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1 Introduction

Using polynomials over finite fields, we formulated the polynomial state cellular
automata based on the information variable X for investigating informational
phenomena arising from cellular dynamics[Nishio&Saito03]. In our youngest
paper, we endowed X with the probability distribution {p(z)} and established
the information theory of CA in Shannon’s sense. We showed that the entropy of
configurations generally decreases by the cellular computation[Nishio&Saito02].
Here we are going to extend the theory to n-information variables and also try
to utilize Kolmogorov complexity as another measure of information amount
contained by configurations. As for the information theory and its relation to
Kolmogorov complexity we refer to [Cover&Thomas91].

2 Preliminaries

2.1 CA defined by polynomials over finite fields

One-dimensional CA is usually defined with the space Z (the set of integers),
the neighborhood N, the state set Q@ and the local function f and denoted
as CA=(Z,N,Q,f). Throughout this paper we assume the 1-D CA with N =
{-1,0,+1} and denote simply as CA=(Q,f).

State Set: Q is assumed to be a finite field GF(g), where g = p™ with prime p
and positive integer n. Denote the cardinality of Q as |Q|. So |Q|=¢=p".
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Local Function: The local function f: @ x @ X @ — @ is uniquely expressed
by the polynomial form:

f(z,y,2) =up + w1z + uoy + ---+u1-:z:"y"z‘Yc + ...
+ uqs_gxq“lyq—lzq'2 + uqa_lzz:q'ly""lz"_l,
whereu; €eQ (0<i< ¢ —1). (2.1)

z,y and z assume the state values of the neighboring cells —1(left), O(center)
and +1(right), respectively.

Global Map: The set of configurations is C = Q%. The global map or the
CA map F : C — C is defined as usual. Let ¢(¢) be the state of cell 2 € Z of
configuration ¢ € C. The configuration at time ¢ is denoted by c!. F*(c®) = c'.
So, the state of cell 4 at time ¢ is denoted by ct(3).

2.2 Information X and Extended CA[X]

Information X: Let X be a symbol different from those used in the polynomial
form (2.1). It stands for an unknown state or the information of a cell in CA
and will be called the information variable. In order to investigate the dynamics
of information X in CA space, we consider another polynomial form, which
generally defines the cell state of the extended CA.

9(X)=ao+a X+ +aX + - +a1 X7,
wherea; € Q (0<i<qg—1). (2.2)

g uniquely defines a function Q@ — Q and the set of such functions is denoted
by Q[X]. Evidently |Q[X]|=¢".

Extended CA[X] or Polynomial State CA: Based upon CA=(Q, f) we
define its extension CA[X|=(Q[X], fx), where the set of cell states is a polyno-
mial ring Q[X] as defined above. The local function fx is defined on the same
neighborhood and expressed by the same polynomial form f as was defined by
(2.1). The variables x,y and z, however, move in Q[X] instead of Q. CA[X] will
be called the polynomial state CA.

2.3 n-Information Variables

Consider n indeterminates (information variables) X;, X3, ..., X, to be intro-
duced into the initial configuration: ¢® = wX;X;...X,w'. As is in the preceding
section the cell state ¢°(0) is considered to be X;. Thus (i — 1) = X; for
1 < i < n and the other cells have constants. At time ¢ effects of information
variables X, X3, ..., X,, in c® possibly appear at cells {¢(¢)| -t <i<t+n-1}
of configuration ct. In order to discuss such a cellular development, we need to
extend the basic CA to n-variable polynomial state CA.

Extension of CA to CA[X,, X», ..., X,.] is made similarly as CA[X]. The state
set Q[X1, Xy, ..., X,] constitutes of polynomials of the form; -
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g(Xl,Xg, ...,Xn) =ag+a1 Xy +aXq+---+ ahXiLIXg" .. X:l" + -4
A XTI XS X3
whereapb € Q (0<h<q" —1). (23)

The local function f is the same as Equation(2.1).

2.4 Substitution

Definition 1 Substitution: For a polynomial g € Q[X"] and an n-tuple of
symbols a® = (ay, ag, ..., 6n), where a; € Q, we define the substitution Ygn (g9) as
the state which is obtained by substituting a; for X;, 1 <i < n. Substitution for
a global configuration c {1an(c)|a™ € Q™} is defined, as in one variable case, by
substituting the polynomial state of each cell with a™.

Evidently we have, for any ¢ € Q[X®]%, 1 < [{#)an(c)la™ € @™} < |Q]™.
We need the following commutative properties which are easily proved.

Proposition 2.1 (1) Substitution an and ring operations of polynomials com-
‘maute each other. That is, let g and h be polynomials in n indeterminates, then
we have, for any a™ € Q",

Yan(g + h) = Yan(g) + Yan(h) and Yan(g - h) = Pan (9) - Yan(h). (2.4)
(2) The global map and the substitution commute each other.

Yan (Fx(c)) = F(%an(c)),Va™ € Q™. (2.5)

2.5 Degeneracy

Definition 2 (Degeneracy) In CA[X™], a configuration c is called m-degenerate

if {tan(c) | a® € Q"} = Q" — m, where 0 < m < |Q|* — 1. Suchm will be
called the degree of degeneracy of ¢ and denoted as m(c). A configuration c s
simply called degenerate if m(c) # 0.

