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Abstract

Abrief review is given of some of our recent work on Generalised Mon-
strous Moonshine using abelian orbifoldings of the Moonshine Module.

1Introduction
The Moonshine Module [FLM] is aVertex Operator Algebra (VOA) based on
an orbifolding of the Leech lattice VOA. The group of automorphisms of the
Moonshine Module is the Monster group M. Monstrous Moonshine first formu-
lated by Conway and Norton [CN] and subsequently proved by Borcherds [B] is
concerned with acorrespondence between the classes of $\mathrm{M}$ and special modular
functions known as hauptmoduls. This correspondence can also be understood
from the point of view of orbifoldings of the Moonshine Module [TI],[T2]. Nor-
ton further postulated Generalized Moonshine [N] relating apair of commuting
Monster elements to either ahauptmodul or constant function. In this note we
give avery brief overview of Moonshine from the point of view of orbifold con-
structions. We also review some of our recent work [ITI],[IT2],[I] on recovering
the hauptmodul property in a $\mathrm{n}$ umber of Generalized Moonshine cases using
Abelian orbifoldings of the Moonshine Module. Although this is an informal
review the notation and terminology is aimed at amathematical audience
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1.1 C $=24$ Holomorphic VOAs
We begin with some relevant aspects of Vertex Operator Algebra (VOA) theory
but for more details see e.g. [FLM], [Ka], [MN]. The closest related concept
in physics is that of ameromorphic conformal field theory [Go]. AVOA is a
quadruple $(V, \mathrm{Y}, 1, ‘ v)$ consisting of an integer graded complex vector space $V=$

$\oplus_{n\geq 0}\mathrm{v}(\mathrm{n})$ , alinear map $\mathrm{Y}:Varrow(\mathrm{E}\mathrm{n}\mathrm{d}V)[[z, z^{-1}]]$ , and apair of distinguished
vectors (states): the vacuum 1which spans $V(0)$ and the conformal vector $\omega$

$\in \mathrm{V}(0)$ . The image under the $\mathrm{Y}$ map of avector $v\in V$ is denoted by the vertex
operator

$\mathrm{Y}(v, z)=\sum_{n\in \mathrm{Z}}v(n)z^{-n-1}$
, (1)

with modes $v(n)\in \mathrm{E}\mathrm{n}\mathrm{d}V$ and where the creation axiom $\mathrm{Y}(v, z).1|_{z=0}=v(-1).1=$

$v$ holds. For the vacuum and conformal vectors we define

$\mathrm{Y}(1, z)$ $=$ $\mathrm{i}\mathrm{d}_{V}$ ,
$\mathrm{Y}(\omega, z)$ $=$

$\sum_{n\in \mathrm{Z}}L(n)z^{-n-2}$
,

where the modes $L(n)$ form aVirasoro algebra of central charge $C$ :

$[L(m), L(n)]=(m-n)L(m+n)+(m^{3}-m) \frac{C}{12}\delta(m, -n)$ .

We will consider in this paper VOAs of central charge $C=24$ only. The integral
grading of $V$ is provided by the action of $L(0)\mathrm{i}.\mathrm{e}$ . $L(0)v=nv$ for $v\in V(n)$ . One
of the key properties of aVOA is the “associativity” of the Operator Product
Expansion (OPE)

$\mathrm{Y}(a,z)\mathrm{Y}(b,w)\sim \mathrm{Y}(\mathrm{Y}(a, z-w)b,w)$ , (2)

where we formally expand in $z$ –ru for $|z|$ $>|w|$ and where $\sim \mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}$ the
equality of the singular part in $z-w$ of each side e.g. [Ka].

AVOA module $(M,\mathrm{Y}_{M})$ consists of a $\mathbb{Q}$-graded complex vector space $M=$

$\oplus_{a\in \mathrm{Q}}$ At(ce) and alnear map $\mathrm{Y}_{M}$ : $Varrow(\mathrm{E}\mathrm{n}\mathrm{d}M)[[z, z^{-1}]]$ with $\mathrm{Y}_{M}(1, z)=\mathrm{i}\mathrm{d}_{M}$

where
$Y(a, z)Y(6, w)\sim \mathrm{Y}_{M}(\mathrm{Y}(a, z-w)b,w)$ . (3)

Clearly $(V,\mathrm{Y})$ is module for itself. Standard notions of simplicity and complete
reducibility of modules can be defined. Aholomorphic VOA is one where every
module is completely reducible and $(V,\mathrm{Y})$ is the unique simple module. There
is also the notion of intertwiner vertex operators between modules [FHLJ.

