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Abstract
We give the polynomial time learnabilities of two classes of ordered tree patterns with internal

structured variables, in the query learning model of Angluin (1988). An ordered tree pattern with
internal structured variables, called aterm tree, is arooted tree pattern which consists of tree
structures, ordered children and internal structured variables. A term tree is suited for representing
structural features in semistructured or tree structured data such as $\mathrm{H}\mathrm{T}\mathrm{M}\mathrm{L}/\mathrm{X}\mathrm{M}\mathrm{L}$ files. We show the
polynomial time learnabilities of two classes of term trees using membership and restricted subset
queries and one positive example.

1 Introduction
Large amount of Web documents such as $\mathrm{H}\mathrm{T}\mathrm{M}\mathrm{L}/\mathrm{X}\mathrm{M}\mathrm{L}$ files are available. Such documents are called
semistructured data and considered tree structured data, which are represented by rooted trees with
ordered children and edge labels [1]. As an example of arepresentation of tree structured data, we give
arooted tree $T$ in Fig. 1. This work is motivated from data mining of tree structured patterns from
semistructured data.

As arepresentation of atree structured pattern, we use an ordered tree pattern with internal struc-
tured variables, called aterm tree. Aterm tree is arooted tree pattern which consists of tree structures,
ordered children and internal structured variables. Avariable in aterm tree is alist of vertices and it
can be substituted by an arbitrary tree. Aterm tree is more powerful than or incomparable to other
representations of tree structured patterns, which were proposed in computational learning theory, such
as ordered tree patterns [2] and ordered gaPPed tree patterns [7]. We can show that aterm tree is more
powerful than an ordered tree pattern, which is also called afirst order term in formal logic. Consider the
example in Fig. 1. The tree pattern $f(b, x,g(a, z),y)$ can be represented by the term tree $s$ , but the term
tree $t$ cannot be represented by any ordered tree pattern because of the existence of internal structured
variables represented by $x_{2}$ and $x\mathrm{s}$ in $t$ . The variable represented by $x\mathrm{s}$ in $t$ is a list of vertices $[v\epsilon, v\tau, v\mathrm{o}]$ .
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For a set of edge labels $\Lambda$ , the $tem$ tree language $L_{\Lambda}(t)$ of a term tree $t$ with $\Lambda$ , which denotes the
representing power of $t$ , is the set of all labeled trees which are obtained from $t$ by substituting arbitrary
labeled trees for all variables in $t$ . The subtrees which are obtained from $t$ by removing the variables in
$t$ represent the common subtree structures in the trees in $L_{\Lambda}(t)$ . A term tree $t$ is said to be regular if all
variable labels in $t$ are mutually distinct.

$O\Gamma\Gamma_{\Lambda}$ denotes the set of all regular term trees with $\Lambda$ as a set of edge labels. Let $t$ be aterm tree
in $OT\mathcal{T}_{\Lambda}$ . For a variable $h=[u_{0},u_{1}, \ldots, u\iota]$ in $t$ , we define parent(h) $=u_{0}$ and child(h) $=\{u_{1}, \ldots, u\iota\}$ .
We denote by $z\mathcal{O}\Gamma T_{\Lambda}$ the set of all term trees $t\in \mathcal{O}7\mathcal{T}_{\Lambda}$ with a variable set $H_{t}$ such that parent(hi) $1)\not\in$

$child(h_{2})$ for any $h_{1}$ and $h_{2}$ in $H_{t}$ .
In query learning model, alearning algorithm accesses to oracles, which answer specific kinds of

queries, and collect information about atarget term tree $t_{*}$ . We consider the following oracles. Mern-
bership oracle: The input is aterm tree $t$ having no variable. The output is ”yes” if $t\in L_{\Lambda}(t_{*})$ , and
“no” otherwise. Restricted subset oracle: The input is aterm tree $t$ in $\mathcal{O}\Gamma\Gamma_{\Lambda}$ . The output is “yes” if
$L_{\Lambda}(t)\subseteq L_{\Lambda}(t*)$ , and ”no” otherwise. The former is called amembership query and the latter is called a
restricted subset query. In this model, alearning algorithm is said to exactly identify a target term tree
$t_{*}$ if it outputs aterm tree $t$ such that $L_{\Lambda}(t)=L_{\mathrm{A}}(t_{*})$ and halts, after it uses some queries.

