
Short Exponent DDH

小柴健史 (Takeshi Koshiba)
富士通研究所セキュアコンピューティング研究部

Secure Computing Lab., Fujitsu Laboratories Ltd.

黒澤 馨 (Kaoru Kurosawa)
茨城大学工学部情報工学科

Dept. Computer and Information Science, Ibaraki Univ.

1Introduction
The discrete $\log(\mathrm{D}\mathrm{L})$ assumption and the decision

Diffie-Hellman (DDH) assumption are basis of many
applications in modern cryptography.

Blum and Micali [1] presented the first cryptograph-
ically secure pseud0-random bit generators (PRBG)
under the DL assumption over $Z_{\mathrm{p}}^{*}$ , where $p$ is aprime.
Long and Wigderson [5], and Peralta [8] showed that
up to $O(\log\log p)$ pseudo bits can be extracted by as-
ingle modular exponentiation of the Blum-Micali gen-
erator.

Recently, astronger (but reasonable) variant of the
DL assumption was used to improve the efficiency of
the PRBG. It claims that the DL problem is still hard
even if the exponent is small. Under this assumption,
Patel and Sundaram [7] showed that it is possible to
extract uP to $n-\iota v(\log n)$ bits from one iteration of
the Blum-Micali generator, where $n$ is the bit length
of $p$ . Gennaro [4] further improved this result in such
away that each full modular exponentiation can be
replaced with ashort modular exponentiation. This
variant of the DL assumption is called the discrete $\log$

with short exponent (DLSE) assumption.
On the other hand, the DDH assumption is described

as follows. Let $G$ be afinite Abelian group of order
$q$ , where $q$ is aprime. Let $g$ be agenerator, that is,
$G=\langle g\rangle$ . Then $(g, g^{a},g^{b},g^{ab})$ and $(g, g^{a},g^{b}, g^{c})$ are
indistinguishable, where $a$ , $b$ and $c$ are uniformly and
randomly chosen from $Z_{q}$ .

Under this assumption, ElGamal encryption scheme
[3] is secure in the sense of indistinguishability against
chosen plaintext attack (IND-CPA) and Cramer-Shoup
scheme [2] is secure in the sense of indistinguishability
against chosen ciphertext attack (IND-CCA).

In this paper, we investigate avariant of the D-
DH assumption which claims that $(g,g^{a},g^{b},g^{ab})$ and
$(g, g^{a},g^{b},g^{c})$ are still indistinguishable even if $a$ is s-
mall. We call it the DDH with short exponent as-
sumption (DDH-SE assumption). If the DDH-SE as-
sumption is true, then we can improve the efficiency of
ElGamal scheme and Cramer-Shoup scheme directly.
However, this assumption has not been studied so far.

For this problem, we show that the DDH-SE ae-
sumption is equivalent to two widely accepted assump
tions, the DDH assumption and the DLSE assump
tion. To prove this, we first show that short expo
nents {$g^{s}|s$ is small} and full exponents $\{g^{x}|x\in Z_{q}\}$

are indistinguishable under the DLSE assumption. We
then show that the DDH assumption and the DLSE
assumption implies the DDH-SE assumption. We fur-
ther show that the DDH-SE assumption implies the
DDH assumption and the DLSE assumption.
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Table 1. Comparison with the previous works

We finally present variants of ElGamal encryption
scheme and Cramer-Soup scheme. Each encryption
algorithm uses ashort random exponent $r$ . Hence
they are much faster than the original encryption al-
gorithms.

It is clear that these variants are provably secure
under the DDH-SE assumption. However, more than
that, we can immediately see that they are provably
secure under the two widely accepted assumptions, the
DDH assumption and the DLSE assumption, from our
result. That is, our variant of ElGamal scheme is IND-
CPA under the DDH assumption and the DLSE as-
sumption, and our variant of Cramer-Shoup scheme is
IND-CCA under the same assumptions.

We believe that there will be many other applica-
tions of our result.

2Preliminaries
$|x|$ denotes the bit length of $x$ . $x\in RX$ means that

$x$ is randomly chosen from aset $X$ . For aset $X$ , we
sometimes mean the uniform distribution over $X$ .

