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1 Introduction

Several knapsack-type public-key cryptosystems have
been shown to be insecure. In particular, Brickell (2]

found a way to break the general Merkel-Hellman scheme.

However A different attack is the low-density attack of
Lagarias and Odlyzko [8]. The density of a knapsack is
defined as the ratio of the number elements in it to the
size in bits of these elements. There are several schemes
based on discrete logarithms, which are secure against
low-density attack. Typical examples are the Chor-
Rivest system [4] and the Okamoto—Tanaka-Uchiyama
scheme (12, 13]. We propose a new density attack
which can be applied to the Chor-Rivest scheme and
the Okamoto-Tanaka-Uchiysma Scheme. According to
this attack, these schemes become no longer secure if
we use these schemes naively. We also propose a new
scheme, which makes the Chor-Rivest cryptosystem
and the Okamoto-Tanaka—-Uchiyama cryptosystem se-
cure against the Lagarias—Odlyzko attack.

2 Previous Low-Density Attack

Subset Sum Problem
Given: A={a;€Z2:1<i<n},MecZ
Question: Is the sum of the elements in some subset
of A equal to M?
0-1 Integer Programming Problem
Given: A={a;€Z2:1<i<n},MeZ.
Find z: z:l;l a;ir; = M, I — {0, 1}

The subset sum problem is to decide whether or not the
0-1 integer programming problem has a solution. This
problem is NP-complete, and the difficulty of solving
it is the basis of public-key cryptosystems of knapsack
type. It converts the problem to one of finding a par-
ticular short vector v in a lattice, and then to attempt
to find v we uses a lattice basis reduction algorithm[10]

due to A. K. Lestra, H. W. Lenstra,Jr., and L. Lovész.

We briefly review two algorithms which would solve the
subset-sum problem with some densities in polynomial
time by finding the shortest non-zero vectors in lattices.
One is the Lagarias—Odlyzko algorithm and the other
is its improved algorithm.

definition 1 A lattice L C R™ such that

n
L= {Zzibilxi €Zi1= 1,...,11},

i=1

b1,...,bn € R™ i3 a liner independent. B = (by,...,b,) C
R™ ™ is the basis of L = L(B).

The general subset sum problem is NP-complete. How-
ever, there are two algorithms, one due to Brickell [1]
and the other to Lagarias and Odlyzko [8], which in
polynomial time solve almost all subset-sum problems
of sufficiently low-density. Both methods rely on basis
reduction algorithms to find short non-zero vectors in
special lattices. The Lagarias and Odlyzko algorithm
would solve almost all subset sum problems of den-
sity < 0.6463... in polynomial time if it could invoke
a polynomial time algorithm for finding the shortest
non-zero vector in a lattice. Coster and Joux and so
on [5] improved the Lagarias-Odlyzko algorithm, which
would solve almost all subset sum problem of density
< 0.9408 ... if it exists a lattice oracle which can find
the shortest non-zero vectors in a lattice.

definition 2 The density of weights a1,...,a, is de-
fined by d(a) = &

log, max; a; *

2.1 Lagarias—Odlyzko Algorithm

Lagarias and Odlyzko show that if the density is bounded
by 0.6463. .., the lattice oracle is guaranteed to find the
solution vector with high probability.



theorem 1 (Lagarias-Odlyzko[8]) Let A be a posi-
tive integer, and let a1, ..., an be random integers with
0<a;<Afort <i<n Lete=(e1,...,en) €
{0,1}" be arbitrary, and let s =", e;a;. If the den-
sity d < 0.6463 .. ., then the subset sum problem defined
by ai,...,a, and s may ‘almost always’ be solved in
polynomial time with a single call to a lattice oracle.

theorem 2 For alln > 1, 5,(8n) < 2¢,

¢ = min(log; €)d(u, 8),
5(u, B) = uf +InB(e™),0(z) =1+2) 2~
k=1

Proof. From [8], S,(8n) < e = 2(log2€)§(Bu)n_If the
minimum value of €™ = 20082 €)5(8.u)n 5 taken ¢ can
be found. ¢

The low-density attack of Lagrias and Odlyzko is per-
formed by the following Algorithm.
algorithm 1 Logarias-Odlyzko Algorithm(ay, ..., an, s)

1 Input : ai,...,an,s ; Output : ei,..,en.
2 Choose N > /n.
3 Make the lattice with the following vectors,

by = (1,0,...,0,—'N¢11),
bz = (0: 1..,0, "Naz)s

bn = (0,0, ..., 1, —Nay),
~ bnt1 = (0,0,...,0,Ns).