In this paper, we assume $|\Lambda|\geq 2$ . We show that any term tree in $\mathcal{O}\Gamma\Gamma_{\Lambda}$ is exactly identifiable in
polynomial time using at most $n^{2}+n$ membership queries, at most $n$ restricted subset queries and one
positive example, where $n$ is the size of the positive example. Moreover, we show that any term tree
in $z\mathcal{O}\Gamma\Gamma_{\Lambda}$ is exactly identifiable in polynomial time using at most $n^{2}+2n$ membership queries and one
positive example, where $n$ is the size of the positive example.

As our previous works, we showed the learnabilities of graph structured patterns[8], term tress with
unordered children [10] in the framework of polynomial time inductive inference from positive data [4].
Also our work [11] showed that the class $O\mathcal{T}\mathcal{T}_{\mathrm{A}}^{1}$ , asubclass of $\mathcal{O}\Gamma\Gamma_{\Lambda}$ , is polynomial time inductively
inferable from positive data. As an application [9], we gave adata mining method from semistructured
data by using alearning algorithm for term trees. As other related works, the works [2, 3, 6, 7] showed
the learnabilities of tree structured patterns in query learning model. The tree structured patterns and
learning models of this work are incomparable to those of all the other related works.

This paper is organized as follows. In Section 2, we explain term trees as tree structured patterns. In
Section 3, we explain the query learning model. In Section 4, we show the above learnabilities of the two
classes $\mathcal{O}\Gamma\Gamma_{\mathrm{A}}$ and $zO\Gamma\Gamma_{\Lambda}$ .

2 Preliminaries

Let $T=(V_{T}, E\tau)$ be an ordered tree with avertex set $V_{T}$ and an edge set $E_{T}$ . A list $h=[u0,u_{1}, \ldots,u\ell]$

of vertices in $V_{T}$ is called avariable of $T$ if $u_{1}$ , $\ldots$ , $u\ell$ are consecutive children of $\mathrm{w}\mathrm{o}$ , i.e., 110 is the parent
of $u_{1}$ , $\ldots$ , $u\ell$ and $uj+1$ is the next sibling of $uj$ for any $j$ with $1\leq j<\ell$ . We call $u_{0}$ the parent port of the
variable $h$ and $u_{1}$ , $\ldots,u\ell$ the child ports of $h$ . Two variables $h=[u_{0}, u_{1,1}\ldots u\ell]$ and $h’=[u_{0}’,u_{1}’, \ldots,u_{\ell}’,]$

are said to be disjoint if $\{u_{1}, \ldots, u\ell\}$ $\cap\{u_{1}’, \ldots, u_{\ell}’,\}=\emptyset$ . For aset $S$ , we denote by $|S|$ the number of
elements in $S$ .

Definition 1Let $T=(V_{T}, E\tau)$ be an ordered tree and $H_{T}$ aset of pairwise disjoint variables of $T$ .
An ordered term tree obtained from $T$ and $H_{T}$ is atriplet $t=(V_{t}, E_{t,t}H)$ , where $V_{t}=V\tau$ , $E_{t}=$

$E_{T}- \bigcup_{[_{\mathrm{V}_{0},u_{1},\ldots,up}]\in H_{T}}\{\{u_{0},u_{i}\}\in E\tau |1\leq i\leq\ell\}$ and $H_{t}=H_{T}$ .

