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1Introfunction
Using polynomials over finite fields, we formulated the polynomial state cellular
automata based on the information vaiable $X$ for investigating informational
phenomena arising from celular dynamics[Nishi0&Sait003]. In our youngest
paper, we endowed $X$ with the probability distribution $\{p(x)\}$ and established
the information theory of $CA$ in Shannon’s sense. We showed that the entropy of
configurations generally decreases by the cellular computation[Nishi0&Sait002].
Here we are going to extend the theory to $n$-information variables and also try
to utilize Kolmogorov complexity as another measure of information amount
contained by configurations. As for the information theory and its relation to
Kolmogorov complexity we refer to [COver&ThOmas91].

2Preliminaries
2.1 CA defined by polynomials over finite fields

One dimensional CA is usually defined with the space $Z$ (the set of integers),
the neighborhood $N$ , the state set $Q$ and the local function $f$ and denoted
as $\mathrm{C}\mathrm{A}=(Z,N,Q,f)$ . Throughout this paper we assume the 1-D CA with $N=$

$\{-1,0, +1\}$ and denote simply as $\mathrm{C}\mathrm{A}=(Q,f)$ .

State Set: Q is assumed to be afinite field $\mathrm{G}\mathrm{F}(\mathrm{g})$ , where q $=p^{n}$ with prime $p$

and positive integer n. Denote the cardinality of Q as |Q|. So $|Q|=q=p^{n}$ .
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Local Function: The local function f : $Q\cross Q$ xQ $arrow Q$ is uniquely expressed
by the polynomial form:

$f(x,y, z)=u_{0}+u_{1}x+u_{2}y+\cdots+u_{i}x^{h}y^{j}z^{k}+\cdots$

$+u_{q^{3}-2}x^{q-1}y^{q-1}z^{q-2}+u_{q^{3}-1}x^{q-1}y^{q-1}z^{q-1}$ ,

where $u_{i}\in Q(0\leq i\leq q^{3}-1)$ . (2.1)

$x,y$ and $z$ assume the state values of the neighboring $\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{s}-1(\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t})$ , $\mathrm{O}(\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r})$

$\mathrm{a}\mathrm{n}\mathrm{d}+1$ (right), respectively.

Global Map: The set of configurations is $C=Q^{Z}$ . The global map or the
CA map $F$ : $Carrow C$ is defined as usual. Let $c(i)$ be the state of cell $i\in Z$ of
configuration $c\in C$ . The configuration at time $t$ is denoted by $d$ . $F^{t}(c^{0})=c^{t}$ .
So, the state of cell $i$ at time $t$ is denoted by $c^{t}(i)$ .

2.2 Information X and Extended $\mathrm{C}\mathrm{A}[X]$

Information $X$ :Let $X$ be symbol different from those used in the polynomial
form (2.1). It stands for an unknown state or the information of acell in CA
and will be called the info rmation variable. In order to investigate the dynamics
of information $X$ in CA space, we consider another polynomial form, which
generaly defines the cell state of the dended $\mathrm{C}\mathrm{A}$ .

$g(X)=a_{0}+a_{1}X+\cdots+a_{i}X^{:}+\cdots+a_{q-1}X^{q-1}$ ,
where $a_{i}\in Q(0\leq i\leq q-1)$ . (2.2)

$g$ uniquely defines afunction $Qarrow Q$ and the set of such functions is denoted
by $Q[X]$ . Evidently $|Q[X]|=q^{q}$ .

Extended $\mathrm{C}\mathrm{A}[X]$ or Polynomial State $\mathrm{C}\mathrm{A}$:Based upon $\mathrm{C}\mathrm{A}=(Q,f)$ we
define its extension $\mathrm{C}\mathrm{A}[X]=(Q[X], f_{X})$ , where the set of cell states is apolyn0-
mial ring $Q[X]$ as defined above. The local function $fx$ is defined on the same
neighborhood and expressed by the same polynomial form $f$ as was defined by
(2.1). The variables $\mathrm{x},\mathrm{y}$ and $\mathrm{z}$ , however, move in $Q[X]$ instead of $Q$ . $\mathrm{C}\mathrm{A}[X]$ will
be called the polyrgomial state $\mathrm{C}\mathrm{A}$ .

