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Abstract

We give the polynomial time learnabilities of two classes of ordered tree patterns with internal
structured variables, in the query learning model of Angluin (1988). An ordered tree pattern with
internal structured variables, called a term tree, is a rooted tree pattern which consists of tree
structures, ordered children and internal structured variables. A term tree is suited for representing
structural features in semistructured or tree structured data such as HTML/XML files. We show the
polynomial time learnabilities of two classes of term trees using membership and restricted subset
queries and one positive example.

1 Introduction

Large amount of Web documents such as HTML/XML files are available. Such documents are called
semistructured data and considered tree structured data, which are represented by rooted trees with
ordered children and edge labels [1). As an example of a representation of tree structured data, we give
a rooted tree T in Fig. 1. This work is motivated from data mining of tree structured patterns from
semistructured data.

As a representation of a tree structured pattern, we use an ordered tree pattern with internal struc-
tured variables, called a term tree. A term tree is a rooted tree pattern which consists of tree structures,
ordered children and internal structured variables. A variable in a term tree is a list of vertices and it
can be substituted by an arbitrary tree. A term tree is more powerful than or incomparable to other
representations of tree structured patterns, which were proposed in computational learning theory, such
as ordered tree patterns {2] and ordered gapped tree patterns [7]. We can show that a term tree is more
powerful than an ordered tree pattern, which is also called a first order term in formal logic. Consider the
example in Fig. 1. The tree pattern f(b, z, g(a, 2),y) can be represented by the term tree s, but the term
tree ¢ cannot be represented by any ordered tree pattern because of the existence of internal structured
variables represented by z; and z3 in t. The variable represented by z3 in t is a list of vertices [vg, v7, vp).
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For a set of edge labels A, the term tree language La(t) of a term tree ¢ with A, which denotes the
representing power of ¢, is the set of all labeled trees which are obtained from ¢ by substituting arbitrary
labeled trees for all variables in ¢. The subtrees which are obtained from ¢ by removing the variables in
t represent the common subtree structures in the trees in L (t). A term tree ¢ is said to be regular if all
variable labels in ¢ are mutually distinct.

OTT A denotes the set of all regular term trees with A as a set of edge labels. Let ¢ be a term tree
in OTT 5. For a variable h = [ug,uy,...,w] in t, we define parent(h) = up and child(h) = {u;,...,w}.
We denote by 2077 4 the set of all term trees t € OTT o with a variable set H; such that parent(h;) &
Ch’lld(hg) for any hl and h2 in Ht.

In query learning model, a learning algorithm accesses to oracles, which answer specific kinds of
queries, and collect information about a target term tree t.. We consider the following oracles. Mem-
bership oracle: The input is a term tree ¢ having no variable. The output is “yes” if £ € Ly (£.), and
“no” otherwise. Restricted subset oracle: The input is a term tree t in OTT 5. The output is “yes” if
La(t) € La(ts), and “no” otherwise. The former is called a membership query and the latter is called a
restricted subset query. In this model, a learning algorithm is said to eractly identify a target term tree
t. if it outputs a term tree ¢ such that L (t) = La(t.) and halts, after it uses some queries.

In this paper, we assume |[A| > 2. We show that any term tree in OT7T  is exactly identifiable in
polynomial time using at most n? + n membership queries, at most n restricted subset queries and one
positive example, where n is the size of the positive example. Moreover, we show that any term tree
in zOTT , is exactly identifiable in polynomial time using at most n2 + 2n membership queries and one
positive example, where n is the size of the positive example.

As our previous works, we showed the learnabilities of graph structured patterns[8], term tress with
unordered children {10] in the framework of polynomial time inductive inference from positive data [4].
Also our work [11] showed that the class OT T}, a subclass of OTT 4, is polynomial time inductively
inferable from positive data. As an application [9], we gave a data mining method from semistructured
data by using a learning algorithm for term trees. As other related works, the works {2, 3, 6, 7] showed
the learnabilities of tree structured patterns in query learning model. The tree structured patterns and
learning models of this work are incomparable to those of all the other related works.

This paper is organized as follows. In Section 2, we explain term trees as tree structured patterns. In
Section 3, we explain the query learning model. In Section 4, we show the above learnabilities of the two
classes OTT o and 207T .