For two vertices $u$ , $u’\in V_{t}$ , we say that $u$ is the parent of $u’$ in $t$ if $u$ is the parent of $u’$ in $T$ . Similarly
we say that $u’$ is achild of $u$ in $t$ if $u’$ is achild of $u$ in $T$ . In particular, for avertex $u\in V_{t}$ with no
child, we call $u$ aleaf of $t$ . We define the order of the children of each vertex $u$ in $t$ as the order of the
children of $u$ in $T$ . We often omit the description of the ordered tree $T$ and variable set $H_{T}$ because we
can find them ffom the triplet $t=(V_{t}, E_{t}, H_{t})$ . We define the size of $t$ as the number of vertices in $t$ and
denote it by $|t|$ .
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$t$ $T$

$Wg\mathrm{s}\Downarrow\iota d_{\mathrm{R}\mathrm{a}1}^{\infty_{\mathrm{s}^{1}}}\cdot \mathrm{o}_{4\mathrm{t}\mathrm{I}\mathrm{I}}us_{\mathrm{i}_{\mathrm{u}\mathrm{b}\mathrm{S}*u.\iota}}$

$wru/\mathrm{Q}\mathrm{h}u_{6}*\mathrm{I}\mathrm{u}J\nu$ $wzuz_{8}\mathrm{Q}b^{a}$.
$Ws\acute{b}$

$s$ $g_{1}$ $g_{2}$ $g_{3}$

Figure 1: Aterm tree $t$ explains atree $T$ . A term tree $s$ represents the tree pattern $f(b,x,g(a, z),y)$ . $\mathrm{A}$

variable is represented bya box with lines to its elements. The label inside a box is the variable label of
the variable.

For example, the ordered term tree $t$ in Fig. 1 is obtained from the tree $T=(V_{T}, E_{T})$ and the set of
variables $H_{T}$ defined as follows. $V_{T}=\{v_{1}, \ldots,v_{11}\}$ , $E_{T}=\{\{v_{1},v_{2}\}$ , $\{v_{2}, v_{3}\}$ , $\{v_{1},v_{4}\}$ , $\{v_{4}, v_{5}\}$ , $\{v_{1},v_{6}\}$ ,
$\{v_{6},v_{7}\}$ , $\{v_{7},v_{8}\}$ , $\{v_{6}, v_{9}\}$ , $\{v_{1},v_{1}\mathrm{o}\}$ , $\{v_{10},v_{11}\}\}$ with the root $v_{1}$ and the sibling relation displayed in
Fig. 1. $H_{T}=\{[v_{4},v_{5}], [v_{1}, v_{6}], [v_{6}, v_{7}, v_{9}]\}$.

For any ordered term tree $t$ , avertex $u$ of $t$ , and two children $u’$ and $u^{ll}$ of $u$ , we write $u’<_{u}^{t}u’$ if $u’$ is
smaller than $u’$ in the order of the children of $u$ . We assume that every edge and variable of an ordered
term tree is labeled with some words from specified languages. Alabel of avariable is called avariable
label. Aand $\mathrm{X}$ denote aset of edge labels and aset of variable labels, respectively, where $\Lambda\cap X=\phi$ . An
ordered term tree $t=(V_{t}, E_{t},H_{t})$ is called regular if all variables in $H_{t}$ have mutually distinct variable
labels in $X$ .
Note. In this PaPer, we treat only regular ordered term trees, and then we call aregular ordered term
tree aterm tree, simply. In particular, an ordered term tree with no variable is called aground term tree
and considered to be a tree with ordered children.

$\mathcal{O}\Gamma_{\Lambda}$ denotes the set of all ground term trees with Aas aset of edge labels. Let $\mathcal{O}\Gamma\Gamma_{\Lambda}$ be the set of
all term trees. In particular, for a positive integer $L$ , we denote by $\mathcal{O}\Gamma\Gamma_{\Lambda}^{L}$ the set of all term trees $t$ with
Aas aset of edge labels such that each variable in $t$ has at most $L$ child ports.

