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1 Imtroduction

Historically, a conformal field theory is a mathematical method for physical phenomena,
for example, a string theory. In a string theory, a particle (or a string) is expressed
by a simple module. Physicists constructed many examples of conformal field theories
whose simple modules were explicitly determined. Such conformal field theories are called
solvable models. It is natural to divide theories into two types. One has infinitely many
kinds of particles or simple modules, the other has only finitely many simple modules. For
example, a conformal field theory for free bosons has infinitely many simple modules and
lattice theories are of finite type. In 1988, in connection with the moonshine conjecture (a
mysterious relation between the largest sporadic finite simple group "Monster” and the
classical elliptic modular function j(7) = q~! + 744 + 196884g + - - - ), a concept of vertex
operator algebra was introduced as a conformal field theory with a rigorous axiom. In
this paper, we will treat a vertex operator algebra of finite type.

Until 1992, in the known theories of finite type, all modules were completely reducible.
This fact sounds natural for physicists, because a module in the string theory was thought
as a bunch of strings, which should be a direct sum of simple modules. At this stage, one
of the most important methods for conformal field theory, modular invariance or S Ly(Z)-
invariance of the set of characters, was proved by Zhu for vertex operator algebra under
the assumptions of the completely reducibility of modules and some technical condition
which is now called C,-finiteness. He has also introduced a powerful method, Zhu algebra
A(V), which determines all simple modules.

However, after that, physicists have constructed more examples and found strange
VOAs. The first one was found in 1992, but went unnoticed. The second was found in
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1995 and several examples succeeded and then have begun to make a mark. Physicists
are trying to understand physical meanings of these models (for example, gravitationally
dressed conformal field theory, etc). Anyway, these models are vertex operator algebras
of finite type, but some module is not completely reducible and the set of characters is
not SLy(Z)-invariant. I will show you an example later. (Garberdiel, etc.)

The results in this paper are, roughly speaking, in any finite models, it doesn’t matter
whether modules are completely reducible or not:
(1) Modular invariance property holds.
(2) Cy-finite condition is a natural condition.
(3) Extend Zhu algebra A,(V), but not Zhu algebra, plays an important role.

2 Notation

Let me explain notation and terms. Let V be a VOA (V,Y,1,w). If the reader is not
familiar with VOA, just consider it as a Z,-graded vector space

V = ®;.1°=0Vn

with infinitely many products X, (n € Z) and 1 and w are two special elements of V.
The following is a short introduction of VOA. For any v € V, we have infinitely many

endomorphism v, := vX, of V and we denote them Y (v,z) = 3 v,2"""! by using formal

variable z and call it a vertex operator of v on V. One of axiom of VOA is locality:

Yo,u € V,AN € Z s.t. (z — 2)N{Y(v,2)Y(u,z) - Y(u,2)Y(v,2)} = 0.

Moreover, V has two special elements 1 € V; and w € V,. 1 (called Vacuum) is cor-
responding to identity Y(1,z) = lv, and the coefficients of vertex operator Y(w,2) =
Y nez L(n)z~""2 satisfy Virasoro algebra relation

[L(m), L(n)] =(m—n)L(m+n)+bp4no (m;— 1).;.

with ¢ € C (called central charge of V) such that w; = L(0) defines a grading and
wg = L(—1) is a differential operator

[L(-1),Y(v,2)] =S¥ (v,2).

W(m) and foreach v e V,
operator v, on W satisfies the similar conditions as the operators on V do.

Similarly, a module W is a Z,-graded vector space W = @2

m=0



A V-module is a Z-graded vector space W = @2_,W(m) such that for any v € V, we

have infinitely many endomorphisms v%¥ of W (n € Z) and YW (v,2) = 3, ., oW 2!

satisfies the same properties as Y (v, z) does. Qur finiteness condition assures that if W

is simple, then dim W(m) < co and the grading L(0) := w} is a scalar r + m on W(m)

with some r € C. Among the endomorphisms (v%¥ | n € Z), there is a grade preserving
operator o{v) of W. Then trace function is given by

oo

SW(v,1) = Z(tr|w(,,,)o(v))q”"’"":/24

m=0
where g = ezp(27it). In particular, using o(1) = 1w, we have a character of W