2 Preliminaries

Let T = (Vr, Er) be an ordered tree with a vertex set Vr and an edge set Ep. A list h = [ug, uy,...,ue}
of vertices in Vr is called a variable of T if u,,...,u, are consecutive children of uo, i.e., up is the parent
of uy,...,u, and uj4 is the next sibling of u; for any j with 1 < j < £. We call ug the parent port of the
variable h and vy, ..., u, the child ports of h. Two variables h = [ug, u1,...,us] and k' = [ug,ul,..., up]
are said to be disjoint if {u1,...,us} N {ul,...,up} = 0. For a set S, we denote by |S| the number of
elements in S.

Definition 1 Let T = (Vr,E7) be an ordered tree and Hp a set of pairwise disjoint variables of T.
An ordered term tree obtained from T and Hr is a triplet t = (V;, E;, H;), where V; = Vp, E; =
Er - U[uo,ul,....m]eHT{{"0’“‘} € Er|1<i<¢{}and H; = Hr.

For two vertices u,u’' € V;, we say that u is the parent of ¥’ in ¢ if u is the parent of v’ in T'. Similarly
we say that «' is a child of u in ¢ if u' is a child of u in T. In particular, for a vertex u € V; with no
child, we call u a leaf of t. We define the order of the children of each vertex u in ¢ as the order of the
children of u in T. We often omit the description of the ordered tree T’ and variable set Hr because we
can find them from the triplet ¢ = (V;, E¢, H;). We define the size of ¢ as the number of vertices in ¢ and
denote it by |t].
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Figure 1: A term tree t explains a tree T. A term tree s represents the tree pattern f(b,z,g(a,z2),y). A
variable is represented by a box with lines to its elements. The label inside a box is the variable label of
the variable.

For example, the ordered term tree ¢ in Fig. 1 is obtained from the tree T = (Vr, ET) and the set of
variables Hy defined as follows. Vr = {v1,...,v11}, Br = {{v1,v2}, {v2,v3}, {v1,v4}, {va,vs}, {v1,v6},
{ve,vr}, {vr,vs}, {vs,v9}, {v1,v10}, {v10,v11}} with the root v; and the sibling relation displayed in
Fig. 1. Hr = {[vs, vs], [v1, vs], [v6, U7, vs]}.

For any ordered term tree ¢, a vertex u of t, and two children u' and u" of u, we write v’ <% u" if u' is
smaller than u” in the order of the children of u. We assume that every edge and variable of an ordered
term tree is labeled with some words from specified languages. A label of a variable is called a variable
label. A and X denote a set of edge labels and a set of variable labels, respectively, where AN X = ¢. An
ordered term tree t = (V;, E;, H;) is called regular if all variables in H; have mutually distinct variable
labels in X.

Note. In this paper, we treat only regular ordered term trees, and then we call a regular ordered term
tree a term tree, simply. In particular, an ordered term tree with no variable is called a ground term tree
and considered to be a tree with ordered children.

OT A denotes the set of all ground term trees with A as a set of edge labels. Let OTT 5 be the set of
all term trees. In particular, for a positive integer L, we denote by OTT k the set of all term trees ¢t with
A as a set of edge labels such that each variable in ¢ has at most L child ports.

Let f = (Vy,Ef,Hyf) and g = (Vy, Ey, Hy) be term trees. We say that f and g are isomorphic,
denoted by f = g, if there is a bijection ¢ from V; to V, such that (i) the root of f is mapped to the
root of g by ¢, (ii) {u,u'} € E; if and only if {p(u),¢(u')} € E; and the two edges have the same edge
label, (iii) [uwo,u1,.-.,ue) € Hy if and only if [p(uo), p(u1),...,p(ur)] € Hy, and (iv) for any vertex u
in f which has more than one child, and for any two children ' and u” of u, w' <f u" if and only if
p(u) <i(u) o(u"). We say that an edge {u,u’'} € E; corresponds to an edge {v,v'} € E, if v = p(u)
and v' = p(u').

