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More Reliable Protein NMR Peak Assignment via Improved
2-Interval Scheduling
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Abstract

Protein NMR peak assignment refers to the process of assigning a group of “spin systems” obtained
experimentally to a protein sequence of amino acids. The automation of this process is still an unsolved and
challenging problem in NMR protein structure determination. Recently, protein NMR peak assignment has
been formulated as an interval scheduling problem, where a protein sequence P of amino acids is viewed as
a discrete time interval Z (the amino acids ou P one-to-one correspond to the time units of I}, each subset
S of spin systems that are known to originate from consecutive amino acids from P is viewed as a “job” js,
the preference of assigning S to a subsequence P of consecutive amino acids on P is viewed as the profit
of executing job jg in the subinterval of Z corresponding to P, and the goal is to maximize the total profit
of executing the jobs (on a single machine) during Z. The interval scheduling problem is Max SNP-hard
in general; but in the real practice of protein NMR peak assigument, each job js usually requires at most
10 consecutive time units, and typically the jobs that require one or two consecutive time units are the
most difficult to assign/schedule. In order to solve these most difficult assignments, we present an efficient
L3_approximation algorithm for the special case of the interval scheduling problem where each job takes
one or two consecutive time units. Combining this algorithm with a greedy filtering strategy for handling
long jobs (i.e. jobs that need more than two consecutive time units), we obtain a new efficient heuristic
for protein NMR peak assignment. Our experimental study shows that the new heuristic produces the best
peak assignment in most of the cases, compared with the NMR peak assignment algorithms in the recent
literature. The above algorithm is also the first approximation algorithm for a nontrivial case of the classical
(weighted) interval scheduling problem that breaks the ratio 2 barrier.

1 Introduction

Due to the efforts of structural genomics [8], the NMR (nuclear magnetic resonance) technique has been used
as a high-throughput technology to solve protein structures at a genome scale. Typically, protein structure
determination via NMR involves the following steps:

o NMR spectral data generation, which produces
— resonance peaks corresponding to amino acids in the target protein sequence. Peaks corresponding
to a common amino acid are grouped into a spin system;
— certain geometric relationships (e.g. distances and angles) between the spin systems;
e Peak picking, which identifies “real” resonance peaks (peaks generated from protein atoms rather than
noise) from NMR spectral maps.
e Peak assignment, which assigns resonance peaks, typically peak groups, to individual residues of the target
protein sequence.
o Structural restraint extraction, which extracts inter-residue distances, dihedral angles, etc., based on the
peak assignment.

e Structure calculation, which calculates the protein structure, using molecular simulation and energy min-
imization, under the identified NMR restraints.

Among the five steps, the third one (namely, NMR peak assignment) is very time consuming. The process usually
takes weeks or sometimes even months of manual work in order to produce a nearly complete assignment. The
automation of the assignment process is still an unsolved and challenging problem in NMR protein structure
determination. :

Two key pieces of information form the foundation of NMR, peak assignment:
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e The likelihood (or weight) of the matching between a spin system and an amino acid on the protein
sequence.

o The sequential adjacency (%.e., consecutivity) information of some subsets of spin systems (i.e., each such
subset, of spin systems should correspond to a subsequence of consecutive amino acids on the host protein
sequence). Each maximal such subset is called a segment of spin systems. It is worth noting that each
segment usually consists of at most 10 spin systems.

In a recently developed computational framework [10], the NMR peak assignment problem has been formulated
as a (weighted) interval scheduling problem!® as follows. A protein sequence P of amino acids is viewed as a
discrete time interval Z (the amino acids on P one-to-one correspond to the time units of 7). Each segment S
of spin systems is viewed as a job jg. Each job jg requires |S| consecutive time units of Z (this corresponds to
the requirement that the spin systems in S should be assigned to |S| consecutive amino acids on P). For each
time unit ¢ of Z, the profit w(js,#) of starting job jg at time unit ¢ and finishing at time unit £t +|S| — 1 of T
corresponds to the preference of assigning the spin systems in S to those |S| consecutive amino acids on P that
correspond to the time units £,¢ + 1,...,t + |S| — 1. Given Z, the jobs jg, and the profits w(js,t), our goal is
to maximize the total profit of the executed jobs (i.e. we want to find a maximum-likelihood assignment of the
given spin systems to the amino acids on P).