Let &b*(z) be the function that returns the least
significant $k$ bits of $z$ and $msb_{k}(z)$ the function that
returns the most significant $k$ bits of $z$ . If we writ

数理解析研究所講究録 1325巻 2003年 134-139

134



$b=msbk(z))$ we sometimes mean that the binary rep-
resentation of $b$ is $msb_{k}(z)$ .

Let $G$ be afinite Abelian group of order $q$ , where
$q$ is aprime. $G$ can be constructed as asubgroup of
$Z_{p}^{*}$ , where $p$ is alarge pri me. It can also be obtained
from elliptic curves. Let $g$ be agenerator of $G$ , that
is, $G=\langle g\rangle$ . Note that any $g\neq 1$ is agenerator of $G$

because the order $q$ is aprime.. Let $n$ denote the bit length of $q$ and. let $c=\omega(\log n)$ . It means that $c$ grows faster
than $a$ $\log n$ for any constant $a$ . That is, $2^{c}$ grows
faster than any polynomial in $n$ .

2.1 Discrete ${\rm Log}$ with Short Exponent (DLSE)
Assumption

Let
$f(z,g)=(g,g^{z})$ .

The discrete $\log(\mathrm{D}\mathrm{L})$ problem is to compute the in-
verse of $f$ . The DL assumption says that the DL prove
lem is hard.

Assumption 2. 1($DL$ assumption) There exists no
probabih.stic polynomial time Turing machine which
solves the DL problem with non-negligible probability.

Next let

$f^{\mathrm{s}\mathrm{e}}(u||v,g)=(g, g^{u|\}0^{n-\mathrm{c}}})$,

where $|u|=c$ and $||$ denotes concatenation. Then
the DLSE problem is to compute the inverse of $f^{\mathrm{s}\mathrm{e}}$ .
The DLSE assumption says that the DLSE problem is
hard.

Assumption 2. 2(DLSE assumption) There exists
no probabilistic polynomial time Turing machine which
solves the DLSE problem with non-negligible probabil-
ity.

The running time of the index-calculus method de-
pends only on $n$ , the size of $G$ . The baby-step giant-
step algorithm by Shanks or the $rho$ and lambda al-
gorithms by Pollard can solve the DLSE problem in
$O(2^{c/2})$ . Schnorr proved that this is the best that can
be done for generic algorithms [9].

The DLSE assumption was first introduced to akey
agreement Protocol in order to decrease the computa
tional cost of exponentiation [6]. Patel and Sundaram
[7] then proposed acryptographically secure PRBG
under the DLSE assumption over $Z_{p}^{*}$ , where $p$ is a
prime. (Note that the order of $Z_{\mathrm{p}}^{*}$ is not aprime.)
Gennaro improved the efficiency [4].

2.2 Security of Public Key Cryptosystem

Apublic key cryptosystem consists of three proba-
bilistic polynomial time algorithms, akey generation
algorithm, an encryption algorithm and adecryption
algorithm. The key generation algorithm outputs a
public key pk and asecret key sk.

Consider the following model of adversaries. In the
find stage, the adversary chooses two messages mo, $m_{1}$

on input pk. She then sends these to an encryption
oracle. The encryption oracle chooses arandom bit b,
and encrypts $m_{b}$ . In the guess stage, the ciphertext
$C_{b}$ is given to the adversary. The adversary outputs a
bit $b’$ .

We say that the public key cryptosystem is secure in
the sense of indistinguishability against chosen plain-
text attack (IND-CPA) if $|\mathrm{P}\mathrm{r}(b’=b)-1/2|$ is negligi-
bly small (as afunction of the security parameter).

The security against chosen-ciphertext attadc $(\mathrm{I}\mathrm{N}\mathrm{D}\sim$

CCA) is defined similarly except for that the adversary
gets the decryption oracle and is allowed to query any
ciphertext C, where it must be C $\neq c_{b}$ in the guess
stage.

3Short EXP $\approx \mathrm{F}\mathrm{u}11$ EXP
For $0\leq i\leq n-c$ , let

$R_{4}=\{2:u|0\leq 2^{:}u<q\}$ .

Define

$A_{0}$ $=$ $\{(g,g^{x})|x\in R_{0}\}$ $(=\{(g, g^{x})|x\in Z_{q}\})$ ,
$A_{n-c}$ $=$ $\{(g,g^{x})|x\in R_{n-c}\}$ .

