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Abstract:

Tables with heterogeneous cells are commonly used in computer human interface
and documentation. We proposed an attribute multi edge graph representation for
tables that considers editing and drawing in [7]. In this paper, we give algorithms
for basic operations in table editing.

We provide a cell unification algorithm that runs in O(1) time. We also provide a
column insertion algorithm that runs in O(n + m), for n x m heterogenious tables.
It is noted that the column insertion algorithm runs in O(v/N) time for N=n x n
cell square tables. while known methods require O(N) time

*
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1 Introduction

In this paper, we deal with the representation of tables while considering editing and drawing.
Several representation methods have been proposed for tables: rectangular duals of planar graphs
[1], and quadtrees [3]. Although, we do not know which representation method is used in present
table processing systems. _

In this paper, we considers another graph representation [7] for tables, in which the table
editing is executed efficiently. For drawing and editing problems, see [4, 5].

*This paper partly appeared in our previous study Tomoe Motohashi, Kensei Tsuchida and T. Yaku, Algorithm
on attribute graphs for table editing, The 3rd Hungarian-Japanese Sumpos. Discrete Math. & Its Appl. and [6].
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Figure 1: A: A Tabular Diagram D, B: A Tabular Diagram Dj,

In Section 2, we propose a representation of tables by an attribute multi edge graph. Several
properties of the graphs are shown. In Section 3, we show several algorithms that execute table
editing based on the representation. We provide algorithms for unifying cells, changing column
width, and insertion column. Section 4 provides conclusions.

2 ATTRIBUTE GRAPHS FOR TABLES

We described several definitions concerning tables in [7]. We represent a table by a certain type
of tabular diagram satisfying Condition 2.1 in [7]. That is, the tabular diagrams have perimeter
cells.

Example 2.1 Figure 1A illustrates a tabular diagram D; = (T1,P1,61), where P, =
{{(1,1), (2,1}, {(1,2)},{(1,3)},{(2,2), (2,3)}} is a partition over a (2,3)—table T3. A grid
g1 is defined by glrow(o) = Oaglrow(l) =1, glraw(2) = 2, and glcolumn(o) = nglcolu'm'n(l) =2,
Gicolumn(2) = 4, and g1column(3) = 6. For a cell ¢ = {(2,2),(2,3)}, we define the north wall
nw(c) = grrow(l) = 1, south wall sw(c) = g1r0u(2) = 2, east wall ew(c) = J1column(3) = 6, and
west wall ww(c) = g1cotumn (1) = 2. Figure 1B illustrates a tabular diagram D, with perimeter
cells. For the table drawing, it corresponds to Dj.

Now, we introduce an attribute graph. Then, we show how to represent a tabular diagram
as an attribute graph.

Definition 2.1 An attribute graph is a 6—tuple G = (V,E, L, ), A, a), where
(V, E) is a multi-edge undirected graph, L is the set of labels for edges, A : E — L is the label
function, A is the set of attributes, and o : V — A is the attribute map.

A tabular diagram D = (T, P, g) is represented as an attribute graph
Gp = (Vp,Ep,L,\p, A,ap), where Vp is identified by a partition P (we denote a node cor-
responding to a cell ¢ in P by v, we call v, a perimeter node (resp. inner node) if c is
a perimeter cell (resp. inner cell)), Ep is defined by Rules 1-4, L = {enw,esw, eew, eww},
Ap : Ep — L is defined by Rules 1-4, A = R%, and ap : Vp — R*? are defined by ap(v.) =
(nw(c), sw(c), ew(c), ww(c)).

Rule 1 If nw(c) = nw(d) and there is no cell between ¢ and d having an equal north wall,
then [v.,v4] is in Ep and Ap[v.,v4] = enw. In this case, [v.,vq) is called a north wall edge.
Similarly, Rules 2, 3 and 4 define the south wall, east wall, and west wall edges, respectively.

An attribute graph Gp is called a tessellation graph. Note that the degree #v of each node
vin Gp is at most 8. The location vlues of the inner cells are evaluated from the location values
of perimeter cells and linked edges. So, we assume in the latter part of this paper, that the ap
values of the inner cells are null.

Note that we consider tabular diagrams with perimeter cells. Then,



|

Figure 3: Change of Vertical Edges of vy

Proposition 2.1 Let Gp be a tessellation graph for a tabular diagram D of an (n, m)—table.
Let k be the number of inner cells in Gp. For the number #Ep of edges in Gp, we have
2#Ep = 6(2n — 4) + 6(2m — 4) + 8k + 16.

3 ALGORITHMS

This section provides algorithms for tessellation graphs. The following algorithm execute unifi-
cation of two adjacent inner cells in the tabular diagram.