S (1,7) = 3 (eim(W (m))ar =P

m=0

For example, character of the moonshine VOA V¥,
SV'(1,7) = J(r) = q~* + 196884g + - - -

is J-function. If we have any even positive lattice L and a coset z + L C QL, then there
is a lattice VOA Vi and its (twisted) module Vi, whose character is

SV"+‘(1, T) = (n_(l;j)caz,.;.x(‘r)a

where 7(7) is Dedekind eta-function and 614(7) is the theta-function of L + z.

2.1 Zhu algebra

We next explain n-th Zhu algebra A,(V) and its role. For V-module W, o(v) acts on
n-th homogeneous part W(n). Define O0,(V) C V by

v € 0,(V) & o(v) = 0 on W(n) for all V-modules W = &3_oW(m).
We are able to define a product * by
o(v * u) = o(v) x o(u) on W(n) for all V-modules

(Axioms of VOA assures the existence of such an element v*u). These are all well-defined

and the factor space

An(V) = V/0a(V)
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becomes an algebra. It is clear that the n-th piece W(n) of W is a module of n-th Zhu
algebra A,(V'). We should note that the real definition of n-th Zhu algebra is given by V
itself, but not modules.

An excellent property of n-th Zhu algebra is the converse, that is, if 7 is an A,(V)-
module, then by generating from T by the formal actions of V and divided by relations
(truncations, locality and associativity), we have a V-module W whose n-th piece is
T. In particular, if V has only finitely many simple modules, then there is one to one
correspondence between A,(V)-modules and V-modules for a sufficiently large n.

Originally, Zhu introduced A(V) = Ag(V) and Dong, Li and Mason extended it to n-th
Zhu algebras.

Definition 1 Define
Co(V) = (v x_qu|v,ueV).

V is called Cy-cofinite if dim V/Cy(V) < co.
A modular invariance property that Zhu proved is:

Theorem 1 If all modules are completely reducible (or A(V) is semisimple) and V is
Ca-cofinite, then trace functions are all holomorphic function on the upper half plane and
the set of all trace function of v is SLy(Z)-invariant, that is,

(8% (v,7) | W all simple modules)
is SLy(Z)-invariant forve V.

Here modular transformation is given by

w, [ab _ 1 w, @T+b
S l(cd>(v’7)_(cr+d)"s (U’cr-{-d)

if the weight of v is n.

2.2 Conformal block of torus and Zhu’s result

Zhu introduced conformal block C;(V) on torus by the set of family of functions
S(*,*) : V x # — C satisfying
(1) S(v,7) is a holomorphic function on # for v € V
(2) u € O4(V) = S(u,7) =0 -
(3) S(L(—2)u, ) = L85 (u,7) + 52, Eak(T)S(L(2k — 2)u, 7).
Here O,(V) = (v xo u,v X_g u + 3 32,(2k — 2)Exn(7) | v,u € V) and Ey(r) denotes
Eisenstein series.

It is easy to see:
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Proposition 1 C;(V) is SLy(Z)-invariant

Zhu showed the space spanned by trace functions on simple modules is equal to con-
formal block.

Theorem 2 (Zhu) (S (*,7)|W simple modules) = C,(V)

3 General Case

If some module is not completely reducible, the space of trace function is not necessary
to be equal to conformal block.

(S’W(*, 7)|W simple) C C,(V)

What is the difference?

This is my motivation of today’s result. To fill a gap, I introduce "interlocked module”
and pseudo-trace function pstr, which are defined by a symmetric linear function of n-th
Zhu algebra A,(V). My main result is that if V is of finite type, then the conformal
block is equal to the space of pseudo-trace functions on interlocked modules (including
all simple modules). In particular, the conformal block is isomorphic to the space of
symmetric linear functions of n-th Zhu algebra for some n.

Namely, setting

SW('U,T) = pstrwo(v)ql‘(o)'"/""4

for an interlocked module W, we have:
Theorem 3 (Main Theorem) If V is of finite type, then
(SY (%, 7)|W interlocked modules) = C1(V)
In particular, C;(V) = space of symm. func. of Apn(V) for a sufficiently large n.