Note that the exponent of $g^{x}$ in $A_{0}$ is $n$ bits long. On
the other hand, the exponent of $g^{x}$ in $A_{n-c}$ is essen-
tially only $c$ bits long.

In this section, we prove that $A0$ and $A_{n-c}$ are in-
distinguishable under the DLSE assumption.

3. 1Overview
For $1\leq i\leq n-c$ , let

A $=\{(g,g^{x})|x\in R.\}$ .

Suppose that there exists adistinguisher $D$ which can
distinguish $A_{n-\mathrm{c}}$ from Ao. Then by using ahybrid
argument, there exists $j$ such that $A_{j}$ and $A_{j+1}$ are
distinguishable.

We will show that the DLSE problem can be solved
by using the $(D,j)$ . Note that the DLSE problem is
to find $x$ of $g^{x}$ in $An-C$ .

3.2Indistinguishability

Theorem 3. 1 $A0$ and $A_{n-c}$ are indistinguishable un-
der the DLSE assumption.

Before showing Theorem 3. 1, we show some tech-
nical lemmas. Let $c=\omega(\log n)$ .

135



Lemma 3. 1 Suppose that there exits aprobabilis-
tic polynomial-time Turing machine $D$ that on input
$(g,g^{z})\in RAn-C$ , outputs the $i$-th bit of $z$ with proba-
bility $1/2+\epsilon$ , where $0<\epsilon\leq 1/2$ .

Then there exists aprobabilistic polynomial-time
Turing machine $D_{i}$ that on input $g^{z}$ Eg $\{g^{x}|x\in$

$R_{n-c}\}$ , outputs the $i$-th bit of $z$ with probability $1/2+\epsilon$

for any fixed $g\in G$ .

It is clear that computing $z$ ffom $(g,g^{z})$ is the same
as computing $z$ from $(g^{r}, g^{rz})$ . Lemma 3. 1is easily
obtained from this random self reducible property.

Next let $g$ be agenerator of $G$ .

Lemma 3. 2For $i\geq c$ , suppose that there exists a
probabilistic polynomial-time Turing machine $D$ that
on input $g^{u||0^{n-:}}\in R\{g^{x}|x\in R_{n-\dot{\iota}}\}$ , outputs the
least significant bit of $u$ with probability $1/2+\epsilon$ .

Then there exists aprobabilstic polynomial-time
Turing machine $D’$ that on input $g^{v||0^{n-\mathrm{c}}}\in R\{g^{x}|$

$x\in R_{n-c}\}$ and $msb\log t(v)$ , outputs the least signifi-
cant bit of $v$ with probability at least $1/2+\epsilon-(4/t)$ .

Now suppose that $s+\mathrm{r}<q$ . Then $s+r=u||0^{n-}’$ ,
where

$u=(0^{i-\mathrm{c}+\log t}||v’)+r’$ .

Therefore $D$ outputs a $=lsb_{1}(u)$ with probability
$1/2+\epsilon$ . On the other hand,

$\alpha=lsb_{1}(u)=lsb_{1}(v’)\oplus lsb_{1}(r’)=lsb_{1}(v)\oplus lsb_{1}(r’)$.

Hence $D’$ outputs $\beta=az$ $\oplus lsb_{1}(r’)=1\mathrm{s}\mathrm{b}\mathrm{i}(\mathrm{v})$ . Finally
we see that

$\mathrm{P}\mathrm{r}(s+r<q)\geq 1-4/t$ . (1)

(The proof is given in Appendix.) Consequently the
success probabilty of $D’$ is at least

$(1-4/t)(1/2+\epsilon)=1/2+\epsilon-(4/t)(1/2+\epsilon)>1/2+\epsilon-4/t$ .
Q.E.D.

Now, we are ready to prove Theorem 3. 1.

(Proof of Theorem 3. 1)We assume that there exists
adistinguisher $D$ between $A_{0}$ and $A_{n-c}$ , namely,

(Proof) Let $D$ be aprobabilistic polynomial-time ma-
chine as stated above. We construct aprobabilistic
polynomial-time machine $D’$ that, given $g^{v||0^{n-\mathrm{c}}}$ and
$msb\log t(v)$ , outputs the least significant bit of $v$ with
probability at least $1/2+\epsilon-(4/t)$ .