ALGORITHM UnNIrYCELLS(Gp, v, vd, GE)
INPUT
Gp = (Vp,Ep,L,Ap,A,ap) : a tessellation graph for a tabular diagram D, v, : a node in Gp
corresponding to an inner cell ¢, vg : a node in Gp corresponding to an inner cell d which is
adjacent to the south wall of ¢ that is ww(c) = ww(d), ew(c) = ew(d), sw(c) = nw(d).
OUTPUT
Gg = (Vg,Eg,L, g, A,0E) : a tessellation graph for a tabular diagram E, where E is obtaind
from D by the unification of cells ¢ and d to c.
METHOD
begin

Initially let Gg < Gp ;

/* change of vertical edges concerning to d */

delete two vertical edges between v and a(# v.) from Eg ;

add edges between v, and a to Efg ;

put Ag[ve,a] < Ap[va,a] ;

delete two vertical edges between v, and v from Ef ; (See Fig.3)

/* change of south wall edges concerning to ¢ */

choose two nodes f and f/(f # f') such that Ap[f,ve] = Ap[ve, f'] = esw ;

delete south wall edges [f, v.] and [v, f'] ;

add an edge [f, f'] to Eg and put Ag[f, f'] < esw ;

/* change of south wall edge concerning to d */
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choose two nodes h and h'(h # h') such that Ap[h,va] = Ap[ve, h'] = esw ;
delete south wall edges [h,vq] and [va, '] ;
add [h, v] and [v,, h'] to Eg and put Ag[h,v.] < esw, Alv, h'] + esw ;
/* change of north wall edges concerning to d */
choose two nodes g and ¢'(g # ¢') such that Ap[g,v4] = Ap[ve, ¢'] = enw ;
delete north wall edges [g,v4] and [vq, ¢'] from Eg ;
add an edge [g,¢'] to Eg and put Aglg, ¢'] + enw ;
delete a node d
end.

Theorem 3.1 Let D be a tabular diagram, and ¢ be a cell in D. Suppose that there 18 an
adjacent cell d at south side in D such that ew(c) = ew(d), ww(c) = ww(d) and sw(c) = nw(d).
Let E be a tabular diagram obtained from D by the unification of cells ¢ and d to c. Let Gp
and G be the tessellation graphs for D and E, respectively. Then GE is obtained from Gp in
constant time.

Theorem 3.2 Let D be a tabular diagram, and c be an inner cell in D. Let § be a movement
value. Suppose A + & > 0, where A > 0 is the width of a perimeter cell in the column which
has equal east wall to c. Let E be a tabular diagram obtained from D by the changing width
using § of cells that have the equal east wall for c. Let Gp and GEg be the tessellation graphs
for D and E, respectively. Then Gg is obtained from Gp in O(n + m) time by the algorithm
CHANGECOLUMNWIDTH [6], where n is the number of rows in D.

The following algorithm executes insertion of a column at the west side of a focused cell into
the tabular diagram.

ALGORITHM INSERTCOLUMN(Gp, Ve, GE)
INPUT
Gp : a tessellation graph for a tabular diagram D = (T, P, g), vc : a node in Gp corresponding
to a cell ¢, where the cell, that is adjacently located at the west-side of ¢, exists.
OouUTPUT
GE : a tessellation graph for E, where FE is a tabular diagram obtained from D by insertion
of a column with width & at the west side of ¢, where § is the width of a perimeter cell in the
column including c.
METHOD
begin
Initially, put Gg « Gp ;
traverse upward through the west wall edges from v, until a perimeter node ug (see Fig.5) ;
let 6 be the width of the cell corresponding to vg ;
add a node ug ;
put t « 0 ;
/* insert a column */
while a node v; is not the lowermost node do begin
let w; be an adjacently west-side node linked to v; by a north wall edge ;
delete the north wall edge between w; and v; ;
add a north wall edge between w; and u; ;
deform G similarly for a south wall edge ;



Figure 4: Insertion of the Column at the West-Side of ¢

add a north wall edge and south wall edge between u; and v; ;
let v;4; be a lower node linked to v; by a west wall edge ;
add a node u;41 ;
add a west wall edge and east wall edge between u; and u;41 ;
i—i+1
end ; (see Fig.6)
deform Gg for the lowermost node v;, similarly for the noth and south wall edge;
/* the existing column shifts to the east */
let up be the uppermost node in u;’s ;
let v, be adjacently west-side node linked to the node in the northeast corner in Gg ;
put Gg, « GE ;
CHANGECOLUMNWIDTH(G By, V2,0, GE) ;
put Gg, «+ GE ;
let 2o be a node adjacently west-side of v ;
put i < 0;
while ww(up) < ww(z;) do begin
MoVEEASTWALL(GE;, %i,6,GE,,,) ;
let z;41 be an adjacently west-side node linked to z; by a north wall edge ;
puti—i+1;
end ;
put Gg + GE;
end.

Theorem 3.3 Let D be a tabular diagram, and c be a cell in D. Suppose that E is the
tabular diagram obtained from D by insertion of a column with width & at the west side of the
column including ¢, where § is the width of a perimeter cell of the column including c¢. Let Gp
and G be the tessellation graphs for D and E, respectively. Then Gg is obtained from Gp in
O(n + m) time, where n and m are the number of rows and columns in D, respectively.

It is noted that the column insertion algorithm runs in O(V N) time for N = n X n cell
square diagrams. while known methods require O(N) time. The following table illustrates the
features of representation methods for N cell square tables with respect to the column insertion.



Model Node degrees | Cell to node | Cell visits Complexity
relation

Quadtrees [1] at most 5 one ‘block’ to | at most N O(N)
one node

Rec-tangular at most 4N | one cell to | at most N O(N)

dual graphs [2] one node

Tessellation at most 8 one cell to | at most 2N | O(VN)

graphs one node

4 CONCLUSION

We introduced attribute graphs and algorithms for table drawing and editing. We note that,
we have determined the necessary and sufficient condition where an attribute graph represents
a tabular diagram by a graph grammar. [9]. We are designing a processing system for table
editing based on our model in [8].

The authors thank to Prof. Tominaga of Tokyo University of Technology for valuable discussion
with him.
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