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概要

We can define afinite upper half plane as an analogue of the
Poincare upper half plane. And we can define some graphs on this
plane. A.Terras [9] gave conjecture on the distribution of the eigen-
values of these graphs. This paper is concerning this conjecture.

1Introduction
Let $F_{q}$ be afinite field with $q$ elements ($q$ odd). Fix anon-square element

$\delta$ $\in F_{q}$ :
$H_{q}:=F_{q}(\sqrt{\delta})-F_{q}=\{x+y^{\sqrt{\delta}\angle}|x, y\overline{\gamma}- 0\in F_{q}\}$

is called afinite upper half plane. It is modeled on the real one. And

the matrix $g=(\begin{array}{ll}a bc d\end{array})$ $\in G=GL(2, F_{q})$ acts transitively on $z\in H_{q}$ by

fractional linear transformation:

$gz= \frac{az+b}{cz+d}\in H_{q}$ .

We can identify $G/K,\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}K$ is asubgroup of $G$ which fixes $\sqrt{\delta}$ . That is,

K $=$ { $(\begin{array}{ll}a b\delta b a\end{array})$ |a, b $\in F_{q}$ , $a^{2}-\delta b^{2}\lrcorner\Gamma$ 0}, (1)

which is isomorphic to the multiplicative group $F_{q}(\sqrt{\delta})^{*}$ .
We define a $\mathrm{G}$-invariant distance $d$ between points $z$ and $w\in F_{q}$ :

$d(z,w)= \frac{N(z-w)}{{\rm Im} z\cdot{\rm Im} w}$ ,

where $z$ $=x+y\sqrt{\delta}\in H_{q}$ , and we denote $N(z)=x^{2}-\delta y^{2}$ and ${\rm Im} z=y$ .
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Definition 1.1 ([9]). Define a graph $X_{q}(\delta,$a) for a $\in F_{q}$ , as follows. Let the
vertices of the graph be the points of $H_{q}$ . Draw an edge between two vertices z,w
in $H_{q}$ if and only if $d(z,w)=a$. Then define an adjacency matrix $A_{a}$ by

$(A_{a})_{z,w}=\{$
1, if $z$ is adjacency to $w$ ,
0, otherwise.

A.Terras [9] gave the conjecture about the distribution of these eigenvalues
as follow:

Conjecture 1.2. The distribution of the eigenvalues of the upper $hdf$ plane
graphs is the semi-circle or SatO-Tate distribution. That is,

$\frac{1}{q-1}\#\{\lambda|\frac{\lambda}{\sqrt{q}}\in E\}\sim\frac{1}{2\pi}\int_{E}\sqrt{4-x^{2}}dx$ , as q $arrow\infty$ ,

for any Borel set E of the interval [-2, 2].

As remark, we have to neglect “multiplicities” and look only at the $q-1$
eigenvalues. So in the next section, we will refer “multiplicities” and eigenvalues
which R.Evans [3] gave as exponential sum known as Soto Andrede sum. And
we also refer the evidence that we believed the conjecture to be true. In section
3, we with refer the new fact.

2Preliminary
In this section,we will mention the properties and the fact about the finite upper
half plane graphs.

Proposition 2.1 ([9]). Assume that $q=p^{r}$ , where $p$ is an odd prime. Suppose
that $\delta$ as a non-square in $F_{q}$ . Let $a\in F_{q}$ .
1) The graph $X_{q}(\delta, a)$ is $a(q+1)$-regular graph provided that a $\overline{\gamma}-\angle 0$ or U.
$B)$ The graph $X_{q}(\delta,a)$ and $X_{q}(\delta c^{2}, ac^{2})$ are isomorphic for any $c\in F_{q}^{*}$ .
3) The graph $X_{q}(\delta,a)$ is a connected, provided that $a\neq 0,4\delta$ . In fact the graph
$X_{q}(\delta, a)$ is a Cayley graph for the affine group

$Aff(q)=\{$ $(\begin{array}{ll}y x0 1\end{array})$ $|x$ , $y\in F_{q}$ , $y\neq 0\}$ ,

using the generators

$S_{q}(\delta, a)=\{$ $(\begin{array}{ll}y x0 1\end{array})$ $|x$ , $y\in F_{q},a^{2}-\delta b^{2}\neq 0\}$ .