Let

$a=g^{v||0^{n-\mathrm{c}}}$ and $b=msblog_{t}(v)$

be the inputs to $D’$ . That is, $v=b||v’$ for some $v’$ .
We will find the lsb of $v’$ by using $D$ because $lsb_{1}(v)=$

$lsb_{1}(v^{/})$ .
(1) First, $D’$ zeros the most significant logt bits of $v$

by computing

$a_{1}=(a\cdot g^{-b\cdot 2^{n-1\mathrm{o}g\iota}})$ $(=g^{0^{1\mathrm{o}g\mathrm{t}}||v’||0^{n-\mathrm{c}}})$ .

(2) Next $D’$ computes

$a_{2}=(a_{1})^{\mathrm{e}^{i-\mathrm{c}_{1}}}$

where $e=1/2$ $(\mathrm{m}\mathrm{o}\mathrm{d} q)$ . (The exponent of $a_{1}$ is shifted
ed to the right $i-c$ bits.) Let $s$ be the integer such
that a2 $=g^{s}$ . It is clear that

$s=0^{:-c+\log t}||v’||0^{n-\mathrm{a}}$ .

(3) $D’$ chooses $r\in R_{n-:}$ randomly and computes

$a’=a_{2}$ . $g^{f}$ $(=g^{s+r})$ .

Note that $r=2^{n-i}\mathrm{r}’$ for some $r’$ since $r\in R_{n}$ -:.
(4) $D’$ invokes $D$ with input $(g,a’)$ .
(5) Suppose that $D$ outputs abit $\alpha$ . Then $D’$ outputs
$\beta=\alpha\oplus lsb_{1}(r’)$ .

$| \mathrm{P}\mathrm{r}[D(A_{\mathrm{O}})=1]-\mathrm{P}\mathrm{r}[D(A_{n-c}^{\mathfrak{l}})=1]|>\frac{1}{p(n)}$

for some polynomial $p(\cdot)$ . (A and $A_{n-c}$ in the above
equation denote the uniform distribution over the set
$A_{0}$ and $A_{n-c}$ , respectively.) Then, for some $j$ ,

$| \mathrm{P}\mathrm{r}[D(Aj)=1]-\mathrm{P}\mathrm{r}[D(A_{j+1})=1]|>\frac{1}{np(n)}$ .

Let $p_{i}=\mathrm{P}\mathrm{r}[D(A_{\dot{1}})=1]$ . We estimate each $p$:by the
sampling method and denote by $pi$ the corresponding
estimated value based on $m$ experiments. Using the
Chernoff bounds, we have

$\mathrm{P}\mathrm{r}[\hat{p}.\cdot>p_{\dot{1}} +1/8\mathrm{n}\mathrm{p}(\mathrm{n})]\leq e^{-2m/64(np(n))^{2}}$ and
$\mathrm{P}\mathrm{r}\mathrm{p}$$\wedge \mathrm{i}<p:-1/8np(n)]\leq e^{-2m/64(n\mathrm{p}(n))^{2}}$ .

Similarly, we can estimate all $p$:with accuracy $\pm 1/8np(n)$

with high probability. Thus, we have

$|\hat{p}j+1-\hat{P}j|>1/np(n)-2/8np(n)=3/4np(n)$

for some $j$ . Using the estimated values, it is not hard
to find $i$ such that $|p:+1-p,\cdot|>1/2np(n)$ with high
probability.

By simple transformation, we can say that there is
aprobabilistic polynomial-time machine $F$ , which can
invoke $D$ , to find an index $i$ such that

$\mathrm{P}\mathrm{r}[D(g,g^{u||b||0^{n--1}}‘)=b$;

