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1 Introduction

Due to the rapid growth of Internet usage, tree structured data such as Web documents have been
rapidly increasing. In order to analyze such tree structured data, efficient learning from tree structured
data becomes more and more important. Tree structured data such as HTML/XML files are represented
by rooted trees with ordered children and edge labels [1]. In order to represent a tree structured pattern
common to such tree structured data, we proposed an ordered term tree, which is a rooted tree with
ordered children and structured variables [7]. A variable can be substituted by an arbitrary tree. An
ordered term tree t is said to be regular if all variable labels in ¢ are mutually distinct. Many tree
structured data such as HTML/XML files have no rigid structure and have essential information in
subtrees containing leaves. In order to deal with such tree structured data, we introduce a new type of
variable, called a contractible variable, which is regarded as an anonymous subtree in an ordered term
tree and matches any subtree including a singleton vertex. A usual variable, called an uncontractible
variable, in a term tree does not match a singleton vertex.

The language of a regular ordered term tree t is the set of all ordered trees which are obtained from ¢
by substituting ordered trees for variables in ¢. The language of a regular ordered term tree ¢ shows the
representing power of t. A least generalized regular ordered term tree ¢t explaining given tree structured
data S is a term tree t whose language contains S and is minimal. Consider the examples in Fig. 1. The
term tree t, is a least generalized regular ordered term tree for T7, T, and T3. The ordered term tree t;
also explains the three trees. But ¢; explains any tree with 2 or more vertices. So t; is overgeneralized
and meaningless.

Let A be a set of edge labels used in tree structured data. OTT § denotes the set of all regular ordered
term trees all of whose contractible variables are adjacent to leaves. First we give an efficient polynomial
time algorithm for deciding whether or not a given regular ordered term tree in OTT ¢ matches a tree,
where |A] > 1. Second when |A4] > 2, we give a polynomial time algorithm for finding a least generalized
regular ordered term tree in OT7 which explains all given data. These results imply that the class
OTTS with |A] > 2 is polynomial time inductively inferable from positive data.

An ordered term tree is different from other representations of ordered tree structured patterns such
asin [2,4, 13] in that an ordered term tree has structured variables which can be substituted by arbitrary
ordered trees. We showed that some classes of regular unordered term tree languages are polynomial time
inductively inferable from positive data [5,8,9]. In [10, 12], we showed that some fundamental classes of
regular ordered term tree languages without any contractible variable are polynomial time inductively
inferable from positive data. In [6], we showed that some classes of regular ordered term tree languages
without any contractible variable are exactly learnable in polynomial time using queries. In [7], we gave
a data mining method from semistructured data using ordered term trees.
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Fig. 1. Term trees ;, t; and trees T1, T> and T3. An uncontractible (resp. contractible) variable is represented
by a single (resp. double) lined box with lines to its elements. The label inside a box is the variable label of the
variable.

2 Ordered Term Trees with Contractible Variables

Let T = (Vr, Er) be a rooted tree with ordered children (or simply a tree) which has a set Vr of vertices
and a set Er of edges. Let E; and H, be a partition of Er, i.e., EgUH, = Er and E,N H, = 0. And
let V, = V. A triplet g = (V,, Eg, H,) is called a term tree, and elements in V;, E; and H, are called
a verter, an edge and a variable, respectively. We assume that every edge and variable of a term tree is
labeled with some words from specified languages. A label of a variable is called a variable label. A and
X denote a set of edge labels and a set of variable labels, respectively, where AN X = ¢. For a term
tree g and its vertices v1 and v;, a path from v; to v; is a sequence vy, vz,...,v; of distinct vertices of
g such that for any j with 1 < j < i, there exists an edge or a variable which consists of v; and v;4;.
If there is an edge or a variable which consists of v and v’ such that v lies on the path from the root to
v/, then v is said to be the parent of v' and v’ is a child of v. We use a notation [v,v’] to represent a
variable {v,v'} € H, such that v is the parent of v'. Then we call v the parent port of [v,v'] and v' the
child port of [v,v'].

Definition 1. Let X° be a distinguished subset of X. We call variable labels in X° contractible variable
labels. A contractible variable label can be attached to a variable whose child port is a leaf. We call
a variable with a contractible variable label a contractible variable, which is allowed to substitute
a tree with a singleton vertex, as stated later. We call a variable which is not a contractible variable
an uncontractible variable. For a variable [v,v’], when we pay attention to the kind of the variable, we
denote by [v,7]° and [v,v']* a contractible variable and an uncontractible variable, respectively.