The graded $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ (or genus one partition function) for a $C=24$ VOA is
defined by

$Z( \tau)=\mathrm{T}\mathrm{r}_{V}(q^{L(0)-1})=\frac{1}{q}\sum_{n\geq 0}q^{n}\dim V(n)$ . (4)
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where $q=e^{2\pi i\tau}$ for $\tau\in \mathbb{H}$ the upper half complex plane. For a $C=24$ HolO-
morphic VOA Zhu has shown that $Z(\tau)$ is modular invariant under $SL(2, \mathbb{Z})=$

$(\begin{array}{ll}a bc d\end{array})$ , $ad-bc=1\}$ where $\mathrm{S}\mathrm{X}(2, \mathbb{Z})\ni\gamma$ : $\tauarrow\gamma\tau=\frac{a\tau+b}{c\tau+d}[\mathrm{Z}]$ . Hence $\mathrm{Z}(\mathrm{r})$

is given by

$Z(\tau)$ $=$ $J(\tau)+\dim V(1)$ ,

$J(\tau)$ $=$ $\frac{E_{4}^{3}(\tau)}{\eta^{24}(\tau)}-744=\frac{1}{q}+0+196884q+21493760q^{2}+\ldots$ (5)

where $\mathrm{V}(\mathrm{n})=q^{1/24}\prod_{n>0}(1-q^{n})$ and $E_{4}(\tau)$ is the weight four Eisenstein series.
$J(\tau)$ is the hauptmodul for $SL(2, \mathbb{Z})$ i.e. the unique (up to an additive constant)
modular invariant function with asimple pole at $q=0$ and unit residue. Two
$C=24$ Holomorphic VOAs are of particular interest to us: the Leech lattice
VOA $V_{\Lambda}$ for which $\dim V_{\mathrm{A}}(1)=24$ and the FLM Moonshine Module $V\#$ [FLM]
for which $\dim V^{\mathfrak{h}}(1)=0$ .

1.2 Automorphisms and Twisted Sectors for Holomorphic
VOAs

The automorphism group Aut(V) of aVOA is the group of linear transforma-
tions preserving the OPE (2) and which act trivially on 1and $\omega$ . Thus for
$g\in \mathrm{A}\mathrm{u}\mathrm{t}(V)$ we have $g\mathrm{Y}(a, z)g^{-1}=\mathrm{Y}(ga, z)$ . Since Aut(V) acts separately on
the graded spaces $V(n)$ we can define the graded $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

$Z$ $\{\begin{array}{l}g1\end{array}\}$

$( \tau)=\mathrm{R}_{V}(gq^{L(0)-1})=\frac{1}{q}\sum_{n\geq 0}q^{n}\mathrm{T}\mathrm{r}_{V(n)}(g)$ , (6)

where the coefficients are characters for some representation of Aut(V). Note

that for $g=1$ , the identity element, $Z$ $\{\begin{array}{l}11\end{array}\}=Z$. For the Moonshine Module
$V^{\mathfrak{h}}$ , the automorphism group is the finite Monster group IVII, the largest finite
sporadic simple group [FLM] and each $V^{\mathfrak{h}}(n)$ is arepresentation space for M.
Thus $V^{\mathfrak{h}}(2)$ is the direct sum of Monster irreducible representations of dimension
1and 196883. Monstrous Moonshine is concerned with the modular properties

of $Z$ $\{\begin{array}{l}g1\end{array}\}$ as discussed later on.
Suppose that $g$ is of finite order $n$ . Let (g) denote the abelian group generated