Let f and g be term trees with at least two vertices. Let h = [vp, v1,...,v;] be a variable in f with
the variable label z and o = [ug,u1,...,u] a list of £ + 1 distinct vertices in g where ug is the root
of g and uy,...,u, are leaves of g. The form z := [g,0] is called a binding for z. A new term tree
' = f{z = [g,0]} is obtained by applying the binding = := [g,0] to f in the following way. For the
variable A = [vg,v1,...,V¢], we attach g to f by removing the variable h from H; and by identifying
the vertices vg,v;,...,V; with the vertices ug,u;,...,us of g in this order. We define a new ordering
<!’ on every vertex v in f’ in the following natural way. Suppose that v has more than one child and
let v’ and v" be two children of v in f'. We note that v; = u; for any 0 < i < £. (1) If v,2',0" € V,
and v <g v”, then v' <f v". (2) K v,v",v" € Vy and v' < v", then v’ <I' v". (3) If v = vy(= uo),
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Figure 2: The new ordering on vertices in the term tree f' = f{z := (g, [uo, u1, u2,us]]}.

v €Vy—{v,...,v},v" € V,, and v’ <f vy, then v' <!  v". (4) If v = vo(= o), v' € Vy — {v1,...,0¢},

v" € V,, and v, <I ¥/, then v" <f' v'. In Fig. 2, we give an example of the new ordering on vertices in a
term tree.

A substitution 6 is a finite collection of bindings {z; := [g1,01],-**,Zn := [gn,on]}, Where z;’s are
mutually distinct variable labels in X. The term tree f6, called the instance of f by 8, is obtained
by applying all the bindings z; := [g;,0;] on f.We define the root of the resulting term tree f@ as the
root of f. Consider the examples in Fig. 1. An example of a term tree ¢ is given. Let § = {z; :=
[g1, [u1, w1]], 22 := (g2, [u2, wa)], z3 := [g3, [u3, w3, w}]]} be a substitution, where g, g2, and g3 are ground
term trees in Fig. 1. Then the instance t6 of the term tree ¢ by 6 is isomorphic to the tree T in Fig. 1.
Let ¢t and ¢’ be term trees. We write ¢ < t' if there exists a substitution 8 such that ¢t = ¢'4. If t < ¢'
and ¢ # t', then write t < t'. Let A be a set of edge labels. The term tree language La(t) of a term tree
teOTTAis {s€OTx| 5=t}

3 Learning model

In this paper, let t. be a term tree in OTT 5 to be identified, and we say that the term tree ¢, is a target.
A ground term tree t is called a positive ezample of La(t.) if ¢ is in La(2.).

We introduce the exact learning model via queries due to Angluin [5]. In this model, learning algo-
rithms can access to oracles that answer specific kinds of queries about the unknown term tree language
La(t.). We consider the following oracles: (1) Membership oracle Mem,,: The input is a ground term
tree t. The output is “yes” if ¢ is in Ly(t.), and “no” otherwise. The query is called a membership
query. (2) Restricted subset oracle rSub;,: The input is a term tree ¢ in OTT o. The output is “yes” if
Lx(t) C La(t.), and “no” otherwise. The query is called a restricted subset query.

A learning algorithm 4 may collect information about membership and restricted subset queries of
L (t.). We say that a learning algorithm eractly identifies a target t. if it outputs a term tree ¢t in OTT 5
with Ly (t) = La(t.) and halts after it uses some queries.

4 Learning using membefship and restricted subset queries

We introduce an operation of a contraction which reduces the number of edges in a ground term tree.
In this paper, we assume |A]| > 2.

Definition 2 Let t = (V;, E;, H;) be a ground term tree and e = {u,v} an edge in E;. We define
the contraction of e to t as the following operation: If v has children vy,...,v, then the operation
removes v from V; and replaces {u,v},{v,v1},...,{v,v} in E; with new edges {u,v1},...,{u, v}, that
is, By = E; U {{u,v1},...,{u,u}} - {{u,v},{v,n1},...,{v,u}}. Otherwise, the operation removes v
from V; and e from E,. We denote by t\{e} the term tree obtained from ¢ by applying the contraction
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Algorithm CONTRACTION;
Given: An oracle Mem;, for a target t. in OTT s and a positive example ¢ in La(t.);
Output: A term tree r in OTT} with r = port(t.);
begin
repeat
foreach edge e in t do begin Let t' :=t\{e};
if Mem., (') = “yes” then begin t := t'; break; end; end;
until ¢ does not change;
Let r = (V;, E;, H;) be t;
foreach edge e = {u,v} in t do begin
Let ¢’ be a term tree obtained from ¢ by replacing the label of e with another label;
if Mem;, (t') = “yes” then begin
Let {u',v'} be an edge in r which corresponds to {u,v} in t.
E.:= E, - {{+,v'}}; H. := H, U {[«/,?']}; end;
end; output r;
end