Theorem 2.2
m(c) < m(F(c)) (2.6)

3 Information Theory of CA Dynamics

For defining the quantitative measure of information amount transmitted or
lost through the CA space-time development, we are going to exploit Shannon'’s
information theory, in particular the mutual entropy and the channel capacity
for the deterministic channel.
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3.1 Deterministic Channel

We shortly recall Shannon’s information theory, so that it may fit in with our
formalism. Let X be a random variable of the information source, which takes
a value z € @ with probability {px(z),z € Q}. px(z) will be abbreviated as
p(z). Shannon’s entropy H(X) is defined by,

H(X)=-)_ p(z)logp(z) (3.1
z€Q

Let us consider a deterministic communication channel (X,g,Y), whereg : Q —
Q is a function from Q to Q. That is a source symbol z in Q is sent by the sender
and the receiver receives the symbol y = g(z) € Q with conditional probability
p(ylr) = 1. Y = g(X) is naturally a random variable and its probability
distribution is calculated by the following formula.

)= Y p=) (3:2)
z€9™1(y)
The mutual information I(X;Y) is defined by I(X;Y) = H(X) - H(X[|Y) =
H(Y) - H(Y|X).

Since the channel is deterministic we see that p(y|z) is equal to 1 or 0. Therefore
we have the followings; H(Y|X) =0 and I(X;Y) = H(Y).

The channel capacity is defined as follows:
C =maxI(X;Y) =maxH(Y) (3.3)
p(X) p(X)

3.2 Entropy of Configurations

Here we assume the information varibale X to be a random variable and are
going to investigate how much information of the initial state is transmitted or
lost during CA computation.

We interpret the correspondence between the CA dynamics and the commu-
nication theory as follows; the initial configuration containing an unknown
state X at cell 0 corresponds to the information source, while the configu-
ration ¢! which contains 2t + 1 polynomial states does the received message.
We begin with one variable case. Let’s take the portion of a configuration
¢ = (c(—t), (=t + 1),...,¢(0), ...,c(t — 1),¢(t)), where ¢(i) is the polynomial
state (random variable) of cell <. The other cells contain constant states and
can be ignored. The probability p(c) = {p(c.)|a € Q} is calculated by the

following equation.
plea)= Y, (=), (3.4)
z€g—1(cqa)

where g is a function X — csuch that g(z) = (¢(=t)(z), c(—t+1)(), ..., ¢(0)(%), ..., c(t—

1)(z), c(t)(z)). The entropy of ¢’ is given by

H(c) =) p(ct)logp(ct). (3.5)

aeQ
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Theorem 3.1
H(ct) > H(c1), vt > 0. (3.6)

3.3 Channel Capacity

Though it is generally not easy to compute the channel capacity for arbitrary
channels, we can present a formula for the deterministic ones. Let (X, Y) bea
channel, where Y = g(X),g: Q@ — Q. The channel capacity C is given by (3.3)
and therefore our task is to compute max H(Y) over {p(X)}. Using (3.2) we

have, .
HY)=-) ( > p(w)) log ( > p(w)) : (3.7)

veQ \zeg—1(v) z€9~ 1 (y)

The entropy function H with n components generally takes the maximum value
log n, where the distribution is uniform. Note that the maximum is attained
when each partition of @ defined by g~! has the same probability and the
distribution within a partition block is arbitrary.

_ 1
p(g l(y)) = |g(Q)| (3'8)
If g~1(y) is vacant, then p(y) = 0. Consequently we have,
Theorem 3.2 ‘
C = mex H(Y) = log |g(Q)!. (39)
»(X)
Theorem 3.3
Cct = mex H(ct) =log (|Q| — m(c")) (3.10)
P
Theorem 3.4 e
Ct > CtH! for anyt > 0. (3.11)

3.4 n-Information Variables

We generalize the idea of one variable case to n variable CAs. Let X* =
(X1, X2, ..., Xn) where X;s are identically distributed independent random vari-
ables with distribution {p(z)}. If the initial configuration is assumed to be
d = wX; Xs... Xpw = wX2w', then its entropy is given by H () = HX®) =
nH(X). For n-variable CA the similar monotone decreasing properties of H(ct)
and C* hold as one-variable CA. Particularly we have,

Theorelh 3.5 :
Ct= nba.())( H(ct) = log (IQ]" - m(ct)) (3.12)
P
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4 Kolmogorov complexity of configurations

We are utilizing the following theorem about the conditioned Kolmogorov com-
plexity and entropy. Let X® = {X;,1 < 3 < n} be identically distributed
independent random variables which take the value z in a finite alphabet Q
with probability p(z).

Theorem 4.1 (Kolmogorov) Letp(x™) = p(Z1,Z2, ..., Tn) = [[1n; P(z:). Then
there exists a constant ¢ such that

1 |Q|logn ¢
H(X) < ;;p(X“)K(X“In)S HX) +—=——+~ (4.1)

for all n. Therefore, ELK(X®|n) — H(X).

We recall here the monotone decreasing property of the entropy of configurations
as stated in Theorem (3.1). From this theorem and the above theorem by
Kolmogorov we have

Theorem 4.2 Let K*(X®|n) be the conditional Kolmogorov complexity of the
string X2 contained by ct. The we have, for n — oo,

E—:;K‘(X“]n) > E—:;K‘“(X"ln) (4.2)
The equality holds if and only if I(X®;ct|ctt!) = 0.

5 Concluding Remarks

A further research topics will be to find a new information measure for individual
configurations and investigate its behavior during CA dynamics.

A conjecture: Let z be any consecutive finite portion of any configuration c
and denote its Kolmogorov complexity by K.(z). Then K.(z) + constant >
Kr()(z'), where 2’ is the corresponding finite portion of z in F(c): ' = F(x).
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