gobooooboo 13250 20030 51-56

Recent Advancements of a Genetic Algorithm to
Solve the Set. Covering Problem

N B K B CE A

2N re = R EVRAE RO V=
Kakuzo Iwamura* Norio Okada! Yozo Deguchit

Abstract
A Genetic Algorithm to solve the Set Covering Problem has been pro-
posed by K.Iwamura, T.Sibahara, M.Fushimi and H.Morohoshi[3].Here
are shown some recent advancements of the algorithm through applying
* it to some medium sized input data.

1 Definitions and Domain Specific Knowledge

Let m, n be natural numbers, c; be positive integers, i.e. costs, (1 < j < n) and
Leta;;be0orlfor1 <i<m,1<j<n.
The following Integer Programming Problem,

minimize "
cr = Zc,-z,— (1)
=1
subject to
n
Y ayz; =1 (1<i<m) 69
J=1
z; € {0,1} 3)
is called set covering problem.

2 A Computational Study

Here, we give a survey of the computational achievements we have so far.
We hope .that -interested readers will consult N. Okada, K.Jwamura and Y.
Deguchi[4] and K.Iwamura, M. Horiike and T. Sibahara[5]. Note that the set
covering problem is an NP-complete problem.
*Department of Mathematics, Josai University, Japan; kiwamura@math.josai.ac.jp
tDepartment of Mathematics, Josai. University, Japan; nokada@math.josai.ac.jp
$Department of Mathematics, Josai University, Japan;ydeguchi@math.josai.ac.jp

51

2.1 Computing Time Dependency on Problem Size

First, we have carried out a computational experiment with Sotec Celeron 400
MHz to see how the Genetic Algorithm with Method 3 works as the input prob-
lem size goes up. Below in Table 1 are the results, where each input problem
data was randomly generated with density 3% and uni-cost objective coeffi-
cients, i.e. ¢c; =1 for all j. And still we have set Population size=50, Crossover
probability = 0.25, Mutation probability = 0.001, Final generation number =
1000. We can conclude that our Genetic Algorithm runs in proportion to m
and the same holds if we fix the number of the rows at 2000 and then vary the

number of columns n.

Table 1: Computing Time when m Varies

Problem size Computing time

200 X 2000 15 seconds
300 X 2000 16 seconds
400 X 2000 17 seconds
500 X 2000 17 seconds
640 X 2000 18 seconds

2.2 Computing Time Dependency on Parameters of the
Genetic Algorithm

We have carried out another computational experiment to see parameter depen-
dency of the Genetic Algorithm. We have randomly generated size 640 x 2000 ,
uni-cost , density 3% set covering input data, which we call 2000N16C. This time
we used NEC PC note PC-LM40H32D6 Celeron 400. Computational results ap-
pear in Table 2, where * denotes that we have tried 5 trials for the input data
2000N16C. Mean computing time and mean objective function values without *
denotes that we have tried 10 trials. The reason we halved the trials was the fact
that fluctuations in computing time was very small. For the most fluctuated
one with N = 800 , its computing time were 381,383,398,396,401with Auctua-
tions less than 6%. In the table, NV stands for population size in our Genetic
Algorithm, p.: crossover probability, p,, : mutation probability. Comparing
the first two lines, we see that letting the final generation number double makes
our GA’s computing time about two times large with a little bit good objective
function values. Comparing the first and the third , we see that changing the
values of p. and p,, doesn’t affect our GA’s computing time, yet worsens the
objective function values. To see how our Genetic Algorithm works when we
change N with all other parameters fixed, i.e., p. = 0.25, p, = 0.001, final gen-
eration number= 1000, we have got the results from the fourth line to the last

52

53

line. From these results we can say that computing time is almost proportional
to N and its objective function values improving a little bit.

Table 2: Parameter Dependency of our Genetic Algorithm

Final Objective function value Mean

NY{| p. | Pm generation computing
number | Best | Worst | Mean ___ time

50 | 0.25 | 0.001 1000 |64 |67 65.4 ~ 23.6 sec
50 | 0.25 | 0.001 2000 64 66 64.2* *46.2 sec
50 | 0.50 | 0.100 1000 77 80 78.7 21.5 sec
25 1 0.25 | 0.001 1000 66 70 67.2 11.6 sec
75 | 0.25 | 0.001 1000 63 67 65.2 34.7 sec
100 | 0.25 | 0.001 1000 63 67 64.9 46.2 sec
200 | 0.25 | 0.001 1000 61 66 63.4* *93.2 sec
400 | 0.25 | 0.001 1000 63 66 64.0* *196.0 sec
800 { 0.25 | 0.001 1000 62 65 63.4* *391.8 sec

2.3 Input Data Dependency of our Genetic Algorithm and
a Comparison between our Genetic Algorithm and
LINGO 4

For 2 input data in Table 3, computing time of LINGO4 is about 36 to 40 times

greater than that of our GA and so we think that as the density of the input
problem data grows up, our GA becomes more and more practical in the real

world.