4) The $K$-double cosets for $G$ are represented by the sets $S_{q}(\delta, a)$ ,for $a\in F_{q}$ .
And we give the definition ofRamanujan graph, which was made by Lubotzky,

PhiUips,and Sarnak [8]
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Definition 2.2 ([8]). We say that a $k$ -regular graph is Ramanujan if for all
eigenvalues Aof the adjacency matrix of the graph such that $|\lambda|7\leq k$ , we have

$|\lambda|\leq 2\sqrt{k-1}$.

The eigenvalues of our graphs is given by R.Evans [3] as follow. Let $\chi$ be
amultiplicative character of $F_{q}^{*}$ of order $q-1$ and let $\omega$ be amultiplicative
character of $F_{q^{2}}^{*}$ of order $q^{2}-1$ . Denote $\epsilon$

$=\chi^{\mathrm{Z}_{\frac{-1}{2}}}$ , or aquadratic character of
$F_{q}^{*}$ . Then the eigenvalues are

$\sum_{v\in F_{q}}.\chi^{\mathrm{j}}(v)\epsilon(\delta(v-1)^{2}+va)$
, (2)

and

$\alpha\in F_{q^{2}}\sum_{N\alpha=1}\omega^{j}(\alpha)\epsilon(\alpha+\frac{1}{\alpha}-2+\frac{a}{\delta})$

. (3)

The sum (3) is called SotO-Andrade sum. Suppose that $\lambda_{0}(a)_{q}=q+1$ . Let
$\lambda_{j}(a)_{q}$ , $j=1$ , $\cdots$ , $L_{\frac{-1}{2}}$ be (2) for $1\leq j\leq L_{\frac{-1}{2}}$ , and Aj $(a)_{q},j=L+\underline{1}2’\ldots,q-1$

be (3) for $1 \leq j\leq\frac{q-1}{2}$ . Then $\lambda_{0}(a)_{q}$ has multiplicity 1. $\lambda_{1_{\frac{-1}{2}}}$ has multiplicity
$q$ . For $j=1$ , $\cdots$ , $q_{\frac{-\mathrm{a}}{2}}$ , $\lambda_{\mathrm{j}}(a)_{q}$ has multiplicity $q+1$ . For $j=q_{\frac{+1}{2}}$ , $\cdots$ , $q-1$ ,
$\lambda_{j}(a)_{q}$ has multiplicity $q-1$ .

Terras [9] also conjectured that the upper half plane graph is Ramanujan
graph, or above nontrivial eigenvalues is bounded by $2\sqrt{q}$ because the valency
is $q+1$ by PrOpOsitiOn2.1. Katz [4] and Li [6] [7] independently has been proved
this to be true, using different methods.

So the eigenvalues distribute over the closed interval [-2, 2] as in Conjec-
ture1.2. Moreover in COnjecture1.2, we mean that “multiplicity” is not as
usual, but the above choice of $j$ . For instance, for the graph $X_{5}(2,2)$ or
$q=5$ , $\delta=2$ , $a=2$, the eigenvalues whose multiplicities are neglected in the view
of COnjecture1.2 are 4eigenvalues $\lambda_{1}(2)_{5}$ , $\lambda_{2}(2)_{5}$ , $\lambda_{3}(2)_{5}$ , $\lambda_{4}(2)_{5}$ , and A5 $($2 $)_{5}$ .
Actually, we have $\lambda_{1}(2)_{5}=\lambda_{2}(2)_{5}=-2$ , $\lambda_{3}(2)_{5}=3$ , and $\lambda_{4}(2)_{5}=1$ . Then the
eigenvalues without multipicities are 3 $\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{s}-2,3$, and 1.

Kuang [5] proved that the first moment and the second moment, or average
and variance of the distribution asymptotically match those of the semi-circle
distribution. It is as follows.

