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This article is atribute to the late Professor Rich Pelz who suddendly passed away last
September. Rich was one of my best friends on the globe for along period of time. Our
friendship began at Los Alamos in New Mexico one day in 1990. He visited the Center for
Nonlinear Studies where Iworked as apost-doc, and gave aseminar maybe on the parallel
computation of turbulence. Soon after his seminar, Iremember vividly, we began chatting
on the Crow instability along avortex tube and other thing. Since then we had many many
opportunities to talk, to exchange ideas, to eat and drink together in the world.

Our mutual interest was in formation of singularity for the fluid equations, in particular, in
relation with the vortex motion. The following is an excerpt from the manuscript we were
preparing for publication, which Kimura modified for this volume.

The vortex dodecapole [1], [2] [3], [4], the superposition of three equal-strength, orthogonal,
vortex quadrupoles, is an intriguing though specific candidate initial condition for afinite-
time singularity (FTS) in ideal hydrodynamics.

In this paper, we shall examine perhaps the simplest model of the vortex dodecapole in
which we replace the vortex tubes with straight vortex filaments of infinitesimal thickness.
The filament dodecapole, which is shown in figure , has three orthogonal vortex quadrupoles
parallel to the $\mathrm{x}$, $\mathrm{y}$ and $\mathrm{z}$ axes, and let us call these quadrupoles x-, y- and z-quadrupole,
respectively.

First we locate arepresentation point at the intersection of one of the $\mathrm{z}$-quadrupole with the
plane of $z=0$ in the first quadrant of the $\mathrm{x}\mathrm{y}$-plane, and call it $\mathrm{P}=(x_{0}, y_{0},0)$ . The induced
velocity vector at $\mathrm{P}$ by the other filaments lies on the $\mathrm{x}\mathrm{y}$-plane, whose components are;

$u=$ (1)

$v$ $=$ (2)
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Figure 1: The filament dodecapole

Approximately the above equations provide an autonomous dynamical system for the motion
of $x_{0}(t)$ and $y_{0}(t)$ , and hereafter we shall concentrate on these equations.

To seek the similarity solutions for (1) and (2), we assume that all the variables develop with
the same time dependence, $f(t)$ , and substitute

$x_{0}(t)=f(t)\xi$ , $y_{0}(t)=f(t)\eta$ . (3)

into the equations [5]. Then we obtain

$f\dot{f}\xi$ $=$ $\frac{1}{2\eta}-\frac{\eta}{2(\xi^{2}+\eta^{2})}-\frac{2\xi}{(\eta-\xi)^{2}+\xi^{2}}+\frac{2\xi}{(\eta+\xi)^{2}+\xi^{2}}$ (4)

$fj\eta$ $=$ $- \frac{1}{2\xi}+\frac{\xi}{2(\xi^{2}+\eta^{2})}+\frac{2\eta}{(\eta-\xi)^{2}+\eta^{2}}-\frac{2\eta}{(\eta+\xi)^{2}+\eta^{2}}$. (5)

Next we separate variables into the time and space parts by setting

$fj=c$ (6)

where $c$ is areal constant determined by 4and $\eta$ which satisfy

$\frac{1}{\xi}[\frac{1}{2\eta}-\frac{\eta}{2(\xi^{2}+\eta^{2})}-\frac{2\xi}{(\eta-\xi)^{2}+\xi^{2}}+\frac{2\xi}{(\eta+\xi)^{2}+\xi^{2}}]$

$=$ $\frac{1}{\eta}[-\frac{1}{2\xi}+\frac{\xi}{2(\xi^{2}+\eta^{2})}+\frac{2\eta}{(\eta-\xi)^{2}+\eta^{2}}-\frac{2\eta}{(\eta+\xi)^{2}+\eta^{2}}]$ . (7)
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Figure 2: Trajectories of (1) and (2) with different initial conditions.

Letting $r=\eta/\xi$ , (7) reduces to $4r^{8}-80r^{6}+17r^{4}-80r^{2}+4=0$ which has the solutions

$\{$

$r_{1,2}^{2}=s_{+}\pm\sqrt{s_{+}^{2}-1}$

$r_{3,4}^{2}=s_{-}\pm\sqrt{s_{-}^{2}-1}$

(8)

where $s_{\pm}=5 \pm\frac{\sqrt{391}}{4}$ . The real positive solutions are $r=4.4538127166\ldots$ and the inverse.

The time dependence can be found by solving (6) with an initial condition $f(0)=1$ , and we
find

$f=\sqrt{2ct+1}=\sqrt{2c(t-t_{crit})}$ (9)
where $t_{\mathrm{C}\mathrm{f}\dot{*}t}=- \frac{1}{2\mathrm{c}}$ . According to the sign of $c$ the system either contracts (if $c<0$) or expands
(if $\mathrm{c}>0\rangle$ , respectively. Using $r$ and $\xi$ the constant $c$ has the following form

$\mathrm{c}=\frac{4-16r^{2}+15r^{4}}{2\xi^{2}r(r^{2}+1)(r^{4}+4)}$. (10)

We can see from the analysis above that the trajectory of $\mathrm{z}\mathrm{o}$ , $y_{0}$ is astraight line of slope $r$

which crosses the origin at $t=t_{\mathrm{c}rit}$ , and the critical time is afunction of the initial position
and $r$ only.

Alinear stability analysis of the similarity solution can be conducted by introducing amoving
coordinates with the similarity solution and anew time variable. [6] The detail would be
presented elsewhere.

Figure is aplot of trajectories of (1) and (2) with different initial conditions marked by X.
We see that each trajectory approaches to aline with aslope of $r$ obtained by the abov
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discussion and then goes to the origin. We have verified that the calculated collapse time
from (10) provides asatisfactory estimate once the trajectory is close to the straight line.

The last time we met was on July 16th in Kyoto. After discussion about extension of the
subject in this article at RIMS, we went out to the “Yoiyama” of the Gion festival. The
noise and crowd were overwhelming and bewildering, but we strolled around energetically.
At one spot on asmall street we stopped and stayed rather long without aword, where a
large group of people in the festival costume were playing the Gion festival music endlessly.
Even now, that sound of music, slow and monotone with flutes, bells and drums, remains in
my head as arequiem for Rich.

References

[1] O. N. Boratav and R. B. Pelz, “Direct Numerical Simulation of Ransition to Turbulence
from aHigh-Symmetry Initial Condition” , Phys. Fluids 6(1994) 2757.

[2] 0. N. Boratav and R. B. Pelz, “On the Local Topology Evolution of aHigh-Symmetry
Flow”, Phys. Fluids, (1995).

[3] 0. N. Boratav and R. B. Pelz, “Locally isotropic pressure Hessian in ahigh-symmetry
flow,” Physics of Fluids, 7(1995) 895.

[4] R. B. Pelz and 0. N. Boratav, “On the possible Euler singularity during transition in
ahigh-symmetry flow,” in Proceedings of Small-scale structures in three-dimensional
hydrodynamic and magnetohydrodynamic turbulence” M. Meneguzzi, A. Pouquet, and
$\mathrm{P}$-L. Sulem eds., Lecture Notes in Physics, (Springer, Berlin), 1995, pp. 25-32.

[5] Y. Kimura. “Similarity solutions of tw0-dimensional point vortices” J. Phys. Soc. Japan,
56 (1987) 2024-2030.

[6] Y. Kimura. “Parametric motion of complex-time singularity toward real collaps\"e’’ Phys-
ica, D46 (1990) 439-448

13