4 We want to find the shortest non-zero vector out of
this lattice. Using LLL algorithm, find the vector v =
(v1, ey Uns1). If s = 37, aqvi, it will become v =e.

2.2 Improved Low-Density Subset Sum Algo-

rithms

Improved of Lagarias—Odlyzko algorithm,almost all sub-
set sum problem of density < 0.9408... can be solved.

theorem 3 [5] Let A be a positive integer, and let
ai,...,an be random integers with 0 < a; < A for
1<i<n. Let e= (e1,...,en) € {0,1}" be arbitrary,
and let s = Y, e;a;. If the density d < 0.9408---,
then the subset sum problem defined by a;,...,a, and s
may ’‘almost always’ be solved in polynomial time with
a single call to a lattice oracle.

The improved low density attack is performed by chang-
ing the vector b1 of algorithm 1 to b4y = (3, ..., 3, V).

In almost all subset sum problems of density d < 0.9408. ..

the solution vector v = e we searched for is the short-
est nonzero vector in the lattice. One way to improve
the bound presented above would be to show that it
is possible to cover the vertices of the n-cube with a
polynomial number of n—spheres of radius /an with
a< Ili' But, according to proposition 1, any n-sphere
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of radius /an with a < i can cover only an exponen-
tially small fraction of the vertices of the n-cube. So,
it is impossible to improve the bound of density.

proposition 1 [5] Any sphere of radius \/an,a < %,

in R™ contains at most (2 — 6)™ points of {0,1}", for
some 6 = 6(a) > 0.

3 More Precise Analysis on Density At-
tack

In the cases where the subset sum problem to be solved
is known to have 3., e; small (as occurs in some knap-
sack cryptosystems, such as the Chor-Rivest[4]), it is
possible to improve Lagarias-Odlyzko algorithm [8]. If
we know that 2:;1 e; < Bnfor0 < B < % wecansolve
the subset-sum problem of density above 0.9408... us-
ing the Lagrias—Odlyzko algorithm.

proposition 2 One n-sphere beyond a radius /Bn cen-
tered at ¢ = (0,0,...,0) can cover the points of e €

{0,1}" for Z?:l e; < fn.

Proof. The distance h of ¢ = (0,0, ...,0) and the points
e =(e1,...,en) with Y-, €; < fOn is,

h=lc—e
= [lel

< +/fBn.

¢

theorem 4 Let A be a positive integer, and let ay, ..., @y
be random integers with 0 < a; < A for1 < i < n.
e = (e1,...,en) € {0,1}" is set to 3 .., e; < PBn for
0<pB <3 andsissettos =), ea; If den-
sity d < dy, which is is described. below, then the subset
sum problem defined by a1, ..., a, and s may ‘almost al-
ways’ be solved in polynomial time with a single call to

a lattice oracle. The value of dy 1is,
L
(logz €)6(u, B)’

8(u,8) =ulB+Inb(e™™), 6(z)=1+ 222:’“3.
k=1

dp = max
u€ER

Proof. We can prove this theorem by improving theo-
rem 1. Now, we are interested in vectors £ = (1, ..., Tn+1)
which satisfy,

£l < Jlell,
gel, , (1)
z ¢ {0,e,—e}.

We know Y 7, e; < fn, so |le[| < Bn. We show that
probability P that a lattice L contains a short vector



which satisfies equation 1 is,

P = Pr(3z which satisfies equation (1))

<Pr (Hx,y s.t.|lzl < llell, ly] < n\/;

z ¢ {0,e, —e},imm = ys)

i=1

< Pr (Z Zia; = yst < “'TH < ”6”, ,y] < n\/g,:c ¢ {07 €,

=1

{z | Izl < llell < +/Bn}
< n(2n\/-%—n+ 1)% .

{z | Izl < llell < vBn}

{ynm Sn\/g}[

{z |zl < llell < /Bn}

)

From theorem 2, < 24,

such that

c = Lneig(lo& e){uﬂ +1n {1 +2 é (fi_u)k2 } }

Then,
P< n(2'n\/%_n+ l)g;—

When A > 29" we have lim P = 0, and the density

n—oo

d is as follows,

_ n _n < n 1 —d
" log; max a; logyA logy 2ot ¢
1<i<n

d

¢

The density dy of the multiplicative knapsack scheme
based on discrete logarithm is dependent on the num-
ber n of the public key and 8 which is the value so that
Y€1 < Bn for encoded text e = (e, ..., en). So,

_ n 1
" Pnlogn = Blogn’

dy,

Moreover from theorem 4, about the subset sum prob-
lem which Y77, e; < fn, the density d, for which it
can be solved is decided by . Then,

1

(log, €)é(u, B)

If d, —dx > 0, the attack of the multiplicative knapsack
scheme based on discrete logarithm can be succeeded.

d, = max
uER

theorem 5 For 0 <3ng<n,0< 36 < B <3,
da—'dk > 0.