Theorem 2.3 ([5]). The first moment and the second moment of the $dstribu-$

tion of the set $\{\lambda:(a)_{q}/\sqrt{q}|i=1, \cdots, q-1\}$ asymptotically match with those
of the Wiger or SatO-Tate semi-circle distribution. That is,

$\lim_{qarrow\infty}\frac{1}{q-1}.\sum_{*=1}^{q-1}\frac{\lambda_{i}(a)_{q}}{\sqrt{q}}=0$
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$\lim_{qarrow\infty}\frac{1}{q-1}\sum_{i=1}^{q-1}(\frac{\lambda_{i}(a)_{q}}{\sqrt{q}})^{2}=1$ .

And the limits are unifo$rm$ and independent of $a\neq 0$ and $\delta$ as long as $a_{\overline{\Gamma}}4\angle\delta$ .

Kuang proved [5] this by using that eigenfunctions of adjacency matrix of
$X_{q}(\delta,a)$ are corresponded with the orthonormal basis of $L^{2}(K\backslash G/K)$ , where
$L^{2}(K\backslash G/K)=\{f : Garrow \mathbb{C}|f(kxh)=f(x)\forall k, h\in K,\forall x\in G\}$ . They are also
called spherical functions. See Terras [9] for spherical functions. Since the limits
in TheOrem2.3 are independent of the choice of $a_{\overline{r}^{\angle}}0,46$ , Kuang also stated the
following which is the evidence for one of the modifications of COnjecture1.2.

Conjecture 2.4 ([5]). Given $q$ , we fix $\delta$ . Let Abe the multi-set of all eigen-
values of the $q-2$ graphs $X_{q}(\delta, a)$ , where a runs through $F_{q}^{*}$ with a $7\leq 4\delta$ . A
have asymptotic semi-circle distribution.

Corollary 2.5 ([5]). The first and second moments of distribution of the set

$\{\frac{\lambda_{\dot{l}}(a)_{q}}{\sqrt{q}}|i=1$ , $\cdots$ , $q-1,a\neq 4\delta\in F_{q}^{*}\}$

asymptotically match with those of the Wigner or SatO-Tate semi-circle distri-
bution. That is,

$\lim_{qarrow\infty}\frac{1}{(q-1)(q-2)}$
$a_{7}^{\mathrm{r}_{-}}4 \delta\sum_{a\in F_{q}}.,\sum_{\dot{|}=1}^{q-1}\frac{\lambda_{}(a)_{q}}{\sqrt{q}}=0$

,

$\lim_{qarrow\infty}\frac{1}{(q-1)(q-2)}\sum_{a_{7^{-}}^{A}4\delta}a\in F_{q}^{\cdot}$

$\cdot.\sum_{=1}^{q-1}(\frac{\lambda_{\dot{l}}(a)_{q}}{\sqrt{q}})^{2}=1$.

There are some modifications of COnjecture1.2. For example, the multi-set
of all eigenvalues of the $q-2$ graphs $X_{q}(\delta, a)$ , where $q$ is given, $\delta$ is fixed,
and $a$ runs through $F_{q}^{*}$ with $a\neq 4\mathrm{J}$ , is conjectured to have asymptotic semi-
circle distribution, while the evidence for “Yes” is given by COrOllary2.5. By
PrOpOsitiOn2.1, it was proved that there are only $q-2(q+1)$-regular graphs
on $H_{q}$ , and that for different non-square elements $\delta_{1}$ and $\delta_{2}$ in $F_{q}$ , there is a
unique pair $a_{1}$ and a2 in $F_{q}$ such that $X_{q}(\delta_{1}, a_{1})$ and $X_{q}(\delta_{2}, a_{2})$ are isotropic.

3Main Results
In this section, we will give the new results and prepare for it. TheOrem3.1 and
TheOrem3.2 are for the COnjecture1.2. Moreover, in next section, we will refer
the proof of these theorems, and consider how about COnjecture2.4
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Theorem 3.1. The third moment moment of the distribution of the set $\{\lambda_{i}(a)_{q}/\sqrt{q}|$

$i=1$ , $\cdots$ , $q-1\}$ asymptotically matches with those of the SatO-Tate semi-circle
distribution. That is,

$\lim_{qarrow\infty}\frac{1}{q-1}\sum_{i=1}^{q-1}(\frac{\lambda_{i}(a)_{q}}{\sqrt{q}})^{3}=0$

And the limits are uniform and independent of $a_{\overline{\tau}}\leq 0$ and $\delta$ as long as $a_{\overline{7}}\leq 4\delta$.