$u||b||0^{n-\dot{|}-1}\in_{R}R_{n-:-1}$ , $g \in_{R}G]>\frac{1}{2}+\frac{1}{2np(n)}$

with high probability. For simplicity, let us fix $i$ satis-
fying the above. It is not hard to see that the distin-
guisher $D$ can work as aprediction algorithm for the
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$(n-i)$-th bit of discrete exponent. Thus, we rename
the distinguisher (or, the prediction algorithm) $P_{n-i}$

in order to avoid confusion. Let $(g,g^{z})$ be an input to
$P_{n-i}$ . We note that $P_{n-i}$ works only when the least
significant $n-\iota$ $-1$ bits of $z$ are all 0. By Lemma 3.
1we can construct the $(n-i)$-th bit predictor $P_{n-i}’$

that works for fixed $g$ with the same probability.
Using $P_{n-i}’$ , we construct aprobabilistic polynomial-

time machine $A$ , given $(g,g^{u||0^{n-\mathrm{c}}})$ , computes $u$ with
high probability. To this end, since $i<n-c$ from the
assumption, we have only to construct the least sig-
nificant bit predictor $B$ by using Lemma 3. 2. (Note
that “the least significant bit” means not the least sig-
nificant bit of $u||0^{n-c}$ but the least significant bit of
$u.)$ Then, $B$ has to work when inputs to $B$ are of the
form

$(g, g^{0^{;-\mathrm{c}+1}|\{\mathrm{u}||0^{n-:-}}‘)$ .
Let $w$ be the exponent such that

$(g, g^{w})=(g,g^{0||\mathrm{u}||0^{\mathfrak{n}-\sim-1}}.)-\mathrm{C}+1$.

probability at least $1-1/n$ . Considering that we need
to find the distinguishing index $i$ by using $F$ before
invoking $A$ , we can say that the discrete logarithm
problem with short exponents can be solved with prob-
ability at least $1-2/n$.

Q.E.D.

4Equivalence: DDH $+\mathrm{D}\mathrm{L}\mathrm{S}\mathrm{E}$ $=\mathrm{D}\mathrm{D}\mathrm{H}-$

SE
Let

$B_{0}$ $=$ $\{(g, g^{x},g^{y},g^{xy})|x\in Z_{q}, y\in Z_{q}\}$ ,
$C_{0}$ $=$ $\{(g, g^{x}, g^{y}, g^{z})|x\in Z_{q}, y\in Z_{q}, z\in Z_{q}\}$ .

The DDH assumption says that $B_{0}$ and $C_{0}$ are indis-
tinguishable.

Assumption 4. 1($DDH$ assumption) There exists no
polynomial time distinguisher which can distinguish
$B_{0}$ and $C_{0}$ with non-negligible probability.

Set $t=4n^{5}(p(n))^{2}$ and guess the most significant $\log t$

bits of to. For each guessing value $a$ of logt bits, let

$g^{w’}=g^{w}\cdot g^{-a2^{n-\log L}}$

For $(g,g^{w’})$ , we can use Lemma 3. 2because the most
significant $\log t$ bits of $w’$ are all 0and $P_{n-i}’$ is the
(ri –i)-th bit predictor that satisfies the condition
of Lemma 3. 2. We construct an algorithm $E$ , given
en $(g, g^{w’})$ , outputs the $(n-i)$-th bit of $w’$ with high
probability. In randomization process, the error (i.e.,
carrying-0ver by addition) occurs with probability at
most $4/t$ . If we take $m’$ sampling points randomly
then the probability that every point does not meet
carrying-0ver is at least $(1-4/t)^{m’}$ . Using these $m’$

sampling points, we perform the majority voting (af-
ter neutralizing the effect of randomization). By set-
ting $m’=n^{3}(p(n))^{2}$ , we can neglect the failure prob-
ability of the majority voting. (Recall that the bias
is $1/2np(n)$ and use the Chernoff bounds.) It is not
hard to see that the success probability of $E$ is at least
$(1-4/t)^{m’}\leq 1-1/n^{2}$ .

Let us complete the construction of $B$ . We are stil-
1assuming that the guessing value $a$ is correct. Af-
ter zeroing the $(n-i)$-th bit of $w’$ , invoke $E$ with
$(g, (g^{w^{ll}})$ ’), where $w’$ is the resulting string after zero
ing the $(n-i)$-th bit of $w’$ and $e=1/2$ $(\mathrm{m}\mathrm{o}\mathrm{d} q)$ .
Repeating this process $c$ times, we can recover al-
1bits of $w’$ with probability at least 1 $-1/n$. Let
$\hat{w}$ be the resulting candidate for $w’$ . Check whether
$g^{\hat{w}+a2^{\prime\iota-1\circ*t}}=g^{w}$ or not and output tp if the equa-
tion holds. Since one of the guessing values is correct
and the number of the guessing values is bounded by
$t=4n^{5}(p(n))^{2}$ , $B$ can compute $w$ with probability at
least $1-1/n$ .

