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Abstract

We propose arandomized instance generation algorithm for MAX $2\mathrm{S}\mathrm{A}\mathrm{T}$. This algorithm gen-
erates atest instance at random such that the number of unsatisfied clauses at the optimal solution
is exactly 1 with probability 1. We prove that the number of clauses of obtained instances is larger
than the number of variables with high probability. We note that this threshold coincides with the
threshold for unsatisfiability of random $2\mathrm{C}\mathrm{N}\mathrm{F}[3,4]$ .

1 Introduction

MAX $2\mathrm{S}\mathrm{A}\mathrm{T}$ is one of famous combinatorial optimization problems. It stated as follows: given a $2\mathrm{C}\mathrm{N}\mathrm{F}$

formula, find atruth assignment that maximizes the number of satisfied clauses. Since MAX $2\mathrm{S}\mathrm{A}\mathrm{T}$ is
$\mathrm{N}\mathrm{P}$-complete, many polynomial time approximation algorithms have been proposed (for example, see
[1, 5, 6] $)$ . To evaluate performance of these approximation algorithms, there are two methods. One is
theoretical analysis and the other is empirical study. In theoretical analysis, the worst ratio of an approx-
imation value obtained by the approximation algorithms to the optimal value, aperformance guarantee,
is often used to characterize their performance. Usually, this performance guarantee only considers the
worst case. On the other hand, the empirical study can evaluate from several point of view, for example,
the average ratio of an approximation value to the optimal value. However, test instances are necessary
for evaluating approximation algorithms experimentally. When one esitimates the performance guar-
antee experimentally, test instances should have their optimal solution. Otherwise it is impossible to
estimate how good approximation solutions are obtained. Of course, there exist anumber of benchmark
problems with their optimal solution. Nevertheless, we do not have enough number of test instances and
we want to evaluate for various test instances. Thus we consider aproblem generating test instance with
its optimal solution at random.

In this paper, we propose arandomized instance generation algorithm generating atest instance
where the number of unsatisfied clauses at the optimal solution is exactly 1. The outline of algorithm is
as follows: First, choose one truth assignment $t$ as the optimal solution. Then add one randomly chosen
clause unsatisfied by $t$ . Finally add clauses satisfied by $t$ at random until the instance is satisfiable. Since
$2\mathrm{S}\mathrm{A}\mathrm{T}$ is linear time solvable, it is feasible to recognize wrong instances, e.g., satisfiable formulas. Thus
instances generated by our algorithm have their optimal solution.

For MAX $3\mathrm{S}\mathrm{A}\mathrm{T}$, we proposed asimilar randomized test instance generation algorithm [8]. This
algorithm generates a $3\mathrm{C}\mathrm{N}\mathrm{F}$ formula and a mth assignment that is the optimal solution with high prob-
ability. The difference between our instance generators for MAX $2\mathrm{S}\mathrm{A}\mathrm{T}$ and MAX $3\mathrm{S}\mathrm{A}\mathrm{T}$ is that instance
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input: the number of variables $n$

begin
let $F=\emptyset$ ;
choose 4distinct variables $x_{r1}$ , $x_{r2}$ , $x_{r3}$ , and $x_{r4}$ at random;
add $\{Xr1, X,2\}$ and { $\overline{x_{r3}},\overline{x_{r4}\}}$ to $F$ ;
while $F$ is satisfiable do

choose apair of two distinct variables $(x,1, x,\mathit{2})$ at random
add $\{x_{r1},\overline{x_{r2}}\}$ to $F$ ;

end;
choose affufh assignment $\hat{t}\in[0.$ $1\}^{n}$ at random;
negate literals whose underlying variables are assigned 0on $\hat{t}j$

output $F$ and $\hat{t},\cdot$

end.

Figure 1: Algorithm.

generator for MAX $3\mathrm{S}\mathrm{A}\mathrm{T}$ sometimes outputs wrong optimal solution because of $\mathrm{N}\mathrm{P}$-completeness of
$3\mathrm{S}\mathrm{A}\mathrm{T}$.

For this MAX $2\mathrm{S}\mathrm{A}\mathrm{T}$ instance generation algorithm, we analyze that how many clauses are added
until the algorithm halts. We prove that athreshold of the number of clauses is the number of variables,
that is, the algorithm halts when the number of clauses is larger than the number of variables with high
probability, but does not halt when the number of clauses is equal to the number of variables with high
probability. We note that this result coincides the threshold for unsatisfiability of $2\mathrm{C}\mathrm{N}\mathrm{F}$ formula [3, 41.