Theorem 3.2. For $a\neq 0,2\delta,4\delta$ , the forth moment moment of the distribution
of the set $\{\lambda:(a)_{q}/\sqrt{q}|i=1, \cdots, q-1\}$ asymptotically matches with those of
the SatO-Tate semi-circle distribution. That is,

$\lim_{qarrow\infty}\frac{1}{q-1}\sum_{=1}^{q-1}(.\frac{\lambda.(a)_{q}}{\sqrt{q}})^{4}=2$.

And the limits are unifo$m$ and independent of $a_{\ulcorner}0\lrcorner,2\delta$ , $4\delta$ and $\delta$ .
For $a=26$, the forth moment of the above set doesn’t asymptotically match with
those of semi-circle distribution.

The third and forth moments of the semi-circle distribution are, respectively,
0and 2. Now, we give one definition.

Definition 3.3 ([1, 9]). A connected graph $X(V, E)$ is highly regular with col-
lapsed adjacency matrix $C=(c_{\dot{l}j})$ if only if for every vertex $v\in V$ , there is
partition of $V$ into sets $V_{\dot{l}}$ , $i=1$ , $\cdots$ , $n$ , with $V_{1}=\{v\}$ , such that each vertex
$y\in V_{\dot{1}}$ is adjacent to exactly $C:j$ vertices in $V_{j}$ .

Proposition 3.4 ([9]). The graph $X_{q}(\delta, a)$ is highly regular. Also, the entries

of the collapsed adjacency matrix of $X_{q}(\delta, a)$ are as follow:

$\alpha_{j}.=\{$

$q+1$ , if (cij) $=(0, a)$ , $(4\delta,a-4\delta)$ ,
2, if $\Delta_{\dot{1}j}$ is square,
1, if $\Delta_{:j}=0$ ,
0, if $\Delta_{:j}$ is non-square,

(4)

where $\Delta_{j}.\cdot=\delta(i-j)^{2}+a\delta(a-2i-2j)+aij$ .

Proof. Let $F_{q}=$ { $0,a_{2}$ , a3, $\cdots,a_{q}$ }. Given an arbitrary vertex $v\in V$ , let
$S_{1}=\{v\}$ , and for $i\leq 2$ , let $s_{:}=\{\tau(g)|g\in S_{q}(\delta, a:)\}$ , where $\tau$ is an
element of $GL(2,F_{q})$ such that $\tau(\sqrt{(}\delta)=v)$ . Notice that for $w_{1}\in S$: and
$w_{2}\in S_{j}$ , $w_{1}=\tau(g_{1}),\mathrm{a}\mathrm{n}\mathrm{d}$ $w_{2}=\tau(g_{2})$ for some $g_{1}\in S_{q}(\delta,a:)$ and $S_{q}(\delta, a\mathrm{j})$ .
Then $d(w_{1},w_{2})=d(g_{1},g_{2})$ by the invariant of the distance. $\mathrm{H}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e},\mathrm{t}\mathrm{h}\mathrm{e}$ number
of vertices in $s_{:}$ to which avertex in $S_{j}$ is adjacent is equal to the number
of vertices in $S_{q}(\delta,a_{j})$ to which avertex in $S_{q}(\delta, a_{i})$ is adjacent. So, we may
assume that $\tau$ is the identity, $v=\sqrt{\delta}$ , and that $S_{i}=S_{q}(\delta,a_{\dot{1}})$ . Now take $z_{1}$ ,
$z_{2}\in S_{q}(\delta,a:)$ . We want to show that the number of vertices in $S_{q}(\delta,a_{\mathrm{i}})$ which
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are adjacent to $z_{1}$ is the same as the number of vertices which are adjacent to $z_{2}$ .
From TheOrem2.15 $z_{1}=h(z_{2})$ for some $h\in K$ . Since $d(z_{1}, w)=d(h(z_{1}), h(w))=$