by $g$ and let $C_{\mathit{9}}=C$ ($g$ , Aut(V)) be the centraliser of $g$ . We further denote by
$\mathcal{P}(g\rangle$ $V$ the $g$-invariant subVOA of $V$ where $\mathcal{P}_{(g\rangle}=\frac{1}{n}(1+g+\ldots g^{n-1})$ denotes
a“projection operator”. It is clear that $\mathrm{A}\mathrm{u}\mathrm{t}(\mathcal{P}_{\langle g\}}V)\supseteq G_{g}=C_{g}/\langle g\rangle$ . For a
holomorphic VOA and $g$ of finite order $n$ the modules of $\mathcal{P}_{(g\}}V$ are given by
s0-called $\prime\prime g^{k}$-twisted sector” modules $(M_{g^{\mathrm{k}}}, \mathrm{Y}_{g^{k}})$ for $k=0\ldots$ $n-1$ [DLM] and
where $M_{1}=V$ and $\mathrm{Y}_{1}=\mathrm{Y}$ . The $g$-twisted module $M_{g}$ , which is uniquely defined
for aholomorphic VOA, has rational grading $M_{g}=\oplus_{\alpha\in\frac{1}{n}\mathrm{N}}$ Mg(a) where Mg (0)
is the highest weight space or $g$-twisted vacuum space. The grading is related to
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the Virasoro level by $L(0)u=(\alpha+E_{g}^{0}+1)u$ for $u\in M_{g}(\alpha)$ where $E_{g}^{0}$ is known
as the vacuum energy.

The twisted sector automorphism group preserving (3) is given by Aut $(Mg)=$
$\mathbb{C}^{*}.C_{g}$ in general but if $\dim M_{g}(0)=1$ then $\mathrm{A}\mathrm{u}\mathrm{t}(M_{g})=\mathrm{C}$

’
$\mathrm{x}C_{g}$ . Hence for

$\hat{h}\in \mathrm{A}\mathrm{u}\mathrm{t}(M_{g})$ lifted from $h\in C_{g}$ we may define the generalised graded $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

$Z$ $\{\begin{array}{l}\hat{h}g\end{array}\}$

$( \tau)=\mathrm{T}\mathrm{r}_{M_{\mathit{9}}}(\hat{h}q^{L(0)-1})=q^{E_{g}^{0}}\sum_{\alpha\in_{n}^{1}\mathrm{N}}q^{n}\mathrm{T}\mathrm{r}_{M_{\mathit{9}}(\alpha)}(\hat{h})$
. (7)

where the coefficients are now characters for $\mathrm{A}\mathrm{u}\mathrm{t}(M_{g})$ . In the case of the Moon-
shine Module VOA $V\#$ , such generalised traces are the subject of Norton’s Gen-
eralized Moonshine Conjectures as discussed later on.

The generalised graded traces transform amongst themselves under the mod-
ular group as follows [DLM]:

$Z$ $\{\begin{array}{l}\hat{h}g\end{array}\}$ $(\gamma\tau)=\epsilon(\hat{h}, g;\gamma)Z$ $\{\begin{array}{l}g^{-\hat{b}}h^{d}g^{a}h^{-\mathrm{c}}\end{array}\}$ $(\tau)$ , (8)

for $\epsilon(\hat{h},g;\gamma)\in \mathbb{C}^{*}$ . This modular property was also discussed in earlier work on
orbifold constructions by physicists [DHVW]. $M_{g}$ is also naturally isomorphic
to $M_{xgx^{-1}}$ under conjugation by $x\in \mathrm{A}\mathrm{u}\mathrm{t}(V)$ so that

$Z$ $\{\begin{array}{l}\hat{h}g\end{array}\}=\theta(\hat{h}, g;x)Z$ $\{\begin{array}{l}xh\hat{x}^{-1}xgx^{-1}\end{array}\}$ , (9)

for $\theta(\hat{h},g;x)\in \mathbb{C}^{*}$ .
We may distinguish one lifting of $g$ on $M_{g}$ , which we also denote by $g$ , defined

by
$gu=\exp(-2\pi i(E_{g}^{0}+\alpha))u$ , (10)

for $u\in M_{g}(\alpha)$ . Then $M_{g}$ can be decomposed into $n$ simple modules determined
by this $g$ action. We say that $g$ is anormal automorphism if the twisted vacuum
energy obeys

$nE_{g}^{0}=0\mathrm{m}\mathrm{o}\mathrm{d} 1$ .
Otherwise we say it is an anomalous automorphism. If $g$ is anormal automor-
phism it acts as an $n^{th}$ root of unity on $M_{g}$ and the $g$ invariant part of $M_{g}$

defines asimple module $\mathcal{P}_{(g\rangle}M_{g}$ . Modules of this type are utilized in orbifold
constructions.