Unfortunately, the interval scheduling problem is Max SNP-hard [3, 4]. Indeed, for every integer k > 2,
the special case of the interval scheduling problem (called the k-interval scheduling problem or k-ISP for short)
where each job requires at most k consecutive time units is Max SNP-hard. On the other hand, several 2-
approximation algorithms for the interval scheduling problem are known {2, 1, 3, 4]. Although these algorithms
are theoretically sound, applying them to protein NMR peak assignment produces unsatisfactory assignments
as demonstrated in [3]. A major reason why these algorithms do not have good performance in protein NMR
peak assignment is that they ignore the following important observation:

o In the real practice of protein NMR peak assignment, long segments S of spin systems are typically easier
to assign than shorter segments. In fact, many long segments have unique matches. On the other hand,
segments consisting of one or two spin systems are often very difficult to assign.

The above observation suggests the following heuristic framework for protein NMR peak assignment: first try to
assign segments consisting of at least k + 1 spin systems for some small integer k (say, k = 2), and then solve an
instance of k-ISP. In [7], we have presented such a heuristic and have shown that it is very effective for protein
NMR peak assignment. A major drawback of the heuristic in {7] is that it uses an inefficient branch-and-bound
algorithm for k-ISP.

In order to improve the efficiency of the heuristic in {7], we present a new approximation algorithm for 2-ISP
in this paper. This algorithm achieves an approximation ratio of 173 and is the first approximation algorithm
for a nontrivial case of the classical interval scheduling problem that breaks the ratio 2 barrier.2 Our algorithm
is combinatorial and quite nontrivial — it consists of four separate algorithms and outputs the best solution
returned by them. The main tool used in the algorithm design is maximum-weight bipartite matching and
careful manipulation of the input instance. Since the algorithm is combinatorial, it is easy to implement and
runs very fast in practice. Substituting the new algorithm for the branch-and-bound algorithm in the heuristic
in [7], we obtain a new heuristic for protein NMR peak assignment.3 We have performed extensive experiments
on 70 instances of (pseudo) real NMR data derived from 14 proteins to evaluate the performance of our new
heuristic in terms of (i) the weight of the assignment and (ii) the number of correctly assigned resonance peaks.
The experimental results show that not only does the new heuristic run very fast, it also produces the best
peak assignment on most of the instances, compared with the protein NMR peak assignment algorithms in the
recent literature {3, 4, 7, 10].

2 A new approximation algorithm for 2-ISP

Let Z be the given discrete time interval. Without loss of generality, we may assume that Z = [0, I]. Let J1 =
{v1,v2,...,0n,} be the given set of jobs requiring one time unit of Z. Let J2 = {¥n,41,Vn,+3+-- 1 Un142na~1
be the given set of jobs requiring two contiguous time units of Z. Note that ny + nj is the total number of
given jobs. For each 1 < i < I, let u; denote the time unit [i — 1,i] of Z. Let U = {u; | 1 < i < I}. Let
T4 = {Vny42:Vn 44 -1 Unj+2mg ) Let V = J1 U Jp U J;. We construct an edge-weighted bipartite graph G
with color classes U and V as follows: For every v; € J; and every u; € U such that the profit of executing job
v; in time unit u; is positive, (u;,v;) is an edge of G and its weight is the profit. Similarly, for every v; € 7,
and every u; € U such that the prolet of executing job v; in the two time units u;, u;41 is positive, both (u;,v;)
and (ui+1,v;+1) are edges of G and the weight of each of them is half the profit.

A constrained matching of G is a matching M of G such that for every u; € U and every v; € J2, (wi,v;) € M
if and only if (ti41,Vj41) € M. The objective of 2-ISP is equivalent to finding a maximum-weight constrained
matching in G. For each edge (us,v;) of G, let w(us,v;) denote the weight of the edge. For convenience,
let w(ug,v;) = 0 for all (u;,v;) € EJ For a (constrained or unconstrained) matching M of G, let w;(M)
(respectively, wy(M)) denote the total weight of edges (us,v;) € M with v; € Jy (respectively, v; € o U J,);
let w(M) = w(M) + wa(M).

LIn [10] it was called the constrained bipartite matching problem.