$d(z_{2}, h(w))$ for $w\in \mathrm{S}\mathrm{q}(5, a_{j})$ , and $h(w)$ runs through Sq $(5, a_{j})$ as $w$ runs through
$S_{q}(\delta, aj)$ , $w$ is distance $a$ form $z_{1}$ if and only if $h(w)$ is distance $a$ form $z_{2}$ . Hence,
$Z_{1}$ and $z_{2}$ are adjacent to the same number of vertices in $S_{q}(\delta, a_{j})$ and the graph
$X_{q}(\delta,a)$ is highly regular.
First, let $i\neq 0,4\delta$ . Then, there exists $x+y\sqrt{\delta}\in S_{q}(\delta,i)$ such that $x-\angle \mathrm{o}\Gamma$ since

$|S_{q}(\delta, i)|=q+1$ . The reason for those choices of $x$ will became apparent later.
Now, assume this element is adjacent to $x_{1}+y_{1}\sqrt{\delta}\in S_{q}(\delta,j)$ . This occurs if
and only if

$d(z_{1}, z)$ $=a$ ,

which is equivalent to

$(x-x_{1})^{2}-\delta(y-y_{1})^{2}=ayy_{1}$ ,

and can be expanded out by

$(x^{2}-\delta y^{2})+(x_{1}^{2}-\delta y_{1}^{2})-2xx_{1}+2\delta yy_{1}=ayy_{1}$ . (5)

Since $x+y\sqrt{\delta}\in S_{q}(\delta, i)$ and $x_{1}+y_{1}\sqrt{\delta}\in S_{q}(\delta,j)$ , respectively, are equivalent
to

$x^{2}-\delta y^{2}=(i-2\delta)y+\delta$ (6)

and

$x_{1}^{2}-\delta y_{1}^{2}=(i-2\delta)y_{1}+\delta$. (7)

Substituting these into the equation yields

$2xx_{1}=\{(j-2\delta)+(2\delta-a)y\}y_{1}+(i-2\delta)y+2\delta$.
Now, by the choice of the element $x+y\sqrt{\delta}$, we can divide the equation by $x$ .
To simplify the equations, let

$A= \frac{\{(j-2\delta)+(2\delta-a)y\}}{2x}$ and $B= \frac{(i-2\delta)y+2\delta}{2x}$ .

This reduces the above equation to

$x_{1}=Ay_{1}+B$ .

Substituting this into (7) and expanding it out, we get

$(A^{2}-2\delta)y_{1}+(2AB+2\delta-j)y_{1}+B^{2}-\delta=0$ , (8)

which is aquadratic equation in $y_{1}$ since we let $\delta$ be non-square. We have the
discriminant $D$ , which is equivalent to

$D=(2AB+2\delta-j)^{2}-4(A^{2}-\delta)(B^{2}-\delta)$ ,
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and substituting above $A$ and $B$ into $D$ , we have

$D=( \frac{y}{x})^{2}\{\delta(i-j)^{2}+a\delta(a-2i-2j)+aij\}$ .

We set $\Delta_{ij}=\delta(i-j)^{2}+a\delta(a-2i-2j)+aij$ . So, there are 2solutions to the
equation(8) when $\Delta_{*j}$.is square in $F_{q}$ , and since $x_{1}=Ay_{1}+B$ , there are two

elements in $S_{q}(\delta,i)$ which are adjacent to $x+y\sqrt{\delta}$. Hence, that entry of the
collapsed adjacency matrix is equal to 2. By the same way, we ffid that $c_{\mathrm{j}}=1$

if A $=0$, and that $c_{j}\dot{.}=0$ if Ais non-square in $F_{q}$ .
For the case where $i=0$ , the only element in $S_{q}(\delta, 0)$ is $\sqrt{\delta}$. Since $\sqrt{\delta}$ is

adjacent to all vertices in $S_{q}(\delta, a)$ , $\mathrm{c}\mathrm{o},\mathrm{a}=q+1$ . For the case where $i=4\delta$ ,
the only element in $S_{q}(\delta,4\delta)$ is $-\sqrt{\delta}$. It is only adjacent to the vertices in
$S_{q}(\delta,4\delta-a)$ because $d(x-y\sqrt{\delta}, \sqrt{\delta})=4\delta-a$ if $d(x+y\sqrt{\delta}, \sqrt{\delta})=a$. So,

$\mathrm{w}\mathrm{e}\square$

also have $c_{4\delta,4\delta-a}=q+1$ .