Thus, we can construct aprobabilistic polynomial-
time machine $A$, given $(g, g^{u||0^{n-\mathrm{c}}})$ , computes $u$ with

Next define

$B_{n-c}$ $=$ $\{(g, g^{x}, g^{y}, g^{xy})|x\in R_{n-c}, y\in Z_{q}\}$ ,

$c_{n-c}$ $=$ $\{(g, g^{x},g^{y}, g^{z})|x\in R_{n-c}, y\in Z_{q}, z\in Z_{q}\}$.

Note that $x$ is essentially only $c$ bits long. Then the
DDH with short exponent assumption (DDH-SE as
sumption) claims that $B_{n-c}$ and $C_{n-c}$ are still indis-
tinguishable. ( $c=a/(\log n)$ , where $n=|q|.$ )

Assumption 4. 2($DD$ $H$ assumption) There ex-
ists no polynomial time distinguisher which can distin-
guish $B_{n-\mathrm{c}}$ and $C_{n-\mathrm{c}}$ with non-negligible probability.

In this section, we prove that the DDH-SE assump
tion is equivalent to the DDH assumption and the
DLSE assumption. We first show that the DDH as-
sumption and the DLSE assumption implies the DDH-
SE assumption.

Theorem 4. 1Suppose that the $DDH$ assumption and
the DLSE assumption are true. Then the DDH-SE as-
sumption is true.

(Proof) From Theorem 3. 1, $A_{0}$ and $A_{n-\mathrm{c}}$ are indis-
tinguishable under the DLSE assumption, where

$A_{0}$ $=$ $\{(g,g^{x})|x\in R_{0}\}$ ,
$A_{n-c}$ $=$ $\{(g,g^{x})|x\in R_{n-c}\}$ .

First it is clear that $C_{0}$ and $C_{n-\mathrm{c}}$ are distinguish
able because $y$ and $z$ are random independently of $x$ .

Next we prove that $B_{0}$ and $Bn-C$ are distinguish
able. Suppose that there exists adistinguisher $D$ which
distinguishes $Bn_{-}c$ from $B\circ\cdot$ Then we show that there
exists adistinguisher $D’$ which distinguishes $A_{n-\mathrm{c}}$ from
$A_{0}$ .
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On input $(g, g^{x})$ , $D’$ chooses $y\in Z_{q}$ at random and
computes $g^{y}$ and $(\mathrm{g}\mathrm{x})\mathrm{y}$ . $D’$ then gives $(g, g^{x}, g^{y}, (\mathrm{g}\mathrm{x})\mathrm{y})$

to $D$ . Note that

$(g, g^{x}, g^{y}, (g^{x})^{y})\in_{R}\{$

$B_{0}$ if $(g, g^{x})$ En $A_{0}$ ,
$B_{n-c}$ if $(g, g^{x})\in_{R}A_{n-c}$ .

$D’$ finally outputs the output bit of $D$ . Then it is clear
that $D’$ can distinguish $A_{n-c}$ from $A\circ\cdot$

However, this is against Theorem 3. 1. Hence $B\circ$

and $B_{n-c}$ are indistinguishable. Consequently we ob-
tain that

$B_{n-\mathrm{c}}\approx B_{0}\overline{\sim}C_{0}\approx C_{n-c}$ ,

where $\approx \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{s}$ indistinguishable. ($B_{0}\approx C_{0}$ comes
from the DDH assumption.) Therefore, $B_{n-c}$ and
$C_{n-c}$ are indistinguishable.

Q.E.D.
We next show that the DDH-SE assumption implies

the DDH assumption and the DLSE assumption.

Theorem 4. 2Suppose that the DDH-SE assumption
is true. Then the $DDH$ assumption and the DLSE as-
surnption are true.

(Proof) First suppose that there exists aprobabilistic
polynomial time Turing machine $M$ which can solve
the DLSE problem with some non-negligible probabil-
ity $\epsilon$ . Then we show that there exists adistinguisher
$D$ for $B_{n-c}$ and $C_{n-c}$ .