2For unweighted ISP where the profit of executing a job at each specific time interval is either 0 or 1 (independent of the job’s
len§th), Chuzhoy et al. [5] gave a 1.582-approximation algorithm. In this paper, our interest is in the weighted problem.

3The program is available to the public upon request to the authors.
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Let M* be a maximum-weight constrained matching in G. In Sections 2.1, 2.3 through 2.5, we will design
four algorithms each outputting a constrained matching in G. The algorithm in Section 2.5 is the main algorithm
and is quite sophisticated. We will try to find a large constant € such that the heaviest one among the four
output matchings is of weight at least (5 + €)w(M*). It will turn out that € = % So, fix € = % for the
discussions in the rest of this section.

2.1 Algorithm 1

This algorithm will output a constrained matching of large weight when wy(M™*) is relatively large compared
with w;(M*). We first explain the idea behind the algorithm. Suppose that we partition the time interval Z
into shorter intervals, called basic intervals, in such a way that each basic interval, except possibly the first and
the last (which may possibly consist of 1 or 2 time units), consists of 3 time units. There are exactly three such
partitions of Z. Denote them by Py, P;, and P, respectively. With respect to each Py, with 0 < h < 2, consider
the problem Qp, of finding a constrained scheduling which maximizes the total profit of the executed jobs, but
subject to the constraint that each basic interval in P, can be assigned to at most one job and each executed
job should be completed within a single basic interval in Pj,. It is not so hard to see that each problem Qp
requires the computation of a maximum-weight (unconstrained) matching in a suitably constructed bipartite
graph, and hence can be solved in polynomial time.

We claim that among the three problems Q, the best one gives a scheduling by which the executed jobs
achieve at least a total profit of w; (M*) + 2w, (M*). This claim is actually easier to see, if we refer to a more

constrained scheduling problem Q}, than Qj by adding the following constraint:

e For each job v; € Jy and for each basic interval b in Py, only the primary time unit of b can be assigned
to vj, where the primary time unit of b, is u, if b consists of three time units u;—;usuiy1, is uy if b consists
of the first two time units uyug of Z, is u; if b consists of the last two time units uy—iuy of Z, is b itself if
b consists of one time unit only.

Consider an optimal (unconstrained) scheduling M*. For each job v; € J;, if M* assigns v; to two time units
Uslii41, then this assignment of v; is also valid in exactly two problems among @y, Q!, and Q5, because there are
exactly two indices h € {0,1,2} such that some basic interval in P, contains both time units u;uiy. Similarly,
for each job v; € Ji, if M* assigns v; to one time unit u,, then this assignment of v, is also valid in at least one
problem among Q)), @}, and Q}, because there is at least one index h € {0.1, 2} sucﬂ that u; is the primary time
unit of some basic interval in Py. Thus, by inheriting from the optimal scheduling M*, the three problems Q}
have more-constrained schedulings M} such that M, is a sub-scheduling of M* and the three schedulings My
altogether achieve at least a total profit of w;(M*) + 2wo(M*). Hence, the best more-constrained scheduling
among M}, Mj, and M3 achieves at least a total profit of Fwi(M*) + 2wy(M*). Indeed, we can prove the
following better bound which is needed in later sections: )

The best more-constrained scheduling among M{, M3, and M3 achieves a total profit of at least
Fwi (M*) + Zwa(M*) + 1(p1 + pr), where py = 0 (respectively, p; = 0) if M* assigns no job in 7
to u; (respectively, uy), while p; (respectively, pr) equals the weight of the edge of M* incident to
u, (respectively, 1;) otherwise.

To see why we have this better bound, first note that there are exactly two indices h € {0,1,2} such that u, is
the primary time unit of a basic interval in P,. Similarly, there are exactly two indices h € {0, 1, 2} such that
us is the primary time unit of a basic interval in Pj,. By these two facts, the better bound follows.

As it should be expected, the constrained scheduling problems Q@ may often lead to better experimental
results than the more-constrained scheduling problems Q). However, as for general theoretical results, we don’t
know if there is a difference between the two types of problems. Moreover, Q) can be solved more efficiently
than Qp. Hence, for simplicity, in the following exposition we will consider only the more-constrained scheduling
problems Q). '

It is noth hard to see that each more-constrained scheduling problem Q} requires the computation of a
maximum-weight (unconstrained) matching in a suitably constructed bipartite graph Gp, and hence can be
solved in polynomial time.