In view of association scheme, DefinitiOn3.3 is not important, and Proposi-
ti0n3.4 is trivial. It is known that the upper half plane is symmetric association
scheme with relation of distance. And the entry of collapsed adjacency matrix
$c_{j}.\cdot$ is corresponding to intersection number of this association scheme. But here
we used above definition, as well as Terras[9] and J.Angel[l].

4Proof of the Main Result
We will give the proofs of TheOrem3.1 and TheOrem3.2 using different way from
Kuang[5], We use the idea in N.Biggs[2] that the number of walks of length
1in graph is equal to the sum of 1powers of each eigenvalue of the adjacency
matrix. To get the third and forth moments, we will count up all the walks of
length three and four.

Lemma 4.1. For $a_{7^{-}}0\lrcorner,4\delta$ , let $N_{3}$ be the number of the walks of the length 3
in the graph $X_{q}(\delta, a)$ . Then, $N_{3}$ is given by

$N_{3}=\{\begin{array}{l}2q(q+1)(q-1),ifa-3\delta issq\mathrm{u}areq(q+1)(q-1),ifa-3\delta=00,ifa-3\delta isnon- square\end{array}$ (9)

Proof. Since $G$ acts transitively on $H_{q}$ , we consider the closed walks whose
origin and terminal are $\sqrt{\delta}$. If two vertices $z_{1}$ and $z_{2}$ in $S_{q}(\delta,a)$ are adjacent, we
get the such walk. In other words, if the entry in position $(a,a)$ of the collapsed
adjacency matrix is one or two, we have one or two triangles for one vertex in
$S_{q}(\delta, a)$ .
Since $\Lambda_{a,a}=a^{2}(a-3\delta)$ , when $a-3\delta=0$ , we have the one walk $\sqrt{\delta}$, $z_{1}$ , $z_{2}$ , $\sqrt{\delta}$

for all $z_{1}\in S_{q}(\delta, a)$ , where $z_{1}\in S_{q}(\delta, a)$ is adjacent to $z_{1}$ . By PrOpOsitiOn2.1(5),
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$S_{q}(\delta, a)=Kz_{a}$ for $z_{a}\in S_{q}(\delta, a)$ . So, we have such $|K|$ walks, then $N_{3}=$

$q(q+1)(q-1)$ .
For $a$ such that $a-3\delta$ is square, as well as above, we have $N_{3}=2q(q+1)(q-1)$ .

The factor 2cause form that since $\Lambda_{a,a}$ is square, we have the two closed walks
whose origin and terminal are $\sqrt{\delta}$ for all $z_{1}\in \mathrm{S}\mathrm{q}(6, a)$ . $\square$

Before we refer Iemma4.4 which give the number of the walks of length 4,
we give some lemmas as preparation.

Lemma 4.2. Let $Q$ be the set of squares in $F_{q}^{*}$ or $\{x^{2}|F_{q}^{*}\}$ , and let $N$ be the
set of non-square in $F_{q}^{*}$ . For any $c\in F_{q}^{*}$ , we have

$|(N+c) \cap Q|=\frac{1}{4}\{q-1-\epsilon(c)+\epsilon(-c)\}$ ,

$|(N+c) \cap N|=\frac{1}{4}\{q-3+\epsilon(c)+\epsilon(-c)\}$ .

Here $\epsilon$ is a quadratic character of $F_{q}^{*}$ , and $N+c=\{y+c|y\in F_{q}^{*}\}$ .
Lemma 4.3. The number of the set { $n\in F_{q}^{*}|\Delta_{n,a}is$ square} is
$\frac{1}{2}(q+\epsilon(-1))$ .

Lemma4.3 is given by Lemma4.2. Now, we are ready to give the number of
the walks of length 4. We will prove this in the same way as Iemma4.1.