In order to get these results, the assumptions we need are :
(1) trace function should be well-defined and
(2) dimCy (V) < o0
It is already known that C,-finiteness means the both by Zhu, DLM and G.

Although C,p-finiteness was introduced by Zhu as a technical condition to obtain a
differential equation, it is a natural condition in order to consider trace functions on all
(weak) modules.
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Theorem 4 The followings are equivalent.

1) V satisfies Ca-cofiniteness

2) V is finitely generated and all weak modules are Z.,-graded
8) SW(1,7) is well-defined on finitely generated weak modules.

3.1 Logarithmic forms

The well known examples of trace functions are rational power sum of q. However, in
our case, L(0) may not act semisimply. So we devide L(0) into

semisimple nilpotent

L(0)= L*(0) + L")

qL(o) - qLu(o) (i (27riLﬂil(O))m (T)m)

!
me0 m.

Then we have

which contains 7-terms, that is, logarithmic form (Ing = 2mir). However, if we take a
trace trwq™(?), then there is no 7-terms since L™(0) is a nilpotent operator. So we need
a new kind of "trace”. What does trace” mean in our setting? It is just a symmetric
linear function of the ring generated by grade preserving operators of V. So we have a

question.
Is there another suitable symmetric linear function?

The answer is "Yes” and I will introduced a new trace function " pseudo-trace”.

3.2 Pseudo-trace

Consider 4 B
_J,._( Dy
R, = {g—(o A,) |Ay,Bg€Mm,m(C)}.

Then pstr(g) = trB, is a symmetric linear map. We will show that these symmetric linear
function of the ring of graded preserving operators of V is defined by a symmetric linear
function of A,(V'), which is also given by a conformal block.

Let me explain the image of pseudo-trace function. Let R be a ring and W a left R-
module. Set P = Endg(W). Assume that there is an R-isomorphism ¢ : W/WJ(P) —
Wsoc(P). Consider @ € R and o : W — W. An oridinary trace tra is the trace of a
matrix (m,;) given by a(w') = 3~ m;;w’ for some basis {w'} of W. In our case, we have
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a maftrix representation

Al *| B
o= 0|C| *
O|0}A

and we define pstra = trB.

4 Finite dimensional algebra

Now let start the proof of the main theorem.
If we choose S(*,7) € C,(V), then since dimC;(V) < oo, S(v,7) is a solution of some
differential equation of regular singularity type and so S(v,7) has a form

14 q9 o
D222 Muilv)d'e
t=0 s=0 =0

The first result we have is
Lemma 1 ¢ = ), : V — C is symmetric linear function of A,(V)

We use ordinary finite dimensional ring theoretic arguments since A,(V) is a finite
dimensional ordinary algebra and A,(V)/Rad¢ is symmetric algebra, where Rad¢ =
{a € An(V) | $(An(V)aAn(V)) = 0}.

4.1 Definition of Symmetric algebra.

Let A be a finite dimensional algebra over complex number field.

Definition 2 A is called Frobenius if the left module 4A is isomorphic to the dual
Homy (A4, C) of right module A4. If we denote the regular action of a € A on A from
the right and left by R(a) and L(a), then A is Frobenius algebra means that there is a
non-singular matriz Q such that Q *R(a)Q = L(a). If we can take Q as a symmetric
matriz, then A is called a symmetric algebra.

Lemma 2 A is symmetric if and only if A has a symmetric linear map ¢ with zero radical.
It is also equivalent to that A has an associative, symmetric nondegenerated bilinear form
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4.2 Result by C.Nesbitt, W.Scott (1943)

(A short proof was given by Oshima (1952))
There is a classical result for symmetric algebra given by Nesbitt and Scott. This is a
good method to explain a strategy of my proof. They showed:

Theorem 5 (Nesbitt and Scott) A is symmetric algebra if and only if so is its basic
algebra.

4.3 Definition of basic algebra.

This is the last deﬁnition I will introduce here.

