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1Introduction
There are several situations where we can get

only anoisy Boolean value for each variable $x_{i}$ ,
$1\leq i\leq N$ , when computing aBoolean function
$f(x_{1}, x_{2}, \ldots, xN)$ . Suppose, for example, that the
function $f$ is the Boolean OR of three variables, i.e.,
$f=x_{1}\vee x_{2}\vee x$ . Also suppose that we can know
the value $a_{i}\acute{\iota}=0$ or 1) of each $x$:only through an
$\epsilon$-biased oracle $O(i.)$ such that:

$O(i)—\{\begin{array}{l}a_{*}.\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}\frac{1}{2}+\epsilon\overline{a_{|}.}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}\frac{1}{2}-\epsilon\end{array}$

In this situation our natural goal is to obtain the
value of $f$ ($a_{1}$ , a2, $a_{3}$ ) with ahigh (say, constant)
probability and with the smallest number of oracle
calls. For the above particular example, one simple
algorithm is to call each $O(i)k$ times and to guess
the value of $a$:by majority. It is not hard to see that
we need $\Omega(_{\epsilon}^{1}\mathrm{v})$ oracle calls, which we call the query
complexity, to decide $f$ ( $a_{1}$ , a2, $a_{3}$ ) with probability
one half. Thus, the query complexity obviously de-
pends on the value of $\epsilon$ . (A little surprisingly, there
are relatively afew proven results in the quantum
setting such as [AC02]. Note that many other stud-
ies assume that $\epsilon$ is aconstant, which disappears
in the query complexity under the big-O notation
[SC02, BKWOO].)

In this paper, we investigate such aquery com-
plexity in the quantum setting. For the definition of
$\epsilon$-biased quantum oracles $O$ , we use amodel similar
to [AC02], namely, if we apply $O$ to $|i\rangle$ $|0^{m}$ ) $|0\rangle$ and
measure the last qubit, yielding $w=0$ or 1, then
$Pr[w=a:] \geq\frac{1}{2}+\epsilon$ for all $1\leq i\leq N$ . It should
be noted that this definition describes what should
happen if we would measure the key bit; we do not
have to do so when making each oracle call. Since
$O$ is aunitary transformation, $O|i$ ) $|0^{m}$ ) $|0\rangle$ must be

written in the form of

$|i’\rangle(\alpha_{i}|v_{\dot{l}}\rangle|a_{i})+\beta_{i}|w_{\dot{1}}\rangle|\overline{a_{i}}))$ , (1)

where $\alpha_{i}^{2}\geq\frac{1}{2}+\epsilon$ for all $i$ . Unfortunately, it is
not clear if we can get any interesting results under
this definition. However, abig change occurs if we
consider asubclass of this model.

Our Results We impose the following restric-
tions to (1): (i) $\alpha_{i}=ax$ $=\sqrt{\frac{1}{2}+\epsilon}$ , $\beta_{i}=\beta=\sqrt{\frac{1}{2}-\mathrm{t}}$

for all 1 $\leq i\leq N$ and both $\alpha$ and $\beta$ are real
numbers. (Namely, the bias does not depend on
each variable.) (ii) $i=i’$ and $v_{i}=w:=0^{m}$ .
(Namely, all input and work qubits must be reset
after oracle computation.) For such an oracle 0,
denoted by $\mathit{0}_{\mathrm{e}}$ , we can show that the query com-
plexity does not depend on $\epsilon$ . More formally, $\sup-$

pose that there is aquantum algorithm $A$ which
computes $f$ ( $a_{1},$ $\ldots$ , aN) using $T(N)$ queries of the
standard noise free oracle. Then, for any $0 \leq\epsilon\leq\frac{1}{2}$

there exists aquantum algorithm $A’$ which com-
putes $f$ ( $a_{1}$ , $\ldots$ , aN) using $O_{\epsilon}$ such that its query
complexity is $O(T(N))$ with high probability. Note
that the result even holds for $\epsilon=0$ . The size of
$A’$ does not increase too much; it is polynomial if
the size of $A$ is polynomial. Furthermore, it is not
necessary to know the value of $\epsilon$ to design $A’$ . Atyp-
ical example is the OR function for which $O(\sqrt{N})$

$\epsilon$-biased oracle calls are enough for any $0 \leq\epsilon\leq\frac{1}{2}$ .
This result can be extended to other kinds of ora-

cles such as the s0-called inner product (IP) oracles
[AC02]. In some cases, we can relax the conditions
(i) and { $\mathrm{i}\mathrm{i})$ . For example, if $T(N)=0(1)$ , then
(i) is not necessary and (ii) can also be weakened.
For the GL Problem discussed in [AC02], our query
complexity is $O(1)$ while their complexity is $O(_{\epsilon}^{1}\Pi)$ .