In Table 4 are shown the computational results for the input data with

Table 3: Comparison between our GA and LINGO4 for 2 input data of size
999 x 999, density 15% with uni-cost

Prob. GA or | VBC(ttime) | VWC VBC/
Name LINGO4 | VFFS(time) | VCFS(time) VCFS
Fd15-Aunicost GA 21(00:00:50) | 23
LINGO4 | 23(00:36:08) | 21(00:40:29) 1.000
Fd15-Bunicost GA 21(00:00:52) | 24
LINGO4 | 22(00:32:28) | still 22(00:40:14) | 0.955

Table 4: Comparison between our GA and LINGO4 for 4 input data of size
999 x 999, density 1%

Prob. GAor | VBC(ttime) | VWC Approximation
Name LINGO4 | VFFS(time) | VCFS(time) ratio
2Ed01-Aunicost GA 162(00:08:52) | 165 -
LINGO4 | 147(00:03:06) | 142(00:27:32) 1.141
5Ed01-Bumicost | GA | 160(00:09:27) | 163
LINGO4 | 153(00:02:13) | 144(00:06:46) 1.111
2Ed01UR1t010C GA 422(00:10:24) | 427
LINGO4 | 405(00:01:15) | 383(00:36:09) 1.102
2Ed01-Dunicost GA 168(00:09:17) | 170 :
LINGO4 | 146(00:02:03) | 139(00:04:07) 1.209

density 1%. Here, we see that our GA takes much more time than LINGO4

with poorer objective function value and so we see that LINGO4 has defeated

our GA. A
We have further tested for 5 input data with density 3% in Table 5 and

found that for these 3% input data, our GA has recovered its practicality once
again. Total approximation ratio for the 13 input problem data, our GA’s

. mean approximation ratio is 1.075 and so our GA is about 8% worse than
LINGO4.Yet, we believe that our GA still keeps its practicality for input data
with density more than or equal to 3%. As for the 5 input data with density
2% in Table6, differences in computing time between our GA and LINGO4 is
not clearcut. And so getting computational results for more bigger input data,
say, 2500 rows and 2500 columns with different densities are needed. We will
carry out such computational experiments in the succeeding paper.

3 Conclusion

We can say that although our Genetic Algorithm cannot find an optimal solution
of the set covering problem, it, can find approximate solutions whose objective
function values are within about 35% worse than the objective function values
LINGO4 finds.

54

i

Table 5: Comparison between our GA and LINGO4 for 5 input data of size
999 x 999, density 3%

Prob. GA or | VBC(ttime) VWC Approximation
| Nami_ LINGO4 | VFFS(time) VCFS(time) ratio

2Ed03-Aunicost GA 80(00:01:58) 82

LINGO4 | 71(00:11:42) still 71(00:40:26) 1.127
2Ed03-Bunicost GA 77(00:01:53) 79

LINGO4 | not found(00:40:00)
2Ed03UR1t010C GA 114(00:02:07) 116

LINGO4 | 109(00:01:13) 99(00:12:45) 1.152
2Ed03UR5t010D GA 442(00:01:57) 448

LINGO4 | not found(00:40:00)
2Ed03UR5t010E GA 441(00:01:57) 457

LINGO4 | 424(00:08:21) 423(00:35:24) 1.043

Table 6: Comparison between our GA and LINGOA4 for 5 input data of size
999 x 999, density 2% with uni- cost

Prob. GA or | VBC(ttime) | VWC Approximation
Name | LINGO4 | VFFS(time) | VCFS(time) ratio
999X999d20ct3A02 | GA 105(00:03:18) | 108
LINGO4 | 94(00:08:09) | 92(00:55:19) 1.141
999X999d20ct3B02 | GA | 101(00:10:38) | 108
LINGO4 | 92(00:07:20) | 86(00:25:32) 1.174
999X999d20ct3C02 | GA | 103(00:03:11) | 107
LINGO4 | 93(00:07:32) | 93(01:00:00) 1.108
999X999d20ct3D02 | GA | 101(00:06:20) | 103
LINGO4 | 94(00:09:31) | 94(01:00:00) 1.074
999X999d20ct3E02 | GA | 100(00:03:08) | 104
LINGO4 | 94(00:09:27) | 87(00:20:43) 1.149

References

[1]

2l

8]

[4]

(5]

K.Iwamura[1978], Developing an efficient program code to solve the set
partitioning problem, part I(in Japanese),Abstracts of Spring Conference
of the Operations Research Society of Japan(1978), pp.107-108.

K.Iwamura and B.Liu[1996],A Genetic Algorithm for chance constrained
programming ,Journal of Information & Optimization Sciences, vol. 17,
no. 2, pp.409-422, 1996.

K.Iwamura, T.Sibahara, M.Fushimi and H.Morohoshi[2000], Set Covering
Problem, Genetic Algorithm and Its Domain Specific Knowledge, in Pro-
ceedings of the Second Asia-Pacific Conference on Genetic Algorithms and
Applications, May 3-5, 2000, Global-Link Publishing Company, Hong Kong,
2000,pp.250-257.

N.Okada, K.Iwamura and Y.Deguchi, A Computational Study of a Genetic
Algorithm to Solve the Set Covering Problem, presented to The First Inter-
national Conference on Information and Management Science, May 27-31,
2002,Xi’an, China; to appear in Journal of Interdisciplinary Mathematics.

K.Iwamura , M.Horiike and T. Sibahara, Input Data Dependency of a
Genetic Algorithm to Solve the Set Covering Problem, Tsinghua Science
and Technology, vol.8, no.1, pp.14-18,2003.

56