Let $f=(Vf, E, {}_{f}Hf)$ and $g=(V_{g}, E_{g}, H_{g})$ be term trees. We say that $f$ and 9are isomorphic,
denoted by $f\equiv g$ , if there is abijection $\varphi$ from $V_{f}$ to $V_{g}$ such that (i) the root of $f$ is mapped to the
root of $g$ by $\varphi$ , (ii) $\{u, u’\}\in E_{f}$ if and only if $\{\varphi(u), \varphi(\mathrm{u}’)\}\in E_{g}$ and the two edges have the same edge
label, (iii) $[\mathrm{u}\mathrm{O} , \ldots, u\ell]\in H_{f}$ if md only if $[\varphi(u_{0}), \varphi(u_{1}), \ldots, \varphi(u_{\ell})]\in H_{g}$ , and (iv) for any vertex $u$

in $f$ which has more than one child, and for any two children $u’$ and $u’$ of $u$ , $u’<_{u}^{f}u’$ if and only if
$\varphi(u’)<_{\varphi(u)}^{g}\varphi(u’)$ . We say that an edge $\{u, u’\}\in E_{f}$ comsponds to an edge $\{v, v’\}\in E_{g}$ if $v=\varphi(u)$

and $v’=\varphi(u’)$ .
Let $f$ and $g$ be $\mathrm{t}\mathrm{e}\mathrm{m}$ trees with at least two vertices. Let $h=[v_{0}, v_{1}, \ldots,v_{\ell}]$ be avariable in $f$ with

the variable label $x$ and $\sigma=$ [$u\circ,$ $u_{1}$ , $\ldots$ ,up] alist of $\ell+1$ distinct vertices in $g$ where $u0$ is the root
of $g$ and $u_{1}$ , $\ldots$ , $u\ell$ are leaves of $g$ . The form $x:=[g, \sigma]$ is called abinding for $x$ . Anew term tree
$f’=f\{x:=[g, \sigma]\}$ is obtained by aPPlying the binding $x:=[g, \sigma]$ to $f$ in the following way. For the
variable $h=[v_{0}, v_{1}, \ldots,v\ell]$ , we attach $g$ to $f$ by removing the variable $h$ from $H_{f}$ and by identifying
the vertices $\mathrm{V}\mathrm{q}$ , $v_{1}$ , $\ldots$ , $v\ell$ with the vertices $\mathrm{w}\mathrm{o}$ , $u_{1}$ , $\ldots$ , $u\ell$ of $g$ in this order. We define anew ordering
$<_{v}^{f’}$ on every vertex $v$ in $f’$ in the following natural way. Suppose that $v$ has more than one child and
let $v’$ and $v^{ll}$ be two children of $v$ in $f’$ . We note that $v_{\dot{l}}=u$: for any $0\leq i\leq t$ . (1) If $v,v’,v’\in V_{\mathit{9}}$

and $v’<_{v}^{g}v’$ , then $v’<_{v}^{f’}v’$ . (2) If $v$ , $v’$ , $v’\in V_{f}$ and $v’<_{v}^{f}v’$ , then $v’<_{v}^{f’}v’$ . (3) If $v=v_{0}(=u\mathrm{o})$ ,
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$f$ $g$ $f’=f[x :=\mathrm{b}, [u_{0},u_{1},u_{2},u_{3}]]\}$

Figure 2: The new ordering on vertices in the term tree $f’=f\{x:=[g, [u_{0},u_{1},u_{2}, u_{3}]]\}$ .

$v’\in Vf-\{v_{1}, \ldots,v\ell\}$ , $v’\in V_{g}$ , and $v’<_{v}^{f}v_{1}$ , then $v’<_{v}^{f’}v’$ . (4) If $v=vo(=u\mathrm{o})$ , $v’\in Vf-\{v_{1}, \ldots,v\ell\}$ ,
$v’\in V_{\mathit{9}}$ , and $v\ell<_{v}^{f}v’$ , then $v”<_{v}^{f’}v’$ . In Fig. 2, we give an example of the new ordering on vertices in $\mathrm{a}$

term tree.
Asubstitution $\theta$ is afinite collection of bindings $\{x_{1}:=[g_{1},\sigma_{1}], \cdots,x_{n}:=[g_{n},\sigma_{n}]\}$ , where $x$:’s are

mutually distinct variable labels in $X$ . The term tree $f\theta$ , called the instance of $f$ by $\theta$ , is obtained
by applying all the bindings $x_{i}:=[g_{\dot{1}},\sigma_{*}.]$ on $/.\mathrm{W}\mathrm{e}$ define the root of the resulting term tree $f\theta$ as the
root of $f$ . Consider the examples in Fig. 1. An example of aterm tree $t$ is given. Let $\theta=\{x_{1}:=$