A term tree g is called ordered if every internal vertex u in g has a total ordering on all children of
u. The ordering on the children of u is denoted by <g. An ordered term tree g is called regular if all
variables in H, have mutually distinct variable labels in X. For a set S, the number of elements in S is
denoted by |S]|.

Definition 2. An ordered term tree with no variable is called a ground ordered term tree, which is
a standard ordered tree. OT 4 denotes the set of all ground ordered term trees whose edge labels are in
A. OTTS denotes the set of all ordered term trees with contractible or uncontractible variables whose
edge labels are in A. In this paper, we treat only regular ordered term trees with contractible variables.
Therefore we call it a term tree simply.
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Let f = (Vy,Ef,Hy) and g = (V,, Eg, H,) be term trees. We say that f and g are isomorphic,
denoted by f = g, if there is a bijection ¢ from V; to V, such that (i) the root of f is mapped to
the root of g by ¢, (ii) {u,v} € Ey if and only if {¢(u),p(v)} € E, and the two edges have the same
edge label, (iii) [u,v] € Hy if and only if [¢(u), p(v)] € Hy, in particular, [u,v]° € Hy if and only if
[p(u), p(v)]¢ € Hy, and (iv) for any internal vertex u in f which has more than one child, and for any
two children v’ and u” of u, v’ < u” if and only if p(u’) <guy PU"):

Let o = [u,u'] be a list of two vertices in g where u is the root of g and v’ is a leaf of g. The form
z := [g,0] is called a binding for z. If = is a contractible variable label in X, g may be a tree with a
singleton vertex u and thus o = [u,u]. It is the only case that a tree with a singleton vertex is allowed
for a binding. A new term tree f{z := [g, 0]} is obtained by applying the binding z := [g, o] to f in the
following way. Let e = [v,v] be a variable in f with the variable label z. Let ¢’ be one copy of g and
w,w’ the vertices of g’ corresponding to u, v’ of g, respectively. For the variable e = [v,v'], we attach g’
to f by removing the variable e from H; and by identifying the vertices v, v’ with the vertices w,w’ of
g', respectively. If g is a tree with a singleton vertex, i.e., u = u', then v becomes identical to v’ after the
binding. A substitution 6 is a finite collection of bindings {z; := [91,01], -, Zn = [gn,0n]}, Where z;’s
are mutually distinct variable labels in X. The term tree f6, called the instance of f by 6, is obtained
by applying the all bindings z; := [g;,0;] on f simultaneously. Further we define a new total ordering
<% on every vertex v of f8 in a natural way. In this paper, we omit the exact definition of the ordering
after applying a binding to a term tree. The readers can refer it to [10] or [12].

For example, let t; be a term tree described in Fig. 1 and 8 = {z := [g1, [u1,v1]], ¥ := [92, [u2, u2]]}
be a substitution, where g, and g, are trees in Fig. 1. Then the instance 20 of the term tree ¢, by @ is
the tree T3 in Fig. 1.

3 An Efficient Matching Algorithm for Term Trees

A matching algorithm for term trees is an algorithm which decides whether or not a term tree ¢ matches
a tree T. We gave matching algorithms for term trees with no contractible variable in {10] and for
term trees with variables having more than two child ports in [11]. In this section, we give a matching
algorithm for OTT % by extending the matching algorithm in [10].

Let t = (V;, E;, H;) and T = (Vr, Er) be a term tree in OTT ¢ and a tree in OT 4, respectively. We
assume that all vertices of a term tree t are associated with mutually distinct numbers, called vertez
identifiers. We denote by I(u’) the vertex identifier of ' € V;. A correspondence-set (C-set for short)
is a set of vertex identifiers, which are with or without parentheses, of vertices of t. A vertex identifier
with parentheses shows that the vertex is a child port of a variable.