Proof. The value of dy depends on n and G, and d,
depends on 3. We have

1 1 1
- < .
Blogn ~ Blogno - fBolognog

dg
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So, if d, — ETr)lg_~no > 0, then d, — d > 0. For example,
setting ng = 64, Gy = %, we have the graph z =

_ 1 1 y
da - dk ~ {og, €)o(u,8) - Blogno as follows.

- 9}.> 5

This graph is drawn in the range of 0.0625 < B <
025 2<u<47 0<2z<13 Ifn = 2560 =
0.0125, the subset sum problem of density d < 10 be-
come insecure since b, — b > 0. ¢

4 Proposed Scheme for Enumerative Source
Encoding

Some knapsack scheme based on discrete logarithm use
the coding translating unconstrained binary text into
0-1 vectors with length p and weight h. We propose
the coding translating a text into vectors with length p
and weight h. This coding is introduced by powerline
system [11, 3], however the explanation is not given
clearly about the coding scheme. Moreover we propose
the coding which translating a text into the vectors
with the length p and weight from k to h(> k). We
show that using the vectors whose weights has from k
to h, we can make knapsack schemes more secure than
the previous schemes.

4.1 Enumerative Source Encoding

This section describes a simple procedure for translat-
ing an unconstrained binary text into the 0 — 1 vectors.
Given a binary text, we first break it into blocks of
|log, (£)] bits each. Each such block is viewed as the
binary representation of a number n (0 < n < (?)). To
map these numbers into binary vectors with weight A,
we use the order preserving mapping induced by the
lexicographic order of the vectors and the natural or-
der of the integers. If n is larger than (z:i), the first
bit in the corresponding vector is set to 1. Otherwise,
the first bit is set to 0. We then update p and h, and
iterate p times, until all p bits are determined.

algorithm 2 Transforming a number n into a binary
vector M

1 Input s,p,h; Output: M = (m1,m2,...,mp)

2 fori<—1topdo

3 if i — 1 then

4 my 1 )
5 e
6 he—h-1

7 else then m; — 0
8 Return M

The inverse transformation, which is the last step in
decryption, is as follows.




algorithm 3 Transforming a binary vector M into a
number s

1 Imput: M = (m1,ma,...,my),p, h; Output:s

2 n«0do

3 fori—1topdo

4 if m; = 1 then
5 s+——3+(”;i)
6 h«—h-1

7 Return s

For efficient implementation, the E,Th binomial coeffi-
cients preceding (£) (in the Pascal triangle) will be
precomputed and permanently stored. The above in-
dexing scheme is well known in the literature [6].

4.2 Proposed Scheme for Enumerative Source
Encoding

This section describes a procedure[9] for translating an

unconstrained binary text into the form which is vec-

tors M = (my,...,m1) for m; € {0,h}{(1 < i < p) and

Xiami=h.
(L) -2

fact 1
fact 2 The number of vectors m = (mp,...,m;) with

P omi=kis
p+k—1
% .

=1
Given a binary text, we first break it into blocks of |log,
(P*2=1)] bits each. Each such block is viewed as the
binary representation of number n (0 < n < (P*271)).
To map these numbers into non-negative integer vec-
tors with weight h, we use the following algorithm [7].
algorithm 4 EncodingWithTheWeight(s, p, h)

1 Input: (s,p,h); Output: M = (mp, mp-1,...,m1)
2 M~ (0,0,...,0)

3 heh

4 stage+—p

5 while (stage > 2) do

6 tea- (Mo

7 if t > 0 then

8 Mstage +— Matage + 1
9 gt

10 K e—h-1

11 else if t =0 then

12 my — k'

13 stage — 1

14 else if t < 0 then

15 stage + stage — 1
16 Return M

The algorithm for transforming a non-negative integer
vector M into a number s is as follows.

algorithm 5 DecodingWithTheWeight(M, p, h)

1 Input: M = (mp,mp-1,...,m1),p, h; Output: s

2 K eh

3 8«0

4 for stage — p downto 2 do
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5 if Mstage # 0 then

Mstage—1 (stage—2+h'—4
6 SI A 'Sl + Zizot ! (5 itea.ge-2 1)
7 h —h — Mstage
8 Return s'+1

In algorithms 2, 3 for transforming 0-1 vectors, the
number of calculation of binomial coefficient is at most
p—1. Otherwise, in these algorithms 4, 5, the number of
calculation of binomial coefficient is at most p — 1 + h.
Therefore, these algorithms are quite fast. little be-
come bad. '

example 1 In the case of p = 3,h = 3, we have

1=(0,0,3) 6=(1,1,1)
2=(0,1,2) 7=(1,2,0)
3=(0,2,1) 8=(2,0,1)
4=(0,3,0) 9=(21,0)
5=(1,0,2) 10 = (3,0,0).