2.3 $n$-Information Variables
Consider $n$ indeterminates (information variables) $X_{1},X_{2}$ , ..., $X_{n}$ to be int $0$

duced into the initial configuration: $c^{0}=wX_{1}X_{2}\ldots X_{n}w’$ . As is in the preceding
section the cell state $c^{0}(0)$ is considered to be $X_{1}$ . Thus $c^{0}(i-1)=X_{i}$ for
$1\leq i\leq n$ and the other cells have constants. At time $t$ effects of information
variables $X_{1},X_{2}$ , $\ldots$ , $X_{n}$ in $c^{0}$ possibly appear at cells $\{c(i)|-t\leq i\leq t+n-1\}$

of configuration $c^{t}$ . In order to discuss such acellular development, we need to
extend the basic CA to $\mathrm{n}$-variable polynomial state $\mathrm{C}\mathrm{A}$ .

Extension of CA to $\mathrm{C}\mathrm{A}[X_{1}, X_{2}, \ldots, X_{n}]$ is made similarly as $\mathrm{C}\mathrm{A}[\mathrm{X}]$ , The state
set $Q[X_{1}, X_{2}, \ldots, X_{n}]$ constitutes of polynomials of the form
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$g(X_{1}, X_{2},$
\ldots ,

$X_{n})=a_{0}+a_{1}X_{1}+a_{2}X_{2}+\cdots+a_{h}X_{1}^{i_{1}}X_{2}^{i_{2}}\cdots X_{n^{n}}^{i}+\cdots+$

$a_{q^{n}-1}X_{1}^{q-1}X_{2}^{q-1}\cdots X_{n}^{q-1}$ ,

where ah $\in Q(0\leq h\leq q^{n}-1)$ . (2.3)

The local function $f$ is the same as Equation(2.1).

2.4 Substitution
Definition 1Substitution: For a polynomial $g\in Q[\mathrm{X}^{\mathrm{n}}]$ and an $n$ -tuple of
symbols $\mathrm{a}^{\mathrm{n}}=$ $(a_{1}, a_{2}, \ldots, a_{n})$ , where $*\cdot\in Q$ , we define the substitution $\psi_{\mathrm{a}^{\mathrm{n}}}(g)$ as
the state which is obtained by substituting $a_{i}$ for $X_{:}$ , $1\leq i\leq n$ . Substitution for
a global configuration $c\{\psi_{\mathrm{a}^{\mathrm{n}}}(c)|\mathrm{a}^{\mathrm{n}}\in Q^{n}\}$ is defined, as in one variable case, by
substituting the polynomial state of each cell with $\mathrm{a}^{\mathrm{n}}$ .

Evidently we have, for any $c\in Q\mathrm{K}^{\mathrm{n}}]^{Z}$ , $1\leq|\{\psi_{\mathrm{a}^{\mathrm{n}}}(c)|\mathrm{a}^{\mathrm{n}}\in Q^{n}\}|\leq|Q|^{n}$ .

We need the following commutative properties which are easily proved.

Proposition 2.1 (1) Substitution $\psi_{\mathrm{a}^{\mathrm{n}}}$ and ring operations of polynomials com-
mute each other. That is, let $g$ and $h$ be polynomials in $n$ indeterminates, then
we have, for any $\mathrm{a}^{\mathrm{n}}\in Q^{n}$ ,

$\psi_{\mathrm{a}^{\mathrm{n}}}(g+h)=\psi_{\mathrm{a}^{\mathrm{n}}}(g)+\psi_{\mathrm{a}^{\mathrm{n}}}(h)$ and $\psi_{\mathrm{a}^{\mathrm{n}}}(g\cdot h)=\psi_{\mathrm{a}^{\mathrm{n}}}(g)\cdot\psi_{\mathrm{a}^{\mathrm{n}}}(h)$ . (2.4)

(2) The global map and the substitution commute each other.

$\psi_{\mathrm{a}^{\mathrm{n}}}(F_{X}(c))=F(\psi_{\mathrm{a}^{\mathrm{n}}}(c)),\forall \mathrm{a}^{\mathrm{n}}\in Q^{n}$ . (2.5)

2.5 Degeneracy

Definition 2(Degeneracy) In $CA[\mathrm{X}^{\mathrm{n}}]$ , a configuration $c$ is called m-degenerate
$\dot{\iota}f|\{\psi_{\mathrm{a}^{\mathrm{n}}}(c)|\mathrm{a}^{\mathrm{n}}\in Q^{n}\}|=|Q|^{n}-m$, wheoe $0\leq m\leq|Q|^{n}-1$ . Such $mw\cdot.ll$ be
called the degree of degeneracy of $c$ and denoted as $m(c)$ . A configuration $c$ is
simply called degenerate if $m(c)\neq 0$ .