Our matching algorithm proceeds by constructing C-sets for each vertex of a given tree T in the
bottom-up manner, that is, from the leaves to the root of T. At first, we construct the C-set-attaching
rule of a vertex u’ of t as follows. Let ¢}, --, ¢}, be all ordered children of u'. The C-set-attaching rule
of u' is of the form I(u') « J(c}),...,J(c,,), where J(c}) = I(c}) if {v',c;} is an edge, J(c}) = I(D)
if [u', ¢}] is a contractible variable, J(c;) = (I(c})) otherwise. I(@) is a special symbol which shows ¢ is
the child port of a contractible variable. The C-set-attaching rule of ¢, denoted by Rule(t), is defined as
follows.

Rule(t) = {I(v') < J(c}),...,J(c,,) | the C-set-attaching rule of all inner vertices}
U {(I(«')) <= (I(«')) | ' is the child port of an uncontractible variable}
U {I(u") < I(u') | »' has just one child and connects to
the child with a contractible variable}.

The algorithm (Fig. 2) runs for |A| = 1. A matching algorithm for |4] > 2 can be easily constructed
from this algorithm. The only work we have to do is to check whether or not edge labels of a tree is the
same as corresponding edge labels of a term tree at the first foreach-loop of C-SET-ATTACHING. Then
we can prove this theorem in a similar way to the proof of the correctness of the matching algorithm
for a term tree [10].

Theorem 1. Let t be a term tree with n vertices in OTT 3 and T a tree with N vertices in OT 4. The
problem for deciding whether or not t matches T is solvable in O(nN) time.
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Procedure MATCHING(¢, T);
input ¢: a term tree in OTT§ with root 7, T: a tree in OT 4 with root R;
begin
Construct Rule(t);
foreach leaf £ of T do
CS(£) := {I(£') | ¢ is a leaf of ¢ that is not a child port of a contractible variable,
or # has just one child and connects to it with a contractible variable};
while there is a vertex v of T s.t. v has no C-set and all children of v have C-sets
do C-Set-Attaching(v, Rule(t));
if I(r) € CS(R) then t matches T else ¢ does not match T
end.

Procedure C-SET-ATTACHING (v, Rule(t));
input v: a vertex of T, Rule(t): the C-set-attaching rule of ¢;
begin
CS(v):=0; Letci,-,cm be all ordered children of v in T}
foreach I(u') < J(c}),--,J(c,) in Rule(t) do
if there is a sequence 0 = jo < 1 £ < Ji £+ S Jmi=1 < jm' =m s.t.
1. if J(c}) = I(c}) then j; — ji—1 = 1 and I(c}) € CS(cy;),
2. if J(c}) = (I(c})) then CS(cs,) has I(c}) or (I(c;)) for some k; (ji-1 < ki < 5i)
for all i = 1,...,m’ // we have no condition on j; when J(c}) = I(0).
then CS(v) := CS(v) U {(I(x")};
foreach (I(u')) < (I(»')) in Rule(t) do
if there is a set in CS(c1),- -+, CS(cm) which has I(u') or (I(u')) then CS(v) := CS(v) U {(I(x")};
foreach I(u') < I(«') in Rule(t) do CS(v) := CS(v) U {I(v')}

end.

Fig. 2. An algorithm for deciding whether or not a term tree t € OTT matches a tree T € OT 4, where |4| = 1.

4 Algorithms for Finding a Least Generalized Term Tree

In this section, we present polynomial time algorithm for finding a least generalized term tree where
[4] > 2, explaining given semistructured data. We can consider the language L 4(t) to be the descriptive
power of a term tree t. A least generalized term tree explaining a given set of trees S C OT 4 is a term
tree ¢ such that S C L4(t) and there is no term tree ¢’ satisfying that S C L4(t') ¢ La(t). The problem
for finding a least generalized term tree for a given set of trees is discussed as the minimal language
problem (MINL for short) in computational learning theory. The main algorithm is described in Fig. 4.

Lemma 1. Let g and t be term trees in OTT S for any A which are described in one of Cases 1-3 of
Fig. 8. Then Ls(g) = La(t).

Case 2. Case 3.

Fig. 3. Cases 1-8: g Z t and La(g) = La(t) for |A] > 2. The parts A, B,C,D of g are the same as the
corresponding parts A, B,C, D of t.
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Algorithm MINL(S);

input S = {T1,...,Tn} C OT 4: a set of trees;

output ¢: a least generalized term tree for §;

begin
Let As be the set of all edge labels which appear in S;
t := ({u,v},0, {{u,v]}); Let ¢ be a list initialized to be [[u, v]};
VARIABLE-EXTENSION(t, S, q);
Let r; be the root of ¢;
EDGE-REPLACING(t, S, 1:);
output ¢

end.