Here, we describe some notations. Let $X=\{x_{1}, \ldots x_{n}\}$ be aset of $n$ propositional variables. Aliteral
is apropositional variable $x$ or its negation $\overline{x}$. Aclause is adisjunction of exactly 2literals which is
denoted by complement-free set of exactly 2literals. We use amultiset of $m$ clauses $\{C_{1}, \ldots, C_{m}\}$ to
denote the formula $F$ . Throughout this paper, we use $n$ and $m$ to denote the number of available variables
and the number of clauses respectively.

2Algorithm

Now we introduce our instance generation algorithm formally.
Our basic idea is as follows. Let $F$ and $\hat{t}\mathrm{b}\mathrm{e}$ the output instance and truth assignment of our generator

for given the number of variables $n$ . Without loss of generality, we assume that $1^{n}$ is chosen as $\hat{t}$. There
must exist exactly one clause unsatisfied by $\hat{t}$. This clause shall consist of two negative literals. We show
apseudo code of our algorithm in Figure 1.

To simplify the analisys, we restrict the number of clauses that is unsatisfied by $0^{n}$ to 1. This clause
consists of two positive literals. Hence the remaining clauses consist of one positive literal and one
negative literal.

3Analysis

Our results are proven by similar way to the threshold of random $2\mathrm{C}\mathrm{N}\mathrm{F}[4]$ .
Before we describe our results, we introduce afomula graph [2]. Aformula graph over $n$ variables

is directed graph $G_{F}=(V,E)$ , with $V$ is the set of all literals, $X$ $\cup\{\overline{x}|x\in X\}$, and

$E=\{(v_{i},\overline{v_{j}})|v_{\mathrm{i}},v_{j}\in V$ , $v_{i}\neq v_{j}$ , $v_{t}\neq\overline{vJ}$, and $\{v_{i}$, $v$]$\}\in F\}$ .

165



Figure 2: Initial state of formula graph $G_{F}$

We note that ($v_{i},Tv_{j}\in E\Leftrightarrow(\overline{v_{i}}, v_{j})\in E$ . We say adirected cycle containing $v$ and $\overline{v}$ simultaneously is a
contradictory cycle. There exists acontradictory cycle in $G_{F}$ iff $F$ is unsatisfiable.

Theorem 1. Ifthe number ofclauses of$F$ is equal to $n$ \dagger 2, algorithm does not output $F$ with probability
at least $1/e^{3}$ .

Proof We assume that $x_{1}$ , $x_{2}$ , $X3$ , and $X4$ are chosen as $x_{r1}$ , $x_{r2}$ , $x_{r3}$ , and $x_{r4}$ respectively. Hence, $F$

has 2clauses, i.e., $\{x1, x2\}$ and $\{\overline{X3},\overline{X4}\}$ at the beginning of our algorithm. In this case, $G_{F}$ has 4edges
(Figure 2). Since other clauses added to $F$ have one positive literal and one negative literal, say $x_{i}$ and

$\overline{x_{j}}$ , corresponding edges are $(x_{j},x_{i})$ and $\mathrm{C}x_{i}^{-},\neg x_{j}$ . Therefore, no path that consist of such edges does not
connect negative and positive literals. Now we consider paths from $x_{1}$ . It is easy to see that there exists
no contradictory cycle if there exists no path from $x_{1}$ to $x_{2}$ , $x_{3}$ , nor $X_{4}$ .

Let $P_{l}$ be the number of paths from $x_{1}$ to $X_{2}$ , $x_{3}$ , or $x_{4}$ with length 1 $(1 \leq l\leq n-3)$ when $F$ has all
clauses in the form of ($x_{i},\circ x_{j}$ . Then

$P_{l}=3 (\begin{array}{ll}n-4 l- 1\end{array})(l-1)!=3\frac{(n-4)!}{(n-1-\mathfrak{h}!}$ .

Each edge is added to $F$ with probability $\frac{n}{n(n-1)}=\frac{1}{n-1}$ . ’ after adding $n$ clauses to $F$ . Let $\mathrm{Y}$ be the number
of paths from $x_{1}$ to $x_{2}$ , $X_{3}$ , or $x_{4}$ . Then the expectation of $\mathrm{Y}$ is

$\mathrm{E}[\mathrm{Y}]=\sum_{l=1}^{n-3}(\frac{1}{n-1})^{l}\frac{3(n-4)!}{(n-3-l)!}$

because of linearity of expectation. Then we can bound $\mathrm{E}[\mathrm{Y}]$ as follows.

$\mathrm{E}[\mathrm{Y}]<3\sum_{l=1}^{n-3}(\frac{1}{n-1})^{l}(n-4)^{l-1}$

$= \frac{3}{n-1}\sum_{l=1}^{n-3}(\frac{n-4}{n-1})^{l-1}$

$=1-( \frac{n-4}{n-1})^{n-4}$

$<1- \frac{1}{e^{3}}$ .