On input $(g, g^{x}, g^{y}, \alpha)$ , $D$ gives $g^{x}$ to $M$ . If At does
not output $x$ correctly, then $D$ outputs arandom bit $b$ .
Suppose that $M$ outputs $x$ correctly. Then $D$ outputs
$b$ such that

5Applications
In this section, we present variants of ElGamal en-

cryption scheme and Cramer-Soup scheme. Each en-
cryption algorithm uses ashort random exponent $r$

such that $r$ is essentially $c$ bits long, where $c=\omega(\log|q|)$

and $q$ is the order of the underlying group.
Note that computing $g^{r}$ requires at most $2c$ modulo

multiplications in our variants while it requires at most
$2n$ modulo multiplications in the original algorithms.
Hence our variants are much faster than the original
encryption algorithms.

It is clear that these variants are provably secure
under the DDH-SE assumption. However, more than
that, we can immediately see that they are provably
secure under the two widely accepted assumptions,
the DDH assumption and the DLSE assumption, from
Corollary 4. 1.

5.1 Application to ElGamal Encryption Scheme
It is $\mathrm{w}\mathrm{e}\mathrm{U}$-known that ElGamal encryption scheme

is IND-CPA under the DDH assumption. Now our
variant of ElGamal encryption scheme is described as
follows.

(Key generation) Choose agenerator $g$ at random. and
let $\hat{g}=g^{n-c}$ . Choose $x\in Z_{q}$ randomly and let $\hat{y}=\hat{g}^{x}$ .
The public key is $(\hat{g},\hat{y})$ and the secret key is $x$ .

(Encryption) Given amessage $m\in G$ , first choose $r$

such that
$2^{n-c}\leq 2^{n-c}r<q$

$b=\{$
1if $\alpha=(g^{y})^{x}$

0if $\alpha\neq(g^{y})^{x}$ .

Then it is easy to see that $D$ distinguishes between
$B_{n-\mathrm{c}}$ and $C_{n-c}$ .

Next suppose that there exists adistinguisher $D_{0}$

which breaks the DDH assumption. Then we show
that there exists adistinguisher $D_{1}$ which breaks the
DDH-SE assumption.

Let $(g,gx,gvi9a)$ be the input to $D_{1}$ , where $a=$
$xy\mathrm{m}\mathrm{o}\mathrm{d} q$ or random. $D_{1}$ chooses $r\neq 0$ at random
and gives $(g, (g^{x})^{r},g^{y}$ , $(\mathrm{g}\mathrm{a})\mathrm{r})$ to Do. It is easy to see
that

$(g, (g^{x})’,g^{y}$ , $(g^{a})^{r})\in_{R}\{$

$B_{0}$ if $(g, g^{x},g^{y},g^{a})\in_{R}B_{n-c}$ ,
$C_{0}$ if $(g, g^{x},g^{y},g^{a})\in_{R}C_{n-c}$ .

Finally $D_{1}$ outputs the output bit of $D$ . Then it is
clear that $D_{1}$ distinguishes between $B_{n-c}$ and $C_{n-\mathrm{c}}$ .

Q.E.D.
From Theorem 4. 1and Theorem 4. 2we obtain

the following corollary.

Corollary 4. 1The DDH-SE assumption is equiva-
lent to both the $DDH$ assumption and the DLSE as-
somethan

randomly. Next compute $c_{1}=\hat{g}^{f}$ , $c2=myr$ . The
ciphertext is $(c_{1}, c_{2})$ .

(Decryption) Given aciphertext $(c_{1}, c_{2})$ , compute

$c_{2}/c_{1}^{x}=m$ .

Theorem 5. 1The above scheme is still IND-CPA
under the $DDH$ assumption and the DLSE assumpti on.

(Proof) From Corollary 4. 1we can assume the DDH-
SE assumption. Then $\hat{y}^{r}$ could be replaced by aran-
dom group element without changing significantly the
behavior of the attacker. However, if we perform this
substitution, the message $m$ is perfectly hidden, which
implies the security.

Q.E.D.
We can also prove the converse of Theorem 5. 1eas-

ily.