Lemma 2.1 A constrained matching Z, in G can be found in O(I(ny + n2)V/IT +ny + na) time, whose weight
is at least dwi(M*) + 2wa(M*) + 3(p1 + p1), where py = 0 (respectively, pr = 0) if uy (respectively, uy) is not
matched to a vertez of Ji by M*, while py (respectively, pr) equals the weight of the edge of M* incident to uy
(respectively, u;) otherwise.

Corollary 2.2 If wi(M*) < (3 — 3e)w(M*), then w(Zy) > (3 + yw(M*).

2.2 Preparing for the other three algorithms

Before running the other three algorithms, we need to compute a maximum-weight unconstrained matching Mg,
of G. The unconstrained matching M, will be an additional input to the other three algorithms. Therefore,
before proceeding to the details of the algorithms, fix a maximum-weight unconstrained matching M2, of G.

The algorithms in Sections 2.3 through 2.5 will use My, in a sophisticated way. But first, we use My, to
define several subsets of U as follows.
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o Uy = {u; € U | u; is not matched by M}, }.

o U; = {u; € U | u; is matched to a v; € J; by My }.

o Up1 = {u; € U | u; is matched to a v; € Jp by M, }.

o Uyo = }ui € U | u; is matched to a v; € J3 by M }.

o W = {'u,- el | ui-1 € Uz and Uiyl € U2,2}~
.WL={U¢EU]U¢+1GW andWR={1‘i€U!ui—16W}'

In general, whenever u; € W, we have u;_; € W and u;4; € Wg. Moreover, since W C Uy, no two sets
among W, Wy, and Wpg can intersect.

A common idea behind the forthcoming algorithms is to divide the weights w; (M*) and we(M*) into smaller
parts, based on the aforementioned subsets of U. Define the smaller parts as follows.

o AL is the total weight of all edges (ui,v;) € M* such that u; € Wy and v; € J1.

e 3 is the total weight of all edges (ui,ng € M* such that u; € W and v; € J1.

o Bg is the total weight of all edges (uq,v;) € M* such that u; € Wg and v; € Ji.

o 3=w(M*) - BL— B~ PBr.

e ap is the total weight of all edges (u;,v;) € M* such that either v; € J2 and {ug, uit1} W =10,
or v; € .72’ and {u.-_l,u‘-} nw=20.

e o is the total weight of all edges (u,-,ujae M* such that either v; € 72 and {uj, uiy1} &
WL UWUWRg, orv; € le and {ui—1,u:} SWLUWUWpg.

Lemma 2.8 ag + a; = wa(M*) and Bt + 8+ Br + B = w1 (M*).

Now, we are ready to explain how the four algorithms are related. The algorithm in Section 2.3, called
Algorithm 2, will output a constrained matching of weight at least 13+ %ag + B8+ 2(8L + Br). The algorithm
in Section 2.4, called Algorithm 3, will output a constrained matching of weight at least 8 + 8 + a;. Thus, if
B> (k+ %e)w(M *), then Algorithm 2 or 3 will output a constrained matching of weight at least (3 +ew(M*)
(see Corollary 2.6 below). On the other hand, if 8 < (% + %e)w(M *), then Algorithm 1 or 4 will output a
constrained matching of weight at least (1 + €)w(M*) (see Section 2.6).

2.3 Algorithm 2

We first explain the idea behind the algorithm. The removal of the vertices in W leaves |W| + 1 blocks of U
each of which consists of consecutive vertices of U. For each block b, we use the idea of Algorithm 1 to construct
three graphs G0, Gp.1, Gb,2. For each h € {0,1, 2}, we consider the graph UyG},» where b ranges over all blocks,
and obtain a new graph G}, from UyGs p by adding the vertices of W and the edges {u;,v;} of G such that
u; € W and v; € J;. We then compute a maximum-weight (unconstrained) matching in each G/, and further
convert it to a constrained matching M}, of G as in Algorithm 1. The output of Algorithm 2 is the heaviest

matching among M}, M!, M},

Lemma 2.4 A constrained matching Z; in G can be found in O(I(n1 + nz)v/I +ny + nz) time, whose weight
is ot least 38+ 2ao + B+ 2(BL + Br)-

2.4 Algorithm 3

We first explain the idea behind Algorithm 3. Suppose that we partition the time interval 7 into shorter intervals
in such a way that each shorter interval consists of either one time unit or three time units w%;._jusui41 where
1u; € W. There is only one such partition of Z. Further suppose that we want to execute at most one job in each
of the shorter intervals, while maximizing the total profit of the executed jobs. This problem can be solved in
polynomial time by computing a maximum-weight (unconstrained) matching in a suitably constructed bipartite
graph. We can prove that this matching results in a scheduling by which the executed jobs achieve at least a
total profit of 8+ 8 + .