We also show the followings when we use aquan-
tum noisy oracle defined as (1): (i) any quantum
algorithm solving the GL problem requires eithe
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$\Omega(\sqrt{N})$ EQ queries or $\Omega(\frac{1}{\sqrt{\epsilon}})$ IP queries, and (ii)

0 $( \frac{1}{\epsilon})$ EQ queries are necessary for any quantum
algorithm solving the GL problem.

Combining the above results, we show implicitly
the difficulty of clearing auxiliary qubits for acertain
case. That is, when we are given anoisy IP oracle
as (1) and an EQ oracle, then $\Omega(\frac{1}{\epsilon})$ EQ queries and
$\Omega(\frac{1}{\sqrt{\epsilon}})$ IP queries are necessary for clearing the aux-
iliary qubits of the outcome of the given IP oracle.

2Oracle Models

Lemma 1The unitary transformation $0_{\epsilon}$ which
satisfies the Definition 2is either

$O_{\epsilon}|ae\}$ $|0’\rangle n|0\rangle$ $=$ $|oe)1^{\mathit{0}^{m}}$ $\rangle$ $(\sqrt{\frac{1}{2}+\epsilon}|f(oe)\rangle+\sqrt{\frac{1}{2}-\epsilon}|\overline{\prime\langle x)}\rangle),(2)$

$O_{\epsilon}|oe)$ $|0^{m}\rangle|1\}$ $=$ $|ae\rangle$ $|0^{m}\rangle(\sqrt{\frac{1}{2}+}.|\overline{f(\varpi)}\rangle-\sqrt{\frac{1}{2}-\epsilon}|’(x)\rangle),(3)$

$o_{\epsilon}|\alpha\}|0^{m}\rangle|0\rangle$ $=$ $|\mathrm{a}\mathrm{e}\}1^{0^{\mathrm{m}}}\rangle$ $(\sqrt{\frac{1}{2}+\epsilon}|t\mathrm{t}\not\subset)\rangle+\sqrt{\frac{1}{2}-\epsilon}|\overline{f(\varpi)}\rangle)$ , (4)

$O_{\epsilon}\downarrow \mathrm{a})$ $|0^{m}\rangle|1\rangle$ $=$ $\mathrm{l}oe)1^{\mathit{0}^{m}}\rangle$ $(-\sqrt{\frac{1}{2}+\epsilon}|\overline{f(\approx)}\rangle$ $+\sqrt{\frac{1}{2}-}.1J(\alpha)\})(\delta)$

Based on the idea of [AC02], our oracle with re-
spect to aBoolean function $f(x)$ is defined as fol-
lows. One can see that the oracle in the previous
section which returns the value of $x_{i}$ is aspecial
case.

Definition 1A quantum oracle with bias $\epsilon$ is $a$

unitar$\mathrm{r}y$ transfom $O$ on $n+m+1$ qubits which sat-

isfies the following teuo properties.

1. If the last qubit of $O|x\rangle$ $|0^{m}\rangle$ $|0\rangle$ is measured,
yielding the value $w\in\{0,1\}$ , then $Pr[w=$
$\mathrm{f}(\mathrm{x})\geq\frac{1}{2}+\epsilon$ for any $x\in\{0,1\}^{n}$ .

2. For any $x\in\{0,1\}^{n}$ and $y\in\{0, 1\}^{m+1}$ , the
state of the first $n$ qubits of $O|x\rangle$ $|y$ ) is $|x\rangle$ .