Procedure VARIABLE-EXTENSION(tinput, S, q);
input tin,.:: a term tree, S: a set of trees, g: a queue of variables;
begin
t := tinput;
while q is not empty do begin
[u,v] := g[1}; Let w;, w2, and ws be new vertices;
// w1 becomes a vertex between u and v.
t' := (Va U {w}, By, He U {[u, w1}, [w1, v]} — {[u, v]});
if S C La(t') then begin t :=t'; g := g&[[w1,v]]; continue end else g := ¢[2..];
// w2 and ws become the previous and next siblings of v, respectively.
t' == (Vi U {wz}, B, H: U {[u, w2]});
if S C La(t') then begin t :=t'; ¢ := q&[[u, w2]] end;
t' = (Vt U {1.()3}, Ey, H: U {[u: wS]});
if S C La(t') then begin t :=t'; ¢ := q&{[u, ws]] end;
end;
return ¢
end;

Procedure EDGE-REPLACING(tinput, S, u);
input tinpu:: a term tree, S: a set of trees, u: a vertex;
begin
if u is a leaf then return;
t := tinput; Let v1,..., v be the children of u;
for i := 1 to k do LABELED-EDGE-REPLACING(E, S, v;);
fori:=1to k do
foreach edge label A € As do
// Let {u,v:} be an edge with label A and w;, w2, and w3 new vertices. w; and w2 become
// the previous and next siblings of v;, respectively, and if v; is a leaf, w3 becomes a child of v
if v; is a leaf then begin
t' == (V; U {w1, wa, w3}, Be U {{n,v;}}, H: U {[u, w1]°, [u, w2]°, [vi, ws]°} — {{u, wil});
if S C La(t') then begin
©t1i= (Ve — {wr}, By, Hy — {[u,w1]}); if S C La(ty) then t' :=t;
ty = (Vpy — {‘w:},Etf, Hy — {[u, wzlc}); if S C La(t2) then t =1t
ta := (Vo — {ws}, By, Hy — {[vi, ws]°}); if S C La(ts) then t’ := t3;
t :=t'; continue
end
end else begin
t' = (Ve U{w1, w2}, B: U {{u, vi}}, He U {[w, 1], [0, w2]°} — {[u, vi]});
if S C L(t') then begin
ty := (Vo — {w1}, By, Hy — {[u,w1]°}); if S C La(t:) then t' := t1;
ty := (Vo — {w2}, By, Hy — {[u, w2]°}); if S C La(t2) then t' :=t3;
t :=t'; continue
end
end;
return ¢
end;

Fig. 4. Algorithm MINL
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Definition 3. Let ¢ be a term tree in OT7T % for |A4| > 2. The term tree ¢ is said to be a canonical term
tree if t has no combination of variables and edges of the right term trees ¢ described in Cases 1-3. For
an arbitrary term tree ¢, we can transform ¢ into the canonical term tree g such that L(g) = L(t) by
transforming the right trees in Cases 1-3 into the left trees.

Lemma 2. Let g and t be canonical term trees in OTT Y for any A. If Ls(g) C La(t) then there erists
a substitution @ such that g = t6.

The procedure VARIABLE-EXTENSION extends a term tree by adding uncontractible variables as
much as possible. A term tree outputted by VARIABLE-EXTENSION is a least generalized term tree for
S consisting of only uncontractible variables. Then the procedure EDGE-REPLACING tries to replace
variables with labeled edges from leaves to the root. Since the output term tree is not larger than the
largest tree in S, we have the following lemma.

Lemma 3. Let t be the output of the algorithm MINL for an input S. Let t' be a term tree satisfying
that S C La(t') C L(t). Let g and g' be the canonical term trees such that Ly(g) = La(t) and
La(g') = La(t'), respectively. Theng=g'.

Theorem 2. Let A be a set of edge labels where |A| > 2. The algorithm MINL finds a least generalized
term tree in OTT § for a given set of trees in OT 4 in polynomial time.

In this paper, we have presented polynomial time algorithms for solving the membership and MINL
problems for the class of labeled term trees. From these algorithms and Angluin’s theorem (3], we can
show that the class is polynomial time inductively inferable from positive data.
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