Lemma 2.5 A constrained matching Z3 in G can be found in O(I(n1 + n2)vI + n1+ ny) time, whose weight
is at least B+ B + a;.

Corollary 2.6 If 8 > (} + Se)w(M*), then max{w(Z;),w(Zs)} 2 (5 + ew(M*).

2.5 Algorithm 4

The idea behind Algorithm 4 is to convert M, to a constrained matching of G. To convert My,, we partition
Uy U Uy, (respectively, Uy U Uy 2) into two subsets none of which contains two vertices u; and u;4; such that
u; € Uz (respectively, uiy; € Us2). The set of edges of M}, incident to the vertices of each such subset can be
extended to a constrained matching of G. In this way, we obtain four constrained matchings of G. Algorithm 4
outputs the heaviest one among the four matchings. We can prove that the weight of the output matching is
at least w(M,)/2.

We next proceed to the details of Algorithm 4. Algorithm 4 computes a constrained matching in G as

.
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1. Starting at u;, divide U into segments each of which is in the following form:
Ui pUi—p41 * * U1 WUy 1 * Ui —1 Uiy

where u; € Uy foralli—£< j<i—1,u; € U2 foralli+ 1< j<i+7, ui—pg—1 € Uz, Uigry1 € Usy2,
and u; has no restriction. Note that £ and/or r may be equal to zero. We call u; the center of the segment.
For each segment s, let c(s) denote the integer i such that u; is the center of s; let £(s) denote the number
of vertices in s that precede ucs); let r(s) denote the number of vertices in 8 that succeed u.(s).

2. For each segment s, compute two integers =, and y, as follows:

o If u.(s) € Up, then z, = c(s) — 1 and ys = c¢(s) + 1.
o If uy(,) € Us, then z, = y, = c(s).

o If uc(s) € Uz,1, then z, = ¢(s) and y, = c(s) + 1.

o If uy) € Uz2, then z, = c(s) — 1 and y, = c(s).

3. Let Ug,=U,{ui| (x5 —i) mod 2 =0,c(s) — £(s) < i < 7,},
Uy =U,{ui | (zo —i) mod 2 =1,¢(s) — £(s) £ i < 7, },
Usa = U {ui | (i—ys) mod 2=0,y, <i < c(s) +r(s)},
Usa=U,{u | (i—ys) mod 2=1,9, S i < c(s) +r(s)}s

where s runs over all segments.

4. Let Mg, = {(uq,v;) € MY, | ui € U§y} U {(ig1,v541) | wi € U5y MUz, and {w,v;} € M},
Mgy = {(ui,v;) € My | wi € US4} U {(wig1,v541) | we € US; N V21 and {us, v} € My},
M§,2 = {(‘IL,',UJ') € M;n ! ui € Uze,z} U {(11,,'_1,1):,'_1) I u; € Uge'z n U2,2 and {u.,-,vj} € M:n},
M3, = {(ui,vj) € My, | w € U-fyz} U {(ui-1,vj-1) | us € Ué’lgﬂ Uz and {ui,v;} € M)

Note that for each edge (ui,v;) € M3, U Mg ,, we have v; ¢ J1. Indeed, U, C Uz,1 and U3, € Uz2.]

5. For the set (72"'1 of vertices of U that are not matched by Mg, compute a maximum-weight matching
NZ, between the vertices in U$, and the vertices in 7.

6. For the set (7{ o of vertices of U that are not matched by M3 ,, compute a maximum-weight matching
Ng, between the vertices in U, and the vertices in J;.

7. Output the maximum-weight matching Z, among M$,, M3, UN3;, M$3, M§; UNZ,.
Lemma 2.7 M5,, M3, UN3,, M5, and M3, U N3, are constrained matchiﬁgs in G.
Lemma 2.8 w(M3,;) + w(M3,) + w(M33) + w(M35) 2 2w(Myy,).