Since $O$ is aunitary transform, $\mathrm{O}$
$|x\rangle$ $|0^{m}\rangle$ $|0\rangle$

must be written as

$|x\rangle(\alpha_{x}|v_{x})|f(x))+\beta_{x}|w_{ox}\rangle|\overline{f(x)}\rangle)$ .

In this paper, we consider asubclass of this
model, which we call RE (resettable and with equal
amplitudes) oracles.

Definition 2An $RE$ oracle with bias $\epsilon$ , denoted by
$O_{\epsilon}$ , is a unitary transfom such that

$O_{\epsilon}|x\rangle|0^{m}\rangle|0\rangle=|x\rangle$ $|0^{m}\rangle(\sqrt{\frac{1}{2}+\epsilon}|f(xx))+\sqrt{\frac{1}{2}-\epsilon}|\overline{f(x)}\rangle)$ ,

where $0 \leq\epsilon\leq\frac{1}{2}$ is a real number.

It is well known that the resettability condition
can always be met by doubling the circuit size if
the answer bit is always $|0\rangle$ or $|1\rangle$ or if $\epsilon=\frac{1}{2}$ . How-
ever, it is not known with the best knowledge of the
authors if this is true in general.

By Definition 2, it is straightforward to obtain the
following lemma by the basic property of unitary
transformation:

In this PaPer, without loss of generality we use
the first one, i.e., (2) and (3).

3Main Results
3.1 Phase-Change Oracles

(7)

We have defined aquantum oracle $O_{\epsilon}$ as an oracle
which returns the answer by $\mathrm{X}\mathrm{O}\mathrm{R}rightarrow \mathrm{i}\mathrm{n}\mathrm{g}$ it with the
last qubit. It is known [Amb02, BS02] that this type
of quantum oracles are fundamentally equivalent to
quantum oracles which reply queries by changing
the phase, if the oracle is noise free. Its Based
version, denoted by $\tilde{O}\mathrm{e}$ , is given as follows.

$\tilde{O}_{\epsilon}|x)|0\rangle$ $=|x\rangle((-1)^{f(oe)}\sqrt{\frac{1}{2}+\epsilon}|0\rangle+\sqrt{\frac{1}{2}-\epsilon}|1\rangle)$ , (6)

$\tilde{O}_{\epsilon}|x\rangle|1\rangle=|x\rangle(\sqrt{\frac{1}{2}+\epsilon}|1)$
$-(-1)^{f(\approx)}\sqrt{\frac{1}{2}-\epsilon}|0\rangle)$ .

It is said that aquantum oracle $O_{1}$ can simulate
another quantum oracle $O_{2}$ if there exist unitary
transformations $U_{1}$ and $U_{2}$ such that $\mathit{0}_{2}=U_{1}O_{1}U_{2}$ .
Generally, we would like $U_{i}$ to have polynomial size
and this is true in the following lemma.

Lemma 2A quantum oracle $O_{\epsilon}$ is equivalent to
$\tilde{O}_{\epsilon}$ , i.e., $O_{\epsilon}$ can simulate $\tilde{O}_{\epsilon}$ and vice versa.

In what follows, we always use $\tilde{O}_{\epsilon}$ which is de-
noted simply by $O_{\epsilon}$ .

3.2 Simulating Noise-Free Oracles
using Noisy Ones

We are now ready for stating our main theorem.
Let $V$ be any noise-free quantum oracle which maps
$|x$ , $b$ , $z\rangle$ to $(-l)^{\cdot}$ $|x$ , $b$ , $z\rangle$ , where $x\in\{0,1\}^{n}$ and
$z$ be any qubit strings. Note that $V$ is the standard
definition for noise-free oracles which often appears
in the literature [Amb02, BS02, Gr096]
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Theorem 1If there exists a quantum algorithm $A$

solving some problem with probability $1-\delta$ by query
$ing$ $VT$ times, then instead of querying $V$ , $A$ can
solve the same problem with probability 1 – $\delta$ by
querying $O_{\epsilon}O(T)$ times.