Next, we propose the coding which improves the algo-
rithm above. We change the number into the vector of
the length p and the weight & to h. In order to encode a

text, we divide it for |log, Z:;k (";_lf)_l bits of every

blocks. This algorithm to encode (my, m,_1,...,m1) of
k<Y P mi <his as follows:

(0’ 0"", 07 h) = 1’
0,0,...1,h—1) =2,

—1+h
(h,o,...,o,0)=(1"p~1 )
_[(p~=1+h

(0,0, ...,0,h 1)_( o1 )+1,

(0,0,..,1,h —2) = (p'lth) +2,

p—
_ _(p=-2+h p—1+h
(h— 1,0, ,0,0)_( oo )+( o1 )
(0,0,...0,h—2) = (P=2Fh) L (P=1+h)
p—1 p—1

u p—2+1
(%,0,...,0,0) _é ( o1 )
Next ImprovedEncoding(s, p, k) algorithm finds the
value of °7_; m; which can be encoded from input s.
If °7_, m; are known to input s,
EncodingWithTheWeight(s, p, k) algorithm encodes
input s.

algorithm 6 ImprovedEncoding(s, p, )

1 Input: s,p,h; Output: M = (mp, mp—1,...,m1)
2 tes— (”;ﬁh

3 whilet >0 then

4 he—h-1



5 s+t
6 te—s— (p—i‘:h)
7 EncodingWithTheWeight(s, p, h)

When decoding M = (mp,...,m1), 3 oy m; is calcu-
lated. It asks for total number of encoded messages
which the sum of weights of M is from 1+ Y_5_; m; to
h.

algorithm 7 ImprovedDecoding(M, p, h)

1 Input: M = (mp, mp-1,...,m1),p,h; Output: s

2 W 3E m

3 if B’ = h then

4 8 «— DecodingWithTheWeight(M,p,h’)

5 else then

6 8 — T4z (P21 +DecodingWithTheWeight(M, p, h')
7 Return s

example 2 In the case of p=3,h =3,k = 1, we have

1=(0,0,3) 6=(1,1,1) 11 =(0,0,2) 16 = (2,0,0)
2=1(0,1,2) 7=(1,2,0)12=(0,1,1) 17 = (0,0,1)
3=(0,2,1) 8=(2,0,1)13=(0,2,0) 18 = (0,1,0)
4=(0,3,0) 9=(2,1,0)14=(1,0,1) 19 = (1,0,0)
5=(1,0,2) 10 = (3,0,0) 15 = (1,1,0).

4.3 Application To Chor—Rivest Cryptosystem

We introduce that the Chor-Rivest Cryptosystem us-
ing our proposed coding. At this time, the changed
part is as follows.

e At the time of encryption, we use the message M
which is transformed by EncodingWithTheWeight
Algorithm 4 or ImprovedEncoding Algorithm 6
instead of a binary message M.

e When decrypting, multiple roots may exist.

1. System Generation

(a) Let p be a prime power, h < p an integer
such that discrete logarithms in GF(p") can
be efficiently computed.

(b) Pick a random t € GF(ph) that is algebraic
of degree h over GF(p).

(c) Pick g € GF(p"), g a multiplicative genera-
tor of GF(p") , at random.

(d) Construction following Bose-Chowla theorem:

Compute a; = log;'m‘ for all o; € GF(p).

(e) Scramble the a;’s: Let 7:{0,1,...,p — 1} —
{0,1, ...,p—1} be a randomly chosen permu-
tation. Set b; = ar(;)

(f) Add some noise: Pick 0 < d < ph — 2 at
random. Set ¢; = b; +d.

(g) Public key-to be published: co,c1,...,Cp-1; P, A

(h) Private key-to be kept secret: ¢,g,7~1,d.