Lemma 2.9 (U—-U2,)n (U -Ug,) CW.

2.6 Performance of the algorithm when £ is small

For a contradiction, assume the following:
Assumption 2.10 8 < (} + §)w(M*) and max{w(Z),w(Zy)} < (3 + uw(M*).

We want to derive a contradiction under this assumption. First, we derive three inequalities from this
assumption and the lemmas in Section 2.5.

Lemma 2.11 w(Mg,) + w(M3,) > (1 ~ 2e)w(M*).
Lemma 2.12 w(Ng,) + w(Ng;) < 4ew(M*).
Lemma 2.13 8 > w(M*) — dew(M*).
Now, we are ready to get a contradiction. By Corollary 2.2 and Assumption 2.10, w (M*) > (% - 3e)w(M*).

Thus, by Lemma 2.13, 8 > (4 — 7€)w(M*). On the other hand, by Assumption 2.10, 8 < (3 + 3)w(M*). Hence,

3-Te< 3 + 8¢, contradicting our choice that € = 25+ Therefore,

Theorem 2.14 A constrained matching Z in G with w(Z) > ¥w(M*) can be found in O(I(n1+n2)VI+n1+mn;



3 2-ISP with a special profit function

In this section, we consider proportional 2-ISP, where the profit of executing a job at each specific time interval
is either 0 or proportional to the length of the job. A g-approximation algorithm was recently presented in [4]
for proportional 2-ISP. Here, we present a (1.5 + €)-approximation algorithm for it for any ¢ > 0. We note in
passing that a simple modification of this algorithm leads to a (1.5+ ¢€)-approximation algorithm for unweighted
2-ISP.

Let U, Ji, and J, be as in Section 2. Let E be the set of those (u;,v;) € U x J; such that the profit of
executing job v; in time unit u; is positive. Let F be the set of those (u, ui+1,%;) € U X U X J2 such that the
profit of executing job v; in time units 4; and u;4; is positive.

Consider the hypergraph H = (UUJ1UJ2, EUF) on vertex set UU.J1UJ; and on edge set EUF'. Obviously,
proportional 2-ISP becomes the problem of finding a matching £’ U F' in H with B’ C F and F' C F such
that |E’| + 2|F’| is maximized over all matchings in H. Our idea is to reduce this problem to the problem of
finding a maximum cardinality matching in a 3-uniform hypergraph (i.e. each hyperedge consists of exactly
three vertices). Since the latter problem admits a (1.5 + ¢)-approximation algorithm [6] and our reduction is
approximation preserving, it follows that proportional 2-ISP admits a (1.5 + €)-approximation algorithm.

Theorem 3.1 For every € > 0, there is a polynomial-time (1.5 + €)-approzimation algorithm for proportional
2-ISP.

4 A new heuristic for protein NMR peak assignment

As mentioned in Section 1, the l}-a.ppro:dmation algorithm for 2-ISP can be easily incorporated into a heuristic
framework for protein NMR peak assignment introduced in [7]. The heuristic first tries to assign “long”
segments of three or more spin systems that are under the consecutivity constraint to segments of the host
protein sequence, using a simple greedy strategy, and then solves an instance of 2-ISP formed by the remaining
unassigned spin systems and amino acids. The first step of the framework is also called greedy filtering and
may potentially help improve the accuracy of the heuristic significantly in practice because we are often able to
assign long segments of spin systems with high confidence. We have tested the new heuristic based on the %—
approximation algorithm for 2-ISP and compared the results with two of the best approximation and heuristic
algorithms in [3, 4, 7], namely the 2-approximation algorithm for the interval scheduling problem [3, 4] and
the branch-and-bound algorithm (augmented with greedy filtering) (7). The test data consists of 70 (pseudo)
real instances of NMR peak assignment derived from 14 proteins, each with 5 (density) levels of consecutivity
constraints, as shown in Table 1. Each protein is represented as an entry in the BioMagResBank database [9],
e.g. bmrd027, and the consecutivity level is represented by the underscore symbol following the BioMagResBank
entry. For example, _5 means that the number of pairs of consecutive spin systems in the input is 50% of the
total number of spin systems. Hence, the higher the consecutivity level index, the more the constraint. The
program of the new heuristic is available to the public upon request to the authors.
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