Proof. For simplicity, we omit the description of
$z$ since it is left unchanged by the oracle transfor-
mation. Suppose that we have aquantum state
$| \psi\rangle=\sum_{x}\gamma_{x}|x\rangle|0)$ at some moment of the alg0-
rithm, where $\sum_{x}|\gamma_{x}|^{2}=1$ . Then it follows that
applying oracle $O_{\epsilon}$ to this $|\psi\rangle$ results in

$O_{\mathrm{e}} \sum_{l}\gamma_{oe}|x\rangle|0\rangle$

$=$ $\sum_{\mathrm{g}}(-1)^{\prime(\mathrm{r})}\sqrt{\frac{1}{2}+\epsilon}\gamma_{u}|x\rangle$ $|0 \rangle+\sum_{l}\sqrt{\frac{1}{2}-\epsilon}\gamma_{\mathrm{g}}|x)|1\rangle$ .

Now here comes our key technique, namely, to
use ameasurement: if the measurement on the last
qubit results in the state $|0\rangle$ , we know that the
quantum state after this measurement is exactly the
same as the quantum state after calling $V$ . Other-
wise, if the state $|1\rangle$ is measured, we simply need to
flip the last qubit to 0and repeat querying $O_{\epsilon}$ since
the previous state $|\psi$ ) is completely preserved. Note
that the expected number of iteration is constant.
Thus, $A$ can query $O_{\epsilon}$ instead of $V$ and the query
complexity is roughly the same. $\square$

It might be helpful to see how this algorithm
works using aconcrete example, i.e., computing
the $N$-bit OR function, $x_{1}\vee x_{2}\vee\ldots\vee x_{N}$ , using
the oracle which returns the value of each variable
X{. This can be viewed as another form of Grover’s
search algorithm[Gr096]. Thus although any clas-
sical algorithm needs $\Omega(N)$ queries, there exists a
quantum algorithm with only $O(\sqrt{N})$ queries if the
bit-asking oracle is noiseless. This algorithm can be
simulated using our noisy oracle as follows, whose
query complexity is still $O(\sqrt{N})$ :

Algorithm
Step 1. Initialize $(n+1)$-qubits to zero, i.e., $|0^{n}\rangle$ $|0\rangle$ .
Step 2. APply the Hadamard transform to the first
$n$ qubit $(H^{\otimes n}\otimes I_{1})$ .

$|0^{n} \rangle|0\ranglearrow\frac{1}{\sqrt{N}}\sum_{i}|i\rangle|0\rangle$ .

Step 3. Call the oracle $O_{\epsilon}$ .
Step 4. Observe the last qubit. If it is 0continue
to the next step. Otherwise, flip the last qubit to 0
and go back to Step 3.
Step 5. Apply the Hadamard transform $H^{\otimes n}\otimes I_{1}$ .

Step 6. Perform aconditional phase shift $(2|0\rangle\langle 0|-$

$I_{n})\otimes I_{1}$ .
Step 7. Perform the Hadamard transform $H^{\otimes n}\otimes I_{1}$

and go back to Step 3if the number of iteration
does not suffice.

(End of Algorithm)

3.3 Classical Lower Bounds

In order to obtain the correct value of $x_{i}$ from a
noisy classical oracle with some constant probabil-
ity, we need to repeat the queries $m$ times for the
same $x_{i}$ . The obvious way to obtain the approxi-
mate value of Xi, denoted by $\tilde{x}_{i}$ , is by the majority
of $m$ queries outcome. The following theorem states
that the majority is optimal.

Theorem 2([RS91, SC02]) For any 0 $<\epsilon\leq$

$1/6$ and $0<\delta<1/2$ , it holds that any classical al-
gorithrn that $\delta$ -reliably computes the $N$ -bit OR func-
tion requires $\Omega(N\log N/\epsilon^{2})$ queries of oracles with
bias $\epsilon$ .

4The Goldreich-Levin Prob-
lem

As mentioned previously, our restriction on the
resettability and the equality of amplitudes can be
relaxed if the number of oracle calls is constant.
In this section, we see this by using the Goldreich-
Levin Problem. We first give the definition of the
problem. For details see, e.g., [Be199, AC02].