$[g_{1}, [u_{1},w_{1}]]$ , $x_{2}:=[g_{2}, [u_{2},w_{2}]],x_{3}:=[g_{3}, [u_{3},w_{3},w_{3}’]]\}$ be asubstitution, where 91, $g_{2}$ , and $g_{3}$ are ground
term trees in Fig. 1. Then the instance $t\theta$ of the term tree $t$ by $\theta$ is isomorphic to the tree $T$ in Fig. 1.
Let $t$ and $t’$ be term trees. We write $t\preceq t’$ if there exists asubstitution $\theta$ such that $t\equiv t’\theta$ . If $t\preceq t’$

and $t\not\equiv t’$ , then write $t\prec t’$ . Let Abe aset of edge labels. The term tree language $L_{\mathrm{A}}(t)$ of aterm tree
$t\in \mathcal{O}T\mathcal{T}_{\Lambda}$ is $\{s\in O\Gamma_{\Lambda}|s\preceq t\}$ .

3 Learning model
In this PaPer, let $t_{*}$ be aterm tree in $\mathcal{O}\Gamma \mathit{7}_{\Lambda}$ to be identified, and we say that the term tree $t_{*}$ is atarget
A ground term tree $t$ is called a positive example of $L_{\Lambda}(t_{*})$ if $t$ is in $L_{\Lambda}(t*)$ .

We introduce the exact learning model via queries due to Angluin [5]. In this model, learning algo-
rithms can access to oracles that answer specific kinds of queries about the unknown term tree language
$L_{\Lambda}(t_{\mathrm{r}})$ . We consider the following oracles: (1) Membership oracle $M\mathrm{e}\mathrm{m}_{t}.$ :The input is aground term
tree $t$ . The output is “yes” if $t$ is in $L_{\Lambda}(t_{*})$ , and “no” otherwise. The query is called amembership
query. (2) Restricted subset oracle $\mathrm{r}S\mathrm{u}b_{t}$. : The input is aterm tree $t$ in $\mathcal{O}\Gamma\Gamma_{\Lambda}$ . The output is ”yes” if
$L_{\Lambda}(t)\subseteq L_{\Lambda}(t_{\mathrm{r}})$, and “no” otherwise. The query is called a $\mathrm{r}estr\dot{\tau}cted$ subset query.

Alearning algorithm $A$ may collect information about membership and restricted subset queries of
$L_{\mathrm{A}}(t_{*})$ . We say that alearning algorithm exactly identifies atarget $t_{\mathrm{r}}$ if it outputs aterm tree $t$ in $O7\mathcal{T}_{\Lambda}$

with $L_{\Lambda}(t)=L_{\Lambda}(t*)$ and halts after it uses some queries.

4 Learning using membership and restricted subset queries
We introduce an operation of acontraction which reduces the number of edges in aground term tree.

In this PaPer, we assume $|\Lambda|\geq 2$ .

Definition 2Let $t=(V_{t},E_{t},H_{t})$ be aground term tree and $e=\{u,v\}$ an edge in $E_{t}$ . We define
the contraction of $e$ to $t$ as the following operation: If $v$ has children $v_{1}$ , $\ldots$ , $v\iota$ , then the operation
removes $v$ from $V_{t}$ and replaces $\{u,v\}$ , $\{v,v_{1}\}$ , $\ldots$ , $\{v,v_{l}\}$ in $E_{t}$ with new edges $\{u,v_{1}\}$ , $\ldots$ , $\{u,v\iota\}$ , that
is, $E_{t}=E_{t}\cup\{\{u,v_{1}\}, \ldots, \{u,v\iota\}\}-\{\{u,v\}, \{v,v_{1}\}, \ldots, \{v, v_{l}\}\}$. Otherwise, the operation removes $v$