Lemma 4.4. For $a\neq 0,4\delta$ , let $N_{4}$ be the number of the walks of the length 4
in the graph $X_{q}(\delta,a)$ . Then, $N_{4}$ is given by

$N_{4}=\{$
$q(q+1)(q-1)(4q+2\epsilon(-1)+2)$ , if $a=2\delta$ ,
$q(q+1)(q-1)(3q+2\epsilon(-1)+2)$ , if $a\neq 2\delta$ ,

(10)

where $\epsilon$ is a quadratic character of $F_{q}^{*}$ .

Proof. As well as the proof of Iemma4.1, we consider the closed walks of length
4whose origin and terminal are $\sqrt{\delta}$. If $\Delta_{n,a}$ is square, there exists two edge
form one vertex $x+y\sqrt{\delta}\in S_{q}(\delta, n)$ to two different vertices in $S_{q}(\delta, a)$ . So,
for $x+y\sqrt{\delta}\in S_{q}(\delta,n)$ , we have -cycle containing $\sqrt{\delta}$ and $x+y\sqrt{\delta}$. Since
$S_{q}(\delta, a)=\{-\sqrt{\delta}\}$ and

$\Delta_{4\delta,a}=4\delta(a-2\delta)^{2}=\{$
0, if $a=2\delta$ ,
non-square, if $a\neq 2\delta$ ,

we have two cases whether $a$ is $2\delta$ or not.
When $a_{\tau^{-}}\lrcorner 2\delta,\mathrm{f}\mathrm{o}\mathrm{r}n$ such that $\Delta_{n,a}$ is square, we get the above 4-cycle, and

there is apath of length 2whose origin is $\sqrt{\delta}$ on that cycle. Also, for $n$ such
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that $\Delta_{n,a}=0$ , that is, $n= \frac{a(4\mathit{5}-a)}{\delta}$ , we have $q+1$ paths of length 2whose origin
is $\sqrt{\delta}$. Clearly, the path of length 2is the walk of length 4. So, we have

$N_{4}=[ \{(q+1)\cross 2\cross\frac{1}{2}(q+\epsilon(-1))\}$

$+\{(q+1)\mathrm{x}$ $2 \mathrm{x}\frac{1}{2}(q+6(-1))+(q+1)+q(q+1)\}$

$+(q+1)]\mathrm{x}q(q-1)$

When $a=26$, we get above 4-cycles for $n$ such that $\Delta_{n,a}$ is asquare, as well
as $a\neq 2\delta$ . For $n$ such that $\Delta_{n,a}=0$ , that is, $n=4\delta$ , there are $q+1$ edges from
$-\sqrt{\delta}$ in $S_{q}(\delta, 4\delta)$ to vertices in $S_{q}(\delta, a)$ . So, we have more 4-cycles than $a_{\Gamma}4\lrcorner\delta$

by $(\begin{array}{l}q+12\end{array})$ . Therefore, we have

$N_{4}=[\{$ $(q+1) \mathrm{x}2\mathrm{x}\frac{1}{2}(q+\epsilon(-1))+2\mathrm{x}$ $(\begin{array}{ll}q +1 2\end{array})$ $\}$

$+ \{(q+1)\mathrm{x}2\mathrm{x}\frac{1}{2}(q+6(-1))+(q+1)+q(q+1)\}$

$+(q+1)]\mathrm{x}q(q-1)$

Thus we obtain Lemma. $\square$

We finished preparation to proof TheOrem3.1 and 3.2. Supposed that the
eigenvalue $\lambda_{:}(a)_{q}$ has the multiplicity $m_{\dot{*}}$ , that is, $m_{\dot{*}}=q-1$ , $q$ , or $q+1$ for
$1\leq i\leq q-1$ . First, by Lemma4.1, for $a_{\overline{7}}-0\angle,4\delta$, we have

$0 \leq\sum_{i=0}^{q-1}m_{i}(\lambda:(a_{q}))^{3}\leq 2q(q-1)(q+1)$ .

Since $m_{0}=1$ , $\lambda_{0}(a)_{q}=q+1$ ,

$- \frac{(q+1)^{3}}{(q-1)q^{2}\sqrt{q}}\leq\frac{1}{q-1}\sum_{i=1}^{q-1}m\mathrm{i}q(\frac{\lambda_{\dot{l}}(a)_{q}}{\sqrt{q}})^{3}\leq\frac{(q+1)(q^{2}-4q-1)}{(q-1)q^{2}\sqrt{q}}$.