Definition 3(The Goldreich-Levin Problem)
Given a classical inner product $(IP_{a})$ oracle with
bias $\epsilon$ and a classical equivalence (EQa) oracle, the
task is to determine $a\in\{0,1\}^{n}$ with a minirnurn
queries of $IPa$ and $EQ_{a}$ . On input $x\in\{0,1\}^{n}$

which is selected at random, $IPa$ returns a bit
$w\in\{0,1\}$ such that

$Pr_{x}[IP(x)=w=a \cdot x]\geq\frac{1}{2}+\epsilon$ .

$EQ_{a}$ returns 1if input bit $x$ is $a$ and 0otherwise.

[GL89] showed how to solve the problem with
queries that is polynomial in $n$ and $1/\epsilon$ . Note
over, [AC02] proved the lower bound of queries to
be $\Omega(_{\mathrm{I}}^{n}\epsilon)$ . Note that the above definition of anoisy
classical inner product includes the case when $IP_{a}$

always returns the false answer for aparticular $x$ .
Thus, we cannot amplify the correctness probability
for aparticular $x$ by repeating queries
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Based on the [AC02] definition of aquantum in-
ner product $(IP_{a})$ oracle, our restricted version,
simply called an IP oracle, is defined as follows.

Definition 4A quantum inner product oracle is $a$

unitary transform $U_{ip}$ or its inverse $U_{IP}^{\uparrow}$ on $n\mathit{1}-$

$m\mathit{1}$ $l$ qubits such that for all $x\in\{0,1\}^{n}$ ,

$U_{\Gamma P}|x)|0^{m}\rangle|1\rangle U_{\mathit{1}P}|x\rangle|0^{m}\rangle|0\rangle$ $==$ $\alpha_{l}|x\rangle|v\alpha_{n}|x\rangle|v\rangle|a\cdot x\rangle+\beta_{n}|x\rangle|v\rangle|\overline{a\cdot x}\rangle:\rangle|\overline{a\cdot x}\}-\beta_{l}|oe\rangle|v:\rangle|a\cdot x\rangle’$

,

where $\alpha_{x}$ and $\beta_{x}$ are non-negative real numbers such
that

$\frac{1}{N}\sum_{x\in\{0,1\}^{n}}\alpha_{x}^{2}$
$\geq$

$\frac{1}{2}+\epsilon$ ,

$\frac{1}{N}\sum_{x\in\{0,1\}^{n}}\beta_{x}^{2}$
$\leq$

$\frac{1}{2}-\epsilon$ ,

and $|v_{x}\rangle$ is a quantum state which is independent of
the content of the last qubit.

Our situation is more complex when considering
the Goldreich-Levin problem since the noise rate is
not fixed for each query anymore. Moreover, the
oracle does not have to reset the second register
(but the restriction that it is independent of the
answer bit still remains). Nevertheless, if the quan-
tum oracle $U_{IP}$ and $U_{EQ}$ are given, we can obtain
aquantum algorithm which solves the GL problem
with constant probability and with $O(1)$ queries of
$U_{IP}$ and $U_{EQ}$ .

Theorem 3There exists a quantum algorithm
solving the $GL$ problem with constant probability us-
ing $U_{IP}$ and $U_{EQ}O(1)$ times.

Proof. Based on the idea in [BV97, AC02], the fol-
lowing quantum circuit in Fig. 1solves the GL
problem with probability more than $\frac{1}{4}$ for the given
input $|0^{n}$ ) $|0^{m}$ ) $|0$). In the figure, $H$ and $X$ repre
sents the Hadamard transform and the NOT oper-
ation, respectively. $\tilde{U}_{IP}$ and its inverse $\overline{U}_{IP}^{\uparrow}$ are the
oracles obtained from Lemma 2. $\tilde{U}_{IP}$ operates as
follows:

$\tilde{U}_{IP}|x\rangle|0^{m})|0\rangle$ $=$ $|x\rangle|v_{x}\rangle((-1)^{a\cdot x}\alpha_{oe}|0)+\beta_{x}|1\rangle)$ ,
$\tilde{U}_{IP}|x\rangle|0^{m}\rangle|1\rangle$ $=$ $|x\rangle|v_{x}\rangle(\alpha_{x}|1\rangle-(-1)^{\mathrm{c}\cdot x}\beta_{l}|0))$ .