from.
$V_{t}$.and $e$ from $E_{t}$ . We denote by $t\backslash \{e\}$ the term tree obtained from $t$ by aPPlying the contraction
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Algorithm CONTRACTION;
Given: An oracle Memt, for atarget $t_{*}$ in $\mathcal{O}\Gamma\Gamma_{\Lambda}$ and a positive example $t$ in $L_{\Lambda}(t_{\mathrm{r}})$ ;
Output: A term tree $r$ in C777 $\Lambda 1$ with $\mathrm{r}\equiv port(t_{*})$ ;
begin

repeat
foreach edge $e$ in $t$ do begin Let $t’:=t\backslash \{e\}$ ;

if Memt, $(t’)=$ “yes” then begin $t:=t’$ ; break; end; end;
until $t$ does not change;
Let $r=(V_{r}, E_{\mathrm{r}}, H_{r})$ be $t$ ;
foreach edge $e=\{u, v\}$ in $t$ do begin

Let $\mathrm{t}’$ be aterm tree obtained from $t$ by replacing the label of $e$ with another label;
if Memt, $(t’)=$ “yes then begin

Let $\{u’, v’\}$ be an edge in $r$ which corresponds to $\{u, v\}$ in $t$ .
$E_{r}:=E_{r}-\{\{u’, v’\}\};H_{r}:=H,$ $\cup\{[u’,v’]\}$ ; end;

end; output $r_{1}$
.

end

Figure 3: Algorithm CONTRACTION

Algorithm LEARN.OTT;
Given: $\mathrm{O}\mathrm{r}\mathrm{a}\iota \mathrm{l}\mathrm{e}\mathrm{s}$

$rSub_{t_{\mathrm{t}}}$ and Memt, for a target $t_{n}$ in $\mathrm{O}\Gamma\Gamma_{\Lambda}$ and a positive exmple $t$ in $L_{\Lambda}(t.)$ ;
Output: A term tree $r$ in $\mathcal{O}\Gamma \mathit{7}_{\Lambda}$ with $L_{\Lambda}(r)=L_{\Lambda}(t*)$ ;
begin

$r$ $:=CONTRACTION(t)$ using Memt, ;
let $H=[h_{1}, \ldots, h_{p}]$ be the sequence of variables in $r$ by the breath-first search order;
: $:=1;$ flag: $=\mathrm{f}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{e}\mathrm{i}$

while $H$ is not empty do begin Let $S=\{h:\}_{1}$.
repeat

Let $h_{:}=[u:, v:]$ and $h_{i+1}=[u:+1, v:+1]j$

if $v:+1$ is the next sibling of $v$: then begin
Let $S:=S\cup\{h:+1\};r’$ $:=replace(r, S)$ ;
if $\mathrm{r}S\mathrm{u}b_{t}.(r’)=$ “yes” then begin flag $:=\mathrm{f}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{e};i:=:+1$; end
else begin flag $:=\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}$; $S:=S-\{h:+1\}$ ;end; end

else flag $:=\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}$ ;
until flag
$r$ $:=replace(r, S)$ ;remove the variables in $S$ ffom $H$ ; : $:=:+1$ ;

end; output $r$ ;
end

Figure 4: Algorithm LEARN.OTT

Let $t=(V_{t}, E_{t}, H_{t})$ be aterm tree in $\mathcal{O}T\mathcal{T}_{\Lambda}$ . We denote by port(t) the term tree obtained from $t$ by
replacing any variable $[v_{0},v_{1}, \ldots, v_{k}]$ with $k$ variables $[v_{0},v_{1}]$ , $\ldots$ , $[v_{\mathit{0}},vk]$ . Hence, for $t\in \mathcal{O}\Gamma\Gamma_{\Lambda}$ , port(t)
is in $\mathcal{O}\Gamma\Gamma_{\mathrm{A}}^{1}$ .