This equation implies TheOrem3.1.
Next, by Lemma4.4, for $a_{\overline{\Gamma}}0\angle,2\delta$, $4\delta$ , we have

$\sum_{\dot{\iota}=0}^{q-1}m_{i}(\lambda:(a_{q}))^{4}=q(q-1)(q+1)(3q+2\epsilon(-1)+2)$ .

So, we get

$\frac{1}{q-1}\sum_{\dot{*}=1}^{q-1}\frac{m_{\dot{1}}}{q}$ $( \frac{\lambda_{\dot{l}}(a)_{q}}{\sqrt{q}})^{4}=\frac{q+1}{q^{3}(q-1)}\{2q^{3}+(2\epsilon(-1)-4)q^{2}-(2\epsilon(-1)+5)-1\}$ .
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This equation implies TheOrem3.2. Moreover, for $a=28$ , we have

$\frac{1}{q-1}\sum_{i=1}^{q-1}\frac{m_{i}}{q}(\frac{\lambda_{i}(a)_{q}}{\sqrt{q}})^{4}=\frac{q+1}{q^{3}(q-1)}\{3q^{3}+(2\epsilon(-1)-5)q^{2}-(2\epsilon(-1)+5)-1\}$ .

Thus, the limit of above equation is 3, which is not the forth moment of the
semi-circle.

Finally, using Lemma4.1 and 4.4, we consider about COnjecture2.4. Using
Lemma4.2, we get

$| \{a-3\delta\in Q|a\in F_{q}^{*},a\neq 4\delta\}|=\frac{1}{2}(q-2+\epsilon(-3))$ .

So, we have the equation

$a_{\tau}^{\lrcorner}4 \delta\sum_{a\in F_{\mathrm{q}}^{\mathrm{r}}}\sum_{i=1}^{q-1}m_{\dot{*}}(\lambda:(a)_{q})^{3}=(q+1)\{(\epsilon(-3)-2)q^{2}-(4+\epsilon(-3))q-2\}$
.

Using same way as above, we found that the third moments of distribution of
the set Aasymptotically match with that of the semi-circle distribution. That
is,

$\lim_{qarrow\infty}\frac{1}{(q-1)(q-2)}\sum_{a_{\tau^{-}}^{A}4\delta}.\sum_{=a\in F_{q}^{l}\cdot 1}^{q-1}(\frac{\lambda_{i}(a)_{q}}{\sqrt{q}})^{3}=0$
.

And we have the equation

$a_{7^{-}}^{A}4 \delta\sum_{a\in F_{\mathrm{q}}^{*}}\sum_{\dot{*}=1}^{q-1}m:(\lambda_{i}(a)_{q})^{4}=(q+1)\{2q^{4}+(2\epsilon(-1)-1)q^{3}+(-2\epsilon(-1)-4)q^{2}+(-4\epsilon(-1)+1)q+2\}$

So, the forth moment of distribution of the set Aasymptotically match with
that of the semi-circle distribution. That is,

$\lim_{qarrow\infty}\frac{1}{(q-1)(q-2)}\sum_{a_{\tau}^{A}4\delta}$

$\sum_{\dot{|},a\in F_{q}^{*}=1}^{q-1}(\frac{\lambda_{}(a)_{q}}{\sqrt{q}})^{4}=2$ .

5Remarks
By TheOrem3.2, we have counter-example $a=2\delta$ for COnjecture1.2. Yet, for
any natural number $k$ , we don’t have the $k$-th moment of the distribution of
the upper half plane. It is interesting that we determine the $k$-th moment, and
that we know when COnjecture1.2 is true or false.

Though we gave some evidence for truth of COnjecture2.4, we don’t know this
is true or false. So we should research this as well as COnjecture1.2. Moreover,
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though we supposed $q$ is odd, for $q$ is even or $2^{r}$ , the upper half plane is defined,
as well as the upper half plane graphs. There is not conjecture for $q=2^{r}$ . It is
natural to think about $q=2^{r}$ .
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