After querying $\tilde{U}_{IP}$ , we perform ameasurement
on the last qubit. If it is $|0\rangle$ , the computation is
continued as shown in the figure. Otherwise, we
repeat the computation from the beginning. (This
is not harmful since we need only $O(1)$ oracle calls,
which is amajor difference compared to Theorem
1.)

$\otimes 1$ :Quantum Circuit solving the GL problem

is
$\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{f}\circ\#_{\mathrm{o}\mathrm{W}\mathrm{S}}^{\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{u}\mathrm{m}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\mathrm{b}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}}.$

.
$\tilde{U}_{IP}(H_{n}\otimes I_{m+1})|0^{n}$ , $0^{m},0)$

$=$ $\frac{1}{\sqrt{N}}\sum_{x}|x\rangle$
$|v_{x}\rangle((-1)^{a}\cdot{}^{t}\alpha_{x}|0\rangle+\beta_{x}|1))$ ,

where $H_{n}$ and $I_{m+1}$ denote respectively the
Hadamard transform on $n$ qubits and the identity
operator on $m+1$ qubits. Clearly, the probabil-
ity of measuring $|0\rangle$ at the last qubit (successful
measurement) is $\frac{1}{N}\sum_{x}\alpha_{l}^{2}=p(0)\geq\frac{1}{2}+\epsilon$. There
fore, after the successful measurement and applying
NOT gate, we obtain the quantum state

$\frac{1}{\sqrt{Np(0)}}\sum_{x}(-1)^{a\cdot x}\alpha_{xx}|x)|v_{x})|1\rangle$ . (8)

We want to know the amplitude of the basis state
$|a$ , $0^{\mathrm{m}}$ , $1\rangle$ at the end of computation. It can be cal-
culated from the inner product of Eq. 8and the
following quantum state:

$\tilde{U}_{IP}(H_{n}\otimes I_{m+1})|a$, $0^{m}$ , 1) (9)

$=$ $\frac{1}{\sqrt{N}}\sum_{x}|x\rangle|v_{x}\rangle((-1)^{a\cdot x}\alpha_{ae}|1\rangle-\beta_{x}|0\rangle).(10)$

By simple algebra, the inner product of Eq. 8and
Eq. 9 is

$\frac{1}{N}\frac{1}{\sqrt{p(0)}}\sum_{x}\alpha_{x}^{2}=\sqrt{p(0)}\geq\sqrt{\frac{1}{2}+\epsilon}$.

Therefore, the probability of obtaining $|a$ , $0^{m}$ , $1\rangle$ is
bigger than $\frac{1}{2}$ if the measurement is successful. In
total, the probability of obtaining $a$ is bigger than

$\frac{1}{4}$ . Finally, we can check the answer $a$ with $U_{E}q$ .
This proves the theorem. $\square$

5Lower Bounds of Quantum
Query Complexity

In this section, we consider the lower bounds of
query complexity for the Goldreich-Levin problem.
Our tool for deriving those lower bounds is the
quantum adversary argument which has been pro
posed by [Amb02] and extended by [BS02]
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5.1 Quantum Lower Bounds By
Quantum Arguments

The main idea of [Amb02] for deriving the lower
bound on the query complexity of quantum ora-
cles is to consider aset of oracles simultaneously.
Readers are directed to [Amb02, BS02] for rigorous
explanation on the method of quantum adversary
argument.

[Amb02, BS02] have shown how to utilize the
quantum adversary argument for deriving query
complexity of noise-free oracles on various prob-
lems. On the contrary, our primary objective is to
utilize it to bound the query complexity of noisy or-
acles, e.g., the Goldreich-Levin problem and noisy
inner-product oracles. We show how to utilize the
quantum adversary argument for our purpose in the
followings.

5.2 Lower Bounds for the Quantum
Goldreich-Levin Problem

We want to use the quantum adversary argu-
ment [Amb02] to derive the lower bound of the
GL problem. However, it turns out that the def-
inition of $Uip$ on the input state other than $|x$ , $0^{m}$ )
is needed in order to obtain the phase change or-
acle. Note that [Amb02] requires that the oracle
answers $(-l)^{\cdot}$ $|x$ , $b\rangle$ on the input state $|x$ , $b\rangle$ . Un-
less $\alpha_{x}$ , $\beta_{x}\in\{0,1\}$ , it is not clear whether we can
utilize the quantum adversary argument.