Definition 8 Decompose A/J(A) into the direct sum of simple components.
AlJ(A)=A®--- B Ax

where A; is a matriz algebra M, ,(C). Take a primitive idempotent e; € A;, say ¢; =
1 0---0
0 0---0 ) . .
Sete = e; + -+ + ex and we can consider that e is an tdempotent of
0 0--:0 _
A. Then eAe is called a basic algebra of A. The important properties of basic algebra
is that the semisimple factor is commutative and Ae is a faithful A x eAe-module and
eAe = End 4(Ae).

5 Outline of proof of the main theorem

Now let me explain my strategy. Take a function S(*,7) from conformal block. As I
explained, we have a symmetric function ¢ of 4,(V). So we have a symmetric algebra
A = A,(V)/Rad(¢). As we explained, there is an idempotent e of A such that P = eAe
is a basic algebra, which is also a symmetric algebra by Nesbitt and Scott. Since Ae is an
An(V)-module, we can construct V-module W by multiplying the actions of V from the
left side. So their actions commute with the actions of P from the right side. Consider
the endomorphism ring R = Endp(W), which contains all actions of V. I proved that P
is the basic algebra of R if n is sufficiently large. We should note that since the actions
of V generate infinite dimensional ring, we always have to consider the actions on finite
dimensional parts &% _,W(m). This is the definition of interlocked module. Then again
by Nesbitt and Scott, R is a symmetric algebra with a symmetric linear map, which we



will call pseudo-trace. Then define pseudo-trace function, which almost coincides with
the original one. Actually, we have to construct a symmetric function explicitly.

6 Example

6.1 logarithmic form

Let’s show you one example. Assume that W is a V-module such that L(0)? is zero on
the top module W(0). We also assume:

W = W! @ L™!(0)W, as vector spaces
L™(0)W = W/WJ(P) = W! as V-modules
Then consider a pseudo—ﬁra.ce function.
S¥(1,7) = Yo tr'&,(n) (1 + 2mi(L™(0) — ﬁ)r) g/
= (chignioyw)(T)2miT

- 0O 1 : I—%¢r]  2mir]
nil T nal _ =t 12 R
where L™(0) & (O O) and 1 + 2mi(L™(0) — 35)7 & ( 0 I - 1;:;7.[)

6.2 Triplet algebra with central charge c = —2.

It is generated by w and three vectors v* € V3 (a = 1,2,3). o(v) denotes vyi(v)-14m

([ (L, La) = (m — 1) Lingn — 2718 g
[Lm; 0n(v?)] = (2m — n)omin(v?)
' [om(v?), 0n(v?)] = 8ap (2(m — n)omin(Losw — SL_, L_yw)

—n 24902 _mn—
+(m (2m ;'02 m 81Lm+n - 6m+n,0(m;-2)

| Ve (e, () Ro(L(-2)07) ~ Bomin(L(-1)))
It has six irreducible modules

V, Ml, M—I/S, M3/8, XO, x!

A\

Theire characters are

§1(r) = Kn(r) 1) +m(r)?)
S*(r) = 3(n(r) " 01,2(7) — n(1)?)
§3(r) = n(7)"*60,a(T)

§4(r) = n(r)"102,2(7)

S3(1) = 2n(7)"10,,2(7)

S8(r) = 2n(r)~1012(7)
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The space spanned by last four characters is invariant under SL(2,Z), but

SH~1/7) = ?}:53(7‘) - 354r) - %n(r)zr
S*(=1/7) = §8%(r) = {54 (r) + jm(r)*r

It is not a linear sum of characters, but there exists an interlocked module W such that

a pseudo-trace function is

ST(1) = (S*(7) — S*(1))2iwT) = n(7)*(2mit).

SHEE) = 5% (r) - $4(r) + 2irn(r)?

= 48%(r) - 54(r) + 157(r)
SUE) = 3S%(r) - $4(r) - Zirn(r))

= X(8%(r) - $4r) - 157(r))
ST = (S1(3) - S5 ()

= (=ir)n(r)H(=2mi/7) = ~20(r)?

= 2m(=§}(r) + $¥(r))
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