5.2 Applcation to Cramer-Shoup Encryption
Scheme

Similarly, we show our variant of Cramer-Shoup scheme.
Cramer-Shoup scheme is IND-CCA under the DDH
assumption [2].
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(Key generation) Choose two generator $g_{1}$ and $g_{2}$ at
random. Also Choose $x_{1}x_{2}$ , $y_{1}$ , $y_{2}$ , $z\in Z_{q}$ randomly.
Let $\hat{g}_{1}=g_{1}^{n-c}$ and $\hat{g}_{2}=g_{2}^{n-\mathrm{c}}$ . Also let $\hat{c}=\hat{g}_{1}^{x_{1}}\hat{g}_{2}^{x_{2}},$

$d\wedge=$

$\hat{g}_{1}^{y_{1}}\hat{g}_{9}^{y_{2}}arrow’\hat{h}=\hat{g}_{1}^{z}$ .
Let $H$ be arandomly chosen universal one-way hash

function.
The public key is $(\hat{g}_{1},\hat{g}_{2},\hat{c},\hat{d},\hat{h}, H)$ and the secret

key is $(x_{1}x_{2}, y_{1}, y_{2}, z)$ .

(Encryption) Given amessage $m\in G$ , first choose $r$

such that
$2^{n-c}\leq 2^{n-c}r<q$

randomly. Next compute

$u_{1}=\hat{g}_{1}^{f}$ , $u_{2}=\hat{g}_{2}^{r}$ , $e=\hat{h}^{r}m$ , at $=H(u_{1}, u_{2}, e)$ , $v=(\hat{c}\hat{d}^{\alpha})^{r}$ .

The ciphertext is $(u_{1}, u_{2}, e, v)$ .

(Decryption) Given aciphertext $(u_{1}, u_{2}, e, v)$ , first com-
pute $\alpha=H(u_{1}, u_{2}, e)$ and test if

$u_{1}$ $u_{2}$

$x_{1}+y_{1}\alpha$ $x_{2}+v2\alpha=v$ .

If this condition does not hold, the decryption algorith-
$\mathrm{m}$ outputs ‘keject”. Otherwise, it outputs $m=e/u_{1}^{z}$ .

Theorem 5. 2The above scheme is still IND-CCA
under the $DDH$ assumption and the DLSE assumption.

(Proof) Almost the same as the proof of [2], Use Corol-
lary 4. 1.

Q.E.D.
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Appendix

AProof of Inequality (1) in Lemma 3.1

First, recall $n$ is the bit length of $q$ and let
$b_{n}||b_{n-1}||\cdots||b_{1}$ be the binary representation of $\mathrm{g}$ , where
each $b_{i}$ is in {0, 1}. Then, the most significant bit of $q$

(i.e., $b_{n}$ ) is always equal to 1. Thus, $q$ can be written as
$q=2^{n-1}+q’$ where $0\leq q’<2^{n-1}$ . Now $s$ is assumed
to be less than $2^{n-\log t}$ . Thus, $r$ such that $s+r\geq q$

satisfies that $r>2^{n-1}-2^{n-\log t}$ . Since $r$ is assumed to
be chosen uniformly ffom $R_{n-i}$ , the probability that
$s+r\geq q$ is

$\mathrm{P}\mathrm{r}[s+r\geq q]$

$<$ $\mathrm{P}\mathrm{r}[r\geq 2^{n-1}-2^{n-\log t}]$

$=$ $\mathrm{P}\mathrm{r}[r\geq 2^{n-1}-2^{n-\log t}|msb_{1}(r)=1]$

. $\mathrm{P}\mathrm{r}[msb_{1}(r)=1]$

$+\mathrm{P}\mathrm{r}[r\geq 2^{n-1}-2^{n-\log t}|msb_{1}(r)=0]$

. $\mathrm{P}\mathrm{r}[m\epsilon b_{1}(r)=0]$

$<$ $\mathrm{P}\mathrm{r}[r\geq 2^{n-1}-2^{n-\log t}|msb_{1}(r)=1]$

$+\mathrm{P}\mathrm{r}[r\geq 2^{\mathfrak{n}-1}-2^{\mathfrak{n}-\log t}|msb_{1}(r)=0]$

$<$ 2 $\cdot \mathrm{P}\mathrm{r}[r\geq 2^{n-1}-2^{n-\log t}|msb_{1}(r)=0]$

$=$ 2 $\cdot$

$2^{1-\log t}$

$=$ $4/t$ .

Thus, the probability that $s$ $+r<q$ is $(1 -4/t)$ at
least.

Q.E.D.
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