Here, we consider the case when $\alpha_{x}$ , $\beta_{x}\in\{0,1\}$ .
It is easy to show that by using a $U_{IP}$ and a $U_{IP}^{\uparrow}$ ,
we can construct a $U\sim IP$ such that $\tilde{U}_{IP}|x$ , $0^{m}\rangle$ $=$

$(-1)^{a\cdot x}|x$ , $0^{m}\rangle$ if $\alpha_{x}$ $=$ 1 and $U_{IP}|x,0^{m}$ } $=$

$(-1)^{\overline{a\cdot xx}}|x,0^{m}\rangle$ if $\alpha_{x}=0$ .
For any two functions $f$ and 9, the error rate is

defined as

error$(f,g)=Prob_{x}[f(x)\neq g(x)]$ .

Let $f_{a}$ be the inner product function defined as
$f_{a}(x)=a\cdot x$ . Clearly, the set of all IP oracles with
bias $\epsilon$ and $\alpha_{x},\beta_{x}\in\{0,1\}$ is the same with the set
$F$ of all Boolean functions with domain $x\in\{0,1\}^{n}$

such that for any $g$ in $F$ , there exists an $f_{a}$ satisfying
error $(f_{a},g)$ $\leq(\frac{1}{2}-\epsilon)$ . We are interested in showing
the lower bound of the quantum GL problem in this
setting since we can utilize the quantum adversary
argument.

Consider aBoolean function $f$ : $\{0, 1\}^{n}\mathrm{x}$

$\{0,1\}^{n}arrow\{0,1\}$ such that:

1. $f(a, b)=1$ if and only if $a\cdot$ $b=1$ .

2. For $\forall a\neq 0$ , $\sum_{b}f(a, b)\geq\epsilon N$ . Otherwise,
$f(0, x)=0$ for all $x$ .

Then, certainly for $\forall a\neq 0$ , error(/a, $f_{a}$ ) $\leq\frac{1}{2}-\epsilon$ ,
which implies that $f$ is an inner product oracle with
bias $\epsilon$ . We consider amore restricted Boolean func-
than $f$ as follows.

Lemma 3For $\underline{10}\mapsto NN$ $\leq$ $\epsilon$ $<$ $\frac{1}{4}$ , there exists $a$

Boolean function $f$ : $\{0, 1\}^{n}\mathrm{x}\{0,1\}^{n}arrow\{0,1\}$ such
that:

1. $f(a, b)=1$ if and only if a. b $=1$ .

2. For $\forall a\neq 0$ , $\epsilon N\leq\sum_{b}f(a, b)\leq 3\mathrm{e}\mathrm{N}$ .

3. For $\forall b\neq 0$ , $\epsilon N\leq\sum_{a}f(a, b)\leq 3\mathrm{e}\mathrm{N}$ .

4. $\sum_{b}f(0, b)=\sum_{a}f(a, 0)=0$ .

Now, we are ready for showing the lower bound
of the GL problem with regard to the number of IP
queries.

Theorem 4(Bounding IP queries) Any quan-
turn algorithm solving the $GL$ problem with $con\sim$

stant probability requires either $\Omega(\sqrt{N})EQ$ queries
of $\Omega(\frac{1}{\sqrt{\epsilon}})IP$ queries.

We have shown the lower bound of IP queries
when the number of EQ queries is $o(\sqrt{N})$ . Next,
we consider the number of EQ queries regardless of
the number of IP queries.

It can be shown that for aBoolean function $g$

which satisfies error(g, $f_{a}$ ) $\leq(\frac{1}{2}-\epsilon)$ , the number
of such $a$ could be more than one. We want to prove
the upper and lower bounds of the number of such
$a$ :they could be as large as $O(1/\epsilon^{2})$ .

For our objective, let us define the following set
that consists of all integer $a\in\{0,1\}^{n}$ with regard
to aBoolean function $g:\{0,1\}^{n}arrow\{0,1\}$ .

$D_{g}^{\epsilon}= \{a|\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}(f_{a},g)\leq\frac{1}{2}-\epsilon\}$.