Theorem 2.2
$m(c)\leq m(F(c))$ (2.6)

3Information Theory of CA Dynamics

For defining the quantitative measure of information amount transmitted or
lost through the CA space-time development, we are going to exploit Shannon’s
information theory, in particular the mutual entropy and the channel capacity
for the deterministic channel
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3.1 Deterministic Channel
We shortly recall Shannon’s information theory, so that it may fit in with our
formalism. Let $X$ be arandom variable of the information source, which takes
avalue $x\in Q$ with probability $\{px(x), x\in Q\}$ . $px(x)$ will be abbreviated as
$p(x)$ . Shannon’s entropy $H(X)$ is defined by,

$H(X)=- \sum_{x\in Q}p(x)\log p(x)$
(3.1)

Let us consider adeterministic communication channel $(X,g, \mathrm{Y})$ , where $g$ : $Qarrow$

$Q$ is function from $Q$ to $Q$ . That is source symbol $x$ in $Q$ is sent by the sender
and the receiver receives the symbol $y=g(x)\in Q$ with conditional probability
$p(y|x)=1$ . $\mathrm{Y}=g(X)$ is naturally arandom variable and its probability
distribution is calculated by the following formula.

$p(y)= \sum_{x\in g^{-1}(y)}p(x)$
. (3.2)

The mutual information $I(X\cdot \mathrm{Y})|$ is defined by $I(X;\mathrm{Y})=H(X)-H(X|\mathrm{Y})=$

$H(\mathrm{Y})-H(\mathrm{Y}|X)$ .

Since the channel is deterministic we see that $p(y|x)$ is equal to 1or 0. Therefore
we have the fallowings; $H(\mathrm{Y}|X)=0$ and $I(X;\mathrm{Y})=H(\mathrm{Y})$ .

The channel capacity is defined as follows:

$C= \max_{p(X)}I(X;\mathrm{Y})=\max_{p(X)}H(\mathrm{Y})$
(3.3)

3.2 Entropy of Configurations
Here we assume the information varibale $X$ to be arandom $var\dot{\mathrm{v}}able$ and are
going to investigate how much information of the initial state is transmitted or
lost during CA computation.

We interpret the correspondence between the CA dynamics and the commu-
nication theory as follows; the initial configuration containing an unknown
state $X$ at cell 0corresponds to the information source, while the configu-
ration $c^{t}$ which contains $2t$ $+1$ polynomial states does the received message.
We begin with one variable case. Let’s take the portion of aconfiguration
$c=(c(-t), c(-t+1)$ , $\ldots$ , $\mathrm{c}(\mathrm{i})$

$\ldots$ , $c(t-1)$ , $\mathrm{c}(\mathrm{i})$ , where $c(i)$ is the polynomial
state (random variable) of cell $i$ . The other cells contain constant states and
can be ignored. The probability $p(c)=\{p(c_{a})|a\in Q\}$ is calculated by the
following equation.

$p(c_{a})=$ $\sum$ $p(x)$ , (3.4)
$x\in g^{-1}(c_{\mathrm{Q}})$

where 9is function $Xarrow c$ such that $g(x)=(c(-t)(x), c(-t+1)(x),$ $\ldots$ , $c(0)(x)$ , $\ldots$ , $c(t-$

l)(x), $c(t)(x))$ . The entropy of $d$ is given by

$H(c^{t})=- \sum_{a\in Q}p(c_{a}^{t})\log p(c_{a}^{t})$
. (3.5)
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Theorem 3.1
$H(c^{t})\geq H(c^{t+1}),\forall t\geq 0$ . (3.6)

3.3 Channel Capacity
Though it is generally not easy to compute the channel capacity for arbitrary

channels, we can present aformula for the deterministic ones. Let $(X, \mathrm{Y})$ be $\mathrm{a}$

channel, where $\mathrm{Y}=g(X),g:Qarrow Q$ . The channel capacity $C$ is given by (3.3)

and therefore our task is to compute $\max H(\mathrm{Y})$ over $\{p(X)\}$ . Using (3.2) we
have,

$H( \mathrm{Y})=-\sum_{y\in Q}(\sum_{oe\in g^{-1}(y)}p(x))\log(\sum_{x\in g^{-1}(y)}p(x))$ . (3.7)

The entropy function $H$ with $n$ components generally takae the mnimum value
$\log n$ , where the distribution is uniform. Note that the maximum is attained
when each partition of $Q$ defined by $g^{-1}$ has the same probability and the
distribution within apartition block is arbitrary.