Let $k$ be apositive integer, $t=(Vt, E{}_{t,t}H)$ aterm tree in $O\Gamma\Gamma_{\Lambda}$ and $h_{1}=[v_{0}, v_{1}]$ , $\ldots$ , $h_{k}=$

$[v0,vk]$ variables in $H_{t}$ , where $v:+1$ is the next sibling of $v_{\dot{1}}$ for each $i=1$ , $\ldots$ , $k-1$ . We denote by
replace(t, $\{h_{1}$ , $\ldots$ , $h_{k}\}$) the term tree obtained from $t$ by replacing the variables $h_{1}$ , $\ldots$ , $h_{k}$ with avariable
$h=[v_{0}, v_{1}, \ldots, v_{k}]$ . That is, replace $(t, \{h_{1}, \ldots, h_{k}\})$ $=$ ( $Vt,$ Et, $H_{t}’$ ), where $H_{t}’=H_{t}\cup\{h\}-\{h_{1}, \ldots, h_{k}\}$ .
Theorem 1The algorithm LEARN.OTT in Fig. 4exactly identifies any term tree $t_{\mathrm{r}}$ in $m_{\mathrm{A}}$ in poly-
nomial time using at most $n^{2}+n$ membership queries, at most $n$ restricted subset queries and one positive
example $t$ in $L_{\Lambda}(t_{\mathrm{r}})$ , where $n=|t|$ .

Prom Theorem 1, we can identify any term tree in $O\Gamma \mathit{7}_{\Lambda}$ using membership, restricted subset queries
and apositive example. Next, we show that any term tree in some subset of $O\Gamma\Gamma_{\Lambda}$ is identifiable usin$\mathrm{g}$
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membership queries and a positive example.
Let $t=(V_{t}, E_{t}, H_{t})$ be a term tree in $O\Gamma\Gamma_{\Lambda}$ and $h=[u_{0}, u_{1}, \ldots, u_{k}]$ a variable in $H_{t}$ . We denote by

parent(h) the parent node of $h$ and by child(h) the set of the child ports of $h$ , that is, parent(h) $=u\mathit{0}$

and child(h) $=\{u_{1}, \ldots, u_{k}\}$ . We denote by $z\mathcal{O}\Gamma\Gamma_{\Lambda}$ the set of all term trees $t=(V_{t}, E_{t}, H_{t})$ in $\mathrm{O}\Gamma\Gamma_{\Lambda}$

such that parent $(h_{1})\not\in child(h_{2})$ for any $h_{1}$ and $h_{2}$ in $H_{t}$ .

Theorem 2Any term tree $t_{*}$ in $z\mathcal{O}\Gamma\Gamma_{\Lambda}$ is exactly identifiable in polynomial time using at most $n^{2}+2n$

membership queries and one positive example $t$ in $L_{\Lambda}(t_{*})$ , where $n=|t|$ .

5 Conclusions
We have considered the polynomial time learnabilities of $orr_{\Lambda}$ and $z\mathcal{O}\Gamma 7_{\Lambda}$ in the query learning model.
In this paper, we assume $|\Lambda|\geq 2$ . We have shown that any term tree in $\mathcal{O}\Gamma\Gamma_{\mathrm{A}}$ is exactly identifiable
using at most $n^{2}+n$ membership queries, at most $n$ restricted subset queries and one positive example,
where $n$ is the size of the positive example. Moreover, we have shown that any term tree in $z\mathcal{O}\Gamma\Gamma_{\Lambda}$ is
exactly identifiable using at most $n^{2}+2n$ membership queries and one positive example, where $n$ is the
size of the positive example.

Suzuki et al. $[11, 12]$ have shown that the learnabilities of $\mathcal{O}\Gamma\Gamma_{\Lambda}^{1}$ and $O\Gamma\Gamma_{\Lambda}$ in the framework of
polynomial time inductive inference from positive data, where $|\Lambda|\geq 1$ . Thus, we will study the learnability
of finite unions of term trees in $\mathcal{O}\Gamma\Gamma_{\Lambda}^{1}$ in the same framework.
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