The following lemma shows that the size of $D_{g}^{\epsilon}$

can be as large as $\Omega(1/\epsilon^{2})$ .

Lemma 4For any $n\geq 2_{f}\exists g$ : $\{0, 1\}^{n}arrow\{0,1\}$

such that
$\frac{1}{32\epsilon^{2}}\leq|D_{g}^{\epsilon}|\leq\frac{1}{4\epsilon^{2}}$ ,

where $\ovalbox{\tt\small REJECT}^{1}2N\leq\epsilon<\frac{1}{4}$ and $N=2^{n}$ .

From Lemma 4we know that $g(x)$ , afunction of
length $2^{n}$ , can act as avalid noisy inner product ora-
cle for more than $\neg 32\epsilon 1$ number of oracles. Therefore
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given this $g$ , ariy quantum algorithm cannot decide
which, of such alot of possible answers, the real
answer of the GL problem unless the EQ oracle is
given. Namely, if $a$ , $b\in D_{g}^{\epsilon}$ then $g$ is avalid oracle
for the noisy inner product oracle correlated to $a$

and $b$ , which implies that given the pair $(g, EQ_{a})$

and $(g, EQ_{b})$ , the algorithm can only utilize the EQ

oracle to decide the answer.
Of $O(1/\epsilon^{2})$ number of possible answers, the al-

gorithm must decide one true answer, which intu-
itively means that the algorithm must search in a
subspace whose size is $O(1/\epsilon^{2})$ . Accordingly, the
lower bound of search in this subspace is $\Omega(1/\epsilon)$ .
We show the proof by Ambainis’ quantum adver-
sary argument.

We are ready for stating the lower bound of the
GL problem with regard to the number of EQ
queries.

Theorem 5(Bounding EQ queries) Any
quantu$m$ algorithm solving the $GL$ problem with

$anyN=2^{n} \geq 4and\frac{qu1}{2\sqrt{N}}\leq constantprobabilityreires$
$\Omega(\frac{1}{\epsilon}EQ\epsilon<\frac{1)}{4}$

.
queries, for

6Conclusions and Discussions
In this paper, we have shown that by using a

quantum noisy oracle defined as $O|x\rangle$ $|0^{m}\rangle$ $|0\rangle$ $=$

$\alpha_{x}|x_{1})|y_{1})|f(x))+\beta_{x}|x_{2}\rangle|y_{2}\rangle|\overline{f(x)}\rangle$ , any quan-
tum algorithm solving the GL problem requires ei-
ther $\Omega(\sqrt{N})$ EQ queries or $\mathrm{f}l(\frac{1}{\sqrt{\epsilon}})$ IP queries. Also

it is shown that 0 $( \frac{1}{\epsilon})$

’ EQ queries are necessary for
any quantum algorithm solving the GL problem.

If we suppose that the above noisy oracle satis-
fies the conditions that $(i)\alpha_{x}=\alpha=\sqrt{\frac{1}{2}+\epsilon}$ and

$\beta_{x}=\beta=\sqrt{\frac{1}{2}-\epsilon}$ for all $x\in\{0,1\}^{n}$ , and (ii)

$x_{1}=x_{2}=x$ and $y_{1}=y_{2}=0^{m}$ , then it is shown
that the quantum query complexity does not de
pend on the value of $\epsilon$ . More formally, any quantum
algorithm using aconventional noise free oracle can
be simulated by another quantum algorithm using
the above $\epsilon$-biased oracle, for any $0 \leq\epsilon\leq\frac{1}{2}$ , with a
sacrifice of aconstant factor of the query complex-
$\mathrm{i}\mathrm{t}\mathrm{y}$.

Combining the above results, we show implicitly
how difficult to clear auxiliary qubits for acertain
case. That is, when we are given an IP oracle with
bias as Definition 4and an EQ oracle, then 0 $( \frac{1}{\epsilon})$

EQ queries and $\Omega(\frac{1}{\sqrt{\epsilon}})$ IP queries are necessary for
clearing the auxiliary qubits of the outcome of the
given IP oracle. It should be interesting future

work to investigate other cases of clearing auxiliary

qubits.
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