2. Encryption
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¢ Encoding a plain text using Encoding-
WithTheWeight Algorithm.
We encrypt a message M = (z9, 21, ..., Tp—1)
of length p and weight h{= Zf;ol z;), and

send E(M) = P70 z;¢; (mod p* — 1).

e Using the ImprovedEncoding Algorithm.
We encrypt a meaasage M = (29,21, ..., Zp—1)
of length p and weight below h, and send

E(M) = 3P0 zic; (mod p" - 1).
3. Decryption

(a) Let r(t) = t" mod f(t), a polynomial of de-
gree < h —1 (computed once at system gen-

eration).
(b) Given s = E(M), computes ' = s — hd
(mod p* —1).

(c) Compute g(t) = g* mod f(t), a polynomial
of degree h — 1 in the formal variable ¢.
(d) Add t" —r(t) to q(t) to get s(t) = th +q(t) —
r(t), a polynomial of degree h in GF(p)[t].

(e) o Encoding a plain text using Encod-
ingWithTheWeight.
We now have s(t) = (t+au, ) (t+ai,) - - - (t+
oy, ) namely s(t) factors to liner terms
over GF(p). (There is the possibility of
ai; = a;, (1 < j # k < h)).By succes-
sive substitutions, we find the h roots
a;;’s (at most p substitutions needed).
Apply 71! to recover the coordinates of
the original M having the bit 1.

e Using the ImprovedEncoding Al-

gorithm.
We now have s(t) = (t+ay, )(t+ay,) --- (t+
ay ). h' is below h. (There is the pos-
sibility of a;; = a;, (1 < j # k < Ah')).
By successive substitutions, we find the
h' roots a;;’s (at most p substitutions
needed). Apply 7! to recover the co-
ordinates of the original M having the
bit 1.

4.4 Information Rate

Using the coding scheme for transforming into 0-1 vec-
tors, the message space is |M| = (£) and the informa-
tion rate Ry is
_ log (7)
logph’
When we use the coding scheme for mapping a numbers
into non-negative vectors with weight A, the message
space |Mjy| is (’”’2"1) and the information rate R}, is
Tog (**,77)

R
h log p*

Moreover using the coding scheme for transforming a
text into the vectors with weights of k to h, the message



space is |Mg_p} = ZLk (p+::"l) and the information
rate Rg_p is

lOg Z?:k (P‘f’:—l) .

Ry _p =
k—h logp"

Each information rate is not asymptotically different.
In Chor-Rivest[4], the recommendation parameter p is
256 and h is 25. k is taken as 1 to o — 1. Each message
space and information rate is compared as follow.

The comparison table of message space
and information rate in p = 256, h = 25

p=256,h=25 message space | information
rate

0 — 1vectors My 0.572856

weight= 25 10.457709 x My | 0.573594

weighte {24,25} | 11.391433 x M, | 0.573666

weighte {23,25} | 11.475100 x M, | 0.573673

weighte {22,25} | 11.482624 x M, | 0.573674
weighte {21,25} | 11.483303 x M, | 0.573674
weighte {20, 25} | 11.483364 x M, | 0.573674
weighte {19,25) | 11.483370 x M, | 0.573674
weighte {1,25} | 11.483371 x M, | 0.573674

4.5 Security Consideration

Although some knapsack scheme using 0-1 vectors be-
come insecure against our proposed scheme, some knap-
sack schemes using the vectors whose weight is from
k to h may be secure. For the encoding text e =
(e1,...,en) of Y i, € = h, the value of ||e| changes
from VA to h.

lemma 1 As for non-negative integer vector e = (ey, ...
with Y1, ei = h and ¢; € {0,h},

Vh < el < h.

Proof. We assume that (ei,...,e,) such that |lef| = ¢
and Y i, &; = h. The following substitution is carried
out to e;,e; (i # j) for e; > e; >0,

e;—e +1, e —e;~1.
Then ||e|| is as follow,

llefl = (¢ — e — e3) + (e + 1)* + (e5 - 1)°
=t+2+2(6i_—€j)>t

So, when Vi(1<i<n),ei=h,e;=0(1<j<n,i#
7), the maximum of || is

llell = VA2 = h.

When becoming the minimum of ||e], it is necessary is
just to consider 0 < e; < e; (i # j). So the minimum

of |le|| is
llell = V12 x
¢
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When the subset sum problem change to the short-
est vector problem, the solution vector in the lattice
will become big. If we want to solve it using our pro-
posed scheme, the solution vector would not be found.
Some multiplicative knapsack schemes based on dis-
crete logarithm using these coding algorithms 4, 5 is
secure against our proposed scheme. Other consider-
ing several possible attacks have written to the paper
of [4] and {12].
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