$p(g^{-1}(y))= \frac{1}{|g(Q)|}$ (3.8)

If $g^{-1}(y)$ is vacant, then $p(y)=0$ . Consequently we have,

Theorem 3.2
$C= \max H(\mathrm{Y})=\log|g(Q)|$ . (3.9)

$p(X)$

Theorem 3.3
$C^{t}= \max H(c^{t})=\log(|Q|-m(c^{t}))$ (3.10)

$\mathrm{p}(X)$

Theorem 3.4
$C^{t}\geq C^{t+1}$ for any $t\geq 0$ . (3.11)

3.4 $n$-Information Variables
We generalize the idea of one variable case to $n$ variable CAs. Let $\mathrm{X}^{\mathrm{n}}=$

(Xi, $X_{2}$ , $\ldots$ , $X_{n}$ ) where $\mathrm{X}\mathrm{i}\mathrm{S}$ are identically distributed independent random vari-
ablae with distribution $\{p(x)\}$ . If the initial configuration is assumed to be
$c^{0}=wX_{1}X_{2}\ldots X_{n}w’=\mathrm{w}\mathrm{X}\mathrm{n}\mathrm{w}’$ , then its entropy is given by $H(c^{0})=H(\mathrm{X}^{\mathrm{n}})=$

$nH(X)$ . For $\mathrm{n}$-variable CA the similar monotone decreasing properties of $H(c^{t})$

and $C^{t}$ hold as one-variable $\mathrm{C}\mathrm{A}$ . Particularly we have,

Theorem 3.5
$C^{t}= \max_{p(X)}H(c^{t})=\log(|Q|^{n}-m(c^{t}))$

(3.12)
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4 Kolmogorov complexity of configurations
We are utilizing the following theorem about the conditioned Kolmogorov com-
plexity and entropy. Let $\mathrm{X}^{\mathrm{n}}=\{X_{i}, 1\leq i\leq n\}$ be identically distributed
independent random variables which take the value $x$ in afinite alphabet $Q$

with probability $p(x)$ .

Theorem 4.1 (Kolmogorov) Let $p( \mathrm{x}^{\mathrm{n}})=p(x_{1},x_{2}, \ldots, x_{n})=\prod_{i=1}^{n}p(x_{i})$ . Then
there eists a constant $c$ such that

$\mathrm{H}(\mathrm{X})\leq\frac{1}{n}\sum_{\mathrm{x}^{\mathrm{n}}}p(x^{n})K(P|n)$
$\leq H(X)+\frac{|Q|\log n}{n}+\frac{c}{n}$ (4.1)

for all $n$ . Therefore, $E \frac{1}{n}K(\mathrm{X}^{\mathrm{n}}|n)arrow H(X)$ .

We recall here the monotone decreasing property of the entropy of configurations
as stated in Theorem (3.1). Prom this theorem and the above theorem by
Kolmogorov we have

Theorem 4.2 Let $K^{t}(\mathrm{X}^{\mathrm{n}}|n)$ be the conditional Kolmogorov complexity of the
string $\mathrm{x}^{\mathrm{n}}$ contained by S. The we have, for $narrow \mathrm{o}\mathrm{o}$,

$E \frac{1}{n}K^{t}(\mathrm{X}^{\mathrm{n}}|n)\geq E\frac{1}{n}K^{t+1}(\mathrm{X}^{\mathrm{n}}|n)$ (4.2)

The equality holds $\dot{l}f$ and only if $I(\mathrm{X}^{\mathrm{n}}; c^{t}|c^{t+1})=0$ .

5Concluding Remarks
Afurther research topics $\mathrm{w}\mathrm{i}\mathrm{U}$ be to find anew information measure for individual
configurations and investigate its behavior during CA dynamics.

Aconjecture: Let $x$ be any consecutive finite portion of any configuration $c$

and denote its Kolmogorov complexity by $K_{\mathrm{c}}(x)$ . Then $K_{\mathrm{c}}(x)+constant$ $\geq$

$K_{F(c)}(x’)$ , where $d$ is the corresponding finite portion of $x$ in $F(c):x’=F(x)$ .
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