Figure 3: Algorithm CONTRACTION

Algorithm LEARN_OTT;
Given: Oracles rSub;, and Mem;,, for a target ¢t. in OTT 5 and a positive example ¢ in Ls(t.);
Output: A term tree r in OTT o with La(r) = La(t.);
begin -
r ;= CONTRACTION(t) using Mem,,;
let H = [hy,..., h] be the sequence of variables in r by the breath-first search order;
i := 1; flag:=false;
while H is not empty do begin Let S = {h;};
repeat .
Let h; = [ui, vi] and hip1 = [8i41, viga);
if vi41 is the next sibling of v; then begin
Let S := SU {hi+1}; r' := replace(r, S);
if rSub,,(r') = “yes” then begin flag := false; i := i + 1; end
else begin flag := true; S := S — {hi+1}; end; end
else flag := true;
until flag
r := replace(r, S); remove the variables in S from H; i:= i+ 1;
end; output r;
end

Figure 4: Algorithm LEARN_OTT

Let t = (V;, E¢, H;) be a term tree in OTT ». We denote by port(t) the term tree obtained from ¢t by
replacing any variable [vg,v1,...,v:] with k variables [vg,v1],...,[vo,vi]. Hence, for t € OTT 4, port(t)
is in OTT}.

Let k be a positive integer, t = (V;, F;, H;) a term tree in OTTA and hy = [vo,v1),...,he =
[vg,vi] variables in H, where v;y; is the next sibling of v; for each i = 1,...,k — 1. We denote by
replace(t, {h1,. .., hi}) the term tree obtained from ¢ by replacing the variables A, ..., hx with a variable
h = [vo,v1,...,vs). That is, replace(t, {hy,...,hx}) = (Vi, E, H}), where H; = H, U {h} — {hy,..., hx}.

Theorem 1 The algorithm LEARN_OTT in Fig. 4 exactly identifies any term tree t. in OTT 5 in poly-
nomial time using at most n?+n membership queries, at most n restricted subset queries and one positive
ezample t in Lx(t,), where n = |t|.

From Theorem 1, we can identify any term tree in OTT 4 using membership, restricted subset queries
and a positive example. Next, we show that any term tree in some subset of OTT , is identifiable using
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membership queries and a positive example.

Let t = (V;, E;, H,) be a term tree in OTT and h = [ug,us,. ..,us] a variable in H,. We denote by
parent(h) the parent node of A and by child(h) the set of the child ports of h, that is, parent(h) = uo
and child(h) = {ui,...,ux}. We denote by zOTT, the set of all term trees t = (V;, E;, H,) in OTTa
such that parent(h,) & child(hz) for any h; and ks in H,.

Theorem 2 Any term tree t. in zOTT A is ezactly identifiable in polynomial time using at most n? + 2n
membership queries and one positive ezample t in Ly (t.), where n = |t.

5 Conclusions

We have considered the polynomial time learnabilities of OTT 4 and 2O7TT , in the query learning model.
In this paper, we assume |A| > 2. We have shown that any term tree in OTT, is exactly identifiable
using at most n? + n membership queries, at most n restricted subset queries and one positive example,
where n is the size of the positive example. Moreover, we have shown that any term tree in 2077, is
exactly identifiable using at most n? + 2n membership queries and one positive example, where n is the
size of the positive example.

Suzuki et al. {11, 12] have shown that the learnabilities of OTT% and OTT, in the framework of
polynomial time inductive inference from positive data, where |A| > 1. Thus, we will study the learnability
of finite unions of term trees in OTT} in the same framework.
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