
Recent Advancements of a Genetic Algorithm to
Solve the Set Covering Problem

Kakuzo Iwmura* Norio Offida\dagger Yozo Daeuchi\ddagger

AR\cdot.

1 Definitions and Domain Specific Knowledge
costs, (1$\leq \mathrm{j}\leq n)$ and

(1)

$\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{j}_{\mathrm{G}}\mathrm{c}\mathrm{t}\infty$

$\sum_{\mathrm{j}=1}^{n}*_{j}x_{j}\geq 1$ $(1\leq:\leq m)$ (2)

$x_{j}\in\{0,1\}$ (3)
$\dot{\mathrm{B}}$ cdal set $\ovalbox{\tt\small REJECT}$ prvbkm

2AComputational Study

数理解析研究所講究録 1325巻 2003年 51-56

51



2,1 Computing Time Dependency on Problem Size
First, we have carried out acomputational experiment with Sotec Celeron 400
MHz to see how the Genetic Algorithm with Method 3works as the input prok
Iem size goes up. Below in Table 1are the results, where each input problem
data was randomly generated with density 3% and $\mathrm{u}\mathrm{n}\mathrm{i}$-cost objective coeffi-
cients, i.e. $c_{j}=1$ for all $j$ . And still we have set Population size$=50$, Crossover
probability $=0.25$, Mutation probability $=0.001$ , Final generation number $=$

1000. We can conclude that our Genetic Algorithm runs in proportion to $m$

and the same holds if we fix the number of the rows at 2000 and then vary the
number of columns $n$ .

Table 1: Computing Time when $m$ Varies

$\overline{\frac{\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}1\mathrm{e}\mathrm{m}\mathrm{s}1\mathrm{z}\mathrm{e}\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}}{200\mathrm{X}20015\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{s}}}$

300 $\mathrm{X}$ 2000 16 seconds
400 $\mathrm{X}$ 2000 17 seconds
500 $\mathrm{X}$ 2000 17 seconds
640 $\mathrm{X}$ 2000 18 seconds

2.2 Computing Time Dependency on Parameters of the
Genetic Algorithm

We have carried out another computational experiment to see parameter depen-
dency of the Genetic Algorithm. We have randomly generated size 640 $\mathrm{x}$ 2000 ,
$\mathrm{u}\mathrm{n}\mathrm{i}$ most, density 3% set covering input data, which we call $2000\mathrm{N}16\mathrm{C}$ . This time
we used NEC PC note PC-LM40H32D6 Celeron 400. Computational results ap-
pear in Table 2, where *denotes that we have tried 5trials for the input data
$2000\mathrm{N}16\mathrm{C}$ . Mean computing time and mean objective function values without $*$

denotes that we have tried 10 trials. The reason we halved the trials was the fact
that fluctuations in computing time was very small. For the most fluctuated
one with $N=800$ , its computing time were 381,383,398,396,401 fluctua-
tions less than 6%. In the table, $N$ stands for population size in our Genetic
Algorithm, $p_{\mathrm{c}}$:crossover probability, $p_{m}$ : mutation probability. Comparing
the first two lines, we see that letting the final generation number double makes
our GA’s computing time about two times large with alittle bit good objective
function values. Comparing the first and the third , we see that changing the
values of $p_{\mathrm{c}}$ and $p_{m}$ doesn’t affect our GA’s computing time, yet worsens the
objective function values. To see how our Genetic Algorithm works when we
change $N$ with all other parameters fixed, i.e., $p_{\mathrm{c}}=0.25$ , $=0.001$ , final gen-
Muration number$=1000$, we have got the results from the fourth line to the last

52



line. From these results we can say that computing time is almost proportional
to N and its objective function values improving alittle bit.

Table 2: Parameter Dependency of our Genetic Algorithm

2.3 Input Data Dependency of our Genetic Algorithm and
aComparison between our Genetic Algorithm and
LINGO 4

For 2input data in Table 3, computing time of LINGO4 is about 36 to 40 times
greater than that of our GA and so we think that as the density of the input
problem data grows up, our GA becomes more and more practical in the real
world.

In Table 4are shown the computational results for the input data with

Table 3: Comparison between our GA and LINGO4 for 2input data of size
999 $\mathrm{x}999$ , density 15% with uni-cost

53



Table 4: Comparison between our GA and LINGO4 for 4input data of size
999 x999, density 1%

density 1%. Here, we see that our GA takes much more time than LINGO4
with poorer objective function value and so we see that LINGO4 has defeated
our $\mathrm{G}\mathrm{A}$ .

We have further tested for 5input data with density 3% in Table 5and
found that for these 3% input data, our GA has recovered its practicality once
again. Total approximation ratio for the 13 input problem data, our GA’s
mean approximation ratio is 1.075 and so our GA is about 8% worse than
$\mathrm{L}\mathrm{I}\mathrm{N}\mathrm{G}\mathrm{O}4.\mathrm{Y}\mathrm{e}\mathrm{t}$, we believe that our GA still keeps its practicality for input data
with density more than or equal to 3%. As for the 5input data with density
2% in Table6, differences in computing time between our GA and LINGO4 is
not clearcut. And so getting computational results for more bigger input data,
say, 2500 rows and 2500 columns with different densities are needed. We will
carry out such computational experiments in the succeeding paper.

3Conclusion
We can say that although our Genetic Algorithm cannot find an optimal solution
of the set covering problem, it. can find approximate solutions whose objective
function values are within about 35% worse than the objective function values
LINGO4 finds.

54



Table 5: Comparison between our GA and LINGO4 for 5input data of size
999 x999, density 3%

Table 6: Comparison between our GA and LINGO4 for 5input data of size
999 $\mathrm{x}999$, density 2% with $\mathrm{u}\mathrm{n}\cdot-$ cost

55



References
[1] K.Iwamura[1978], Developing an efficient program code to solve the set

partitioning problem, part I(in Japanese),Abstracts of Spring Conference
of the Operations Research Society of Japan(1978), pp.107-108.

[2] K.Iwamura and B.Liu[1996],A Genetic Algorithm for chance constrained
programming ,Journal of Information 8Optimization Sciences, vol. 17,
no. 2, pp.409-422, 1996.

[3] K.Iwamura, T.Sibahara, M.Pushimi and H.Morohoshi[2000], Set Covering
Problem, Genetic Algorithm and Its Domain Specific Knowledge, in $Pr\sigma-$

ceedings of $\theta\iota e$ Second Asia-Pacific Conference on Genetic Algorithms and
Applications, May 3-5, 2000, Global-Link Publishing Company, Hong Kong,
$20\mathrm{t}\mathrm{D},\mathrm{p}\mathrm{p}.2\mathfrak{W}- 257$ .

[4] N.Okada, K.Iwamura and Y.Deguchi, AComputational Study of aGenetic
Algorithm to Solve the Set Covering Problem, presented to The First Inter-
national Conference on Information and Management Science, May 27-31,
2002,Xi’an, China; to appear in Journal of Interdisciplinary Mathematics.

[5] K.Iwamura , M.Horiike and T. Sibahara, Input Data Dependency of a
(Znetic Algorithm to Solve the Set Covering Problem, Tsinghua Science
and Technology, vo1.8, no.1, pp.14-18,2003.

56