Therefore, the probability that there exists no path from $X_{1}$ to $x_{2}$ , $X_{3}$ , nor $x_{4}$ is at least $1/e^{3}$ . $\square$

Theorem 2. For any positive constant $\epsilon$ and sufficiently large $n$ if the number of clauses of $F$ is equal
to $(1+\epsilon)n+2$ , algorithm outputs $F$ with high probability
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Proof, Throughout this proof, let $k$ $\sim 2\log_{1+\epsilon}n=\ln n/\ln(1+\epsilon)$ . We consider the number $\mathrm{Y}$ of paths
from $x_{1}$ to $x3$ with length $k$ . Since each clause is added to $F$ with probability $\frac{1+\epsilon}{n-1}$ , we have

$\mathrm{E}[\mathrm{Y}]=(\frac{1+\epsilon}{n-1})^{k}$ $(\begin{array}{ll}n -2k -\mathrm{l}\end{array})(k-1)$ !

$\geq\frac{n^{2}}{n-1}(1-\frac{k-1}{n-1})^{k-1}$

$\geq\frac{n^{2}}{n-1}(1-\frac{k-1}{n-1})^{\frac{n- 1}{\Gamma-\mathrm{I}}-1}$ (for sufficiently large $n$)

$\geq\frac{n^{2}}{n-1}e^{-1}arrow\infty$ .

Though the expected number of paths goes to infinity this does not ensure that each graph has apath with
high probability. To prove this we have to show that $\mathrm{E}[\mathrm{Y}^{2}]/\mathrm{E}[\mathrm{Y}]^{2}=1+o(1)$ .

Let $\mathrm{Y}_{\pi}$ be arandom variable where $\mathrm{Y}_{\pi}=1$ iff $G_{F}$ has apath $\pi$ from $x_{1}$ to $X_{3}$ with length $k$ . We have
$\mathrm{E}[\mathrm{Y}^{2}]=\sum_{(\pi ff)}\mathrm{Y}_{\pi}\mathrm{Y}_{\pi’}$ . We consider following three conditions:

1. $\pi=d$

2. $\pi$ and $\pi’$ are edge disjoint

3. $\pi\neq$ ?but $\pi$ and $d$ are not edge disjoint

Since each of them is disjoint event, we have $\mathrm{Y}^{2}=\mathrm{Y}_{1}+\mathrm{Y}_{2}+\mathrm{Y}_{3}$ where $\mathrm{Y}_{i}$ is $\sum_{(\pi.t)\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{s}}$ condition $i\mathrm{Y}\pi \mathrm{Y}ff$ .
Hence we compute $\mathrm{E}[\mathrm{Y}_{i}]/\mathrm{E}[Y]^{2}$ for all $i$ . We can show the following lemma easily.

Lemma 1. $\mathrm{E}[\mathrm{Y}_{1}]/\mathrm{E}[\mathrm{Y}]^{2}=\mathrm{o}(1)$ and $\mathrm{E}[\mathrm{Y}_{2}]/\mathrm{E}[\mathrm{Y}]^{2}\leq 1$

In the following, we consider the remaining case.
We say the pair $(\pi,\prime d)$ satisfies condition 3with parameter 1and $s$ iff $\pi$ and ?has 1common edges

that construct $s$ distinct sub-paths on $\pi$. We note that $1\leq l\leq k$ and $1 \leq s\leq\min(l,k+1-l)$ . For each
path $\pi$, the number of paths that share $l$ edges consisting $s$ sub-paths on $\pi$ is at most

$(\begin{array}{ll}l- \mathrm{l}\mathrm{s}-\mathrm{l} \end{array})$
$\{(\begin{array}{l}k+\mathrm{l}-ls\end{array})\}^{2}s!$.

Hence we obtain the expectation of $\mathrm{Y}_{3}$ as follows:

$\mathrm{E}[\mathrm{Y}_{3}]=\sum_{l=1}^{k\mathrm{m}\dot{\mathrm{m}}}\sum_{s=1}^{(l,k+1-l)}$ $(\begin{array}{ll}l- 1s-\mathrm{l} \end{array})$
$\{(\begin{array}{l}k+\mathrm{l}-l\mathrm{s}\end{array})\}^{2}s!(\frac{1+\epsilon}{n-1})^{2k-r}$

By using asimilar technique in [9], we can show that $\mathrm{E}[\mathrm{Y}3]$
$/\mathrm{E}[\mathrm{Y}]^{2}$ is $o(1)$ .

Therefore, there exist apath from $x_{1}$ to $X_{3}$ almost always. Other paths also exist almost always,
too. $\square$
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