r \leq 2$. If $r = 2$, then from the proof of [6, Proposition] $N < 9\Delta < 9c_13D^2 \leq 9c_13C^{40} L^4$, so the original isogeny φ satisfies the required estimate.

If $r = 1$, then by the proof of [6, Proposition] H is nonsplit, and there is an isogeny of degree at most $9\Delta^2$ between E and E^*. As by (11)
\[\Delta < c_{13}D \leq c_{13}C^{20}L^{2} \], we get an isogeny of degree at most \(9 \times (4.04 \times 10^7)^2 C^{40}L^{4} = 1.469 \times 10^{16} C^{40}L^{4} \).

Next we estimate \(C \), the conditions for which are (10) and (13), for (10) implies (3). Let \(C_0 \) be the solution of the equation

\[
C_0 = 5910d[290 \log C_0 + 15.5 \max\{\log(7.4d + 2.8), 38.4\} + 342.3].
\]

Let \(x_0 = \log C_0 \), \(A_1 = 5910 \times 290d \), \(A_2 = 5910d[15.5 \max\{\log(7.4d + 2.8), 38.4\} + 342.3] \), and \(f(x) = e^x - A_1x - A_2 \), so \(f(x_0) = 0 \). If \(x_1 = \{A_2/(A_2-A_1)\} \log A_2 \), then \(f(x_1) > 0 \). As \(f(x) \) increases monotonously, \(x_0 < x_1 \), that is, \(C_0 < \exp x_1 < A_2^{1.45} \).

Thus \(C = \max\{A_2^{1.45}, 1.82 \times 10^{63}\} \) satisfies both (10) and (13). From (14) we have proved Main Proposition with \(c_4(d) = 1.47 \times 10^{16} C^{42} \).

5 Proof of Theorem

We normalize the isogeny by Lemma 5 to apply Main Proposition.

Lemma 5. Given a positive integer \(d \), there exists a constant \(c_{15} \) with the following property. Let \(k \) be a number field of degree at most \(d \), let \(E \) and \(E_1^{*} \) be elliptic curves defined over \(k \), and let \(\varphi \) be an isogeny from \(E \) to \(E_1^{*} \) of degree \(N \). Suppose \(k' \) is the smallest extension field of \(k \) over which \(\varphi \) is defined. Then \([k' : k] \leq 12 \), and there is an elliptic curve \(E^{*} \), defined over \(k' \) and isomorphic over \(k' \) to \(E_1^{*} \), such that the induced isogeny from \(E \) to \(E^{*} \) is normalized. Further we have

\[
w(E^{*}) < (11.4d + 54.3)w(E) + 13 \log N =: c_{15}w(E) + 13 \log N.
\]

Proof. This is [6, Lemma 3.2] except for the estimation of the constant on the right-hand side of the inequality, which is \(11.4d + 54.3 \). q. e. d.

Now we give the proof of Theorem. Let \(N \) be the smallest degree of any isogeny between \(E \) and \(E' \). By [6, Lemma 6.2] there is a cyclic isogeny from \(E \) to \(E' \) of degree \(N \). According to Lemma 5 there are an extension \(k' \) of \(k \) with \([k' : k] \leq 12 \) and an elliptic curve \(E^{*} \) defined over \(k' \) and isomorphic to \(E' \) such that the induced isogeny \(\varphi \) from \(E \) to \(E^{*} \) is normalized and \(w(E^{*}) < c_{15}\{w(E) + \log N\} \).

As \(\varphi \) is cyclic, by Main Proposition there is an isogeny between \(E \) and \(E^{*} \) whose degree \(N_1 \) satisfies

\[
N_1 \leq c_4(12d)\{w(E)+w(E^{*})+\log N\}^4 < c_4(12d)(c_{15}+1)^4\{w(E)+\log N\}^4.
\]
So there is an isogeny of degree N_1 between E and E', and

$$N \leq N_1 < c_4(12d)(c_{15} + 1)^4\{w(E) + \log N\}^4.$$

Thus $N < c_6\{w(E)\}^4$ for a constant c_6 depending only on d.

Lastly we estimate c_6. Let $c_17 = c_4(12d)(c_{15} + 1)^4$, $w = w(E)$, N_0 satisfy $N_0 = c_17(w + \log N_0)^4$, and $c_18 = N_0/w^4$. Then $N < N_0$, and $c_18w^4 = c_17(w + 4\log w + \log c_18)^4$. Therefore

$$c_18 = c_17(1 + 4\log w/w + \log c_18/w)^4 < c_17(5 + \log c_18)^4.$$

Let c_19 satisfy $c_19 = c_17(5 + \log c_19)^4$. Then $c_18 < c_19$, and c_19 is estimated similarly as C_0 in the proof of Main Proposition. So $c_19 < 5^{20}c_17^5$, and

$$N < N_0 = c_18w^4 < c_19w^4 < 5^{20}c_17^5w^4 = 5^{20}\{c_4(12d)\}^5(c_{15} + 1)^{20}w^4.$$

Hence $c_16 = 5^{20}\{c_4(12d)\}^5(c_{15} + 1)^{20} < c(d)$.

Acknowledgements. The author is most grateful to Professor Takayuki Oda for helpful advice. He thanks Professor David W. Masser, Professor Sinnou David and Professor Noriko Hirata-Kohno for valuable advice about the estimation of heights.

References