1.3 Abelian Orbifoldings of aHolomorphic VOA
Let $g$ be of order $n$ and assume all elements of (g) are normal. The orbifold
VOA vector space $V_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g\rangle}$ is formed by adjoining to $\mathcal{P}_{\{g\rangle}V$ the $g$-invariant modules:

$V_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g\rangle}=\oplus \mathcal{P}_{\langle g\}}M_{\mathit{9}^{k}}n-1k=0$ ,
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with graded $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

$Z_{\mathrm{o}\mathrm{r}\mathrm{b}}^{(g\}}( \tau)=\frac{1}{n}\sum_{k,l=0}^{n-1}Z$ $\{\begin{array}{l}g^{l}g^{k}\end{array}\}$ . (11)

We assume that aconsistent choice of lifting can be made for $\mathit{9}^{l}$ acting on $M_{g^{k}}$

(denoted again by $g^{l}$ ) where the various $\epsilon$-multipliers of (8) are unity so that
the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ is modular invariant. Hence $Z_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g)}(\tau)=J(\tau)+\dim V_{\mathrm{o}\mathrm{r}\mathrm{b}}^{(g\rangle}(1)$ from (5).
We further assume that the various vertex intertwiner vertex operators close to
form aholomorphic VOA. The Moonshine Modul$\mathrm{e}$

$V^{\mathfrak{h}}\mathrm{i}$ an example of such a
construction where $g$ is an involution lifted from the reflection involution of the
Leech lattice. Other possible constructions are briefly mentioned below.

We may similarly consider the orbifolding of $V$ with respect to afinite abelian
group $G\subset \mathrm{A}\mathrm{u}\mathrm{t}(V)$ where all the elements of $G$ are normal. The orbifold vector
space is then $V_{\mathrm{o}\mathrm{r}\mathrm{b}}^{G}=\oplus_{g\in}c\mathcal{P}_{G}M_{g}$ where $\mathcal{P}_{G}=\frac{1}{|G|}\sum_{g\in G}g$ is the $G$ projection

operator and the graded $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ is $Z_{\mathrm{o}\mathrm{r}\mathrm{b}}^{G}( \tau)=\frac{1}{|G[}\sum_{g,g_{2}\in G}Z$ $\{\begin{array}{l}g_{1}g_{2}\end{array}\}$ . This $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

is modular invariant provided the $\epsilon$-multipliers of (8) are unity for some ap-
propriate choice of lifting of each $g_{1}$ (which we also denote by $g_{1}$ ) acting on
$V_{\mathit{9}2}$ .

We are particularly interested in $G=\langle g, h\rangle$ generated by apair of commuting
elements $g$ , $h\in \mathrm{A}\mathrm{u}\mathrm{t}(V)$ with $o(g)=m$ and $o(h)=n$ . We call such generators
independent iff $\langle g\rangle\cap\langle h\rangle=1$ i.e. $|\langle g, h\rangle|=mn$ . For independent generators we
have $\mathcal{P}(g,h)$ $=\mathcal{P}(g\rangle$ $\mathcal{P}\langle h$ } and

$V_{\mathrm{o}\mathrm{r}\mathrm{b}}^{(g,h)}=\oplus \mathcal{P}_{\{g\rangle}(\oplus^{n}\mathcal{P}_{\langle h)}M_{g^{k}h^{\iota}})k=1l=1m$.

Thus $V_{\mathrm{o}\mathrm{r}\mathrm{b}}^{(g,h)}$ may be interpreted as acomposition of orbifoldings i.e. for any
independent normal commuting generators $g$ , $h$ :

$V_{\mathrm{o}\mathrm{r}\mathrm{b}}^{(g,h)}=(V_{\mathrm{o}\mathrm{r}\mathrm{b}}^{(h\}})_{\mathrm{o}\mathrm{r}\mathrm{b}}^{(g\rangle}$ . (12)

For such generators, the twisted $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}Z$
$\{\begin{array}{l}hg\end{array}\}$ $(\tau)$ is fixed by the modular group

$\Gamma(m,n)=$ { $(\begin{array}{ll}a bc d\end{array})$ $|a-1=c=0$ mod $m$ , $b=d-1=0\mathrm{m}\mathrm{o}\mathrm{d} n,ad-bc=1$},

(13)

from (8). Hence $Z$ $\{\begin{array}{l}hg\end{array}\}$ $(\tau)$ is ameromorphic function on $\mathbb{H}/\Gamma(m,n)$ with

possible singularities at $\tau=i\infty$ and afinite number of inequivalent rational

cusps. Lastly, $Z$ $\{\begin{array}{l}hg\end{array}\}$ $(\tau)$ is singular at the rational cusp $\tau=a/c$ with $(a,c)=1$

if and only if $E_{g^{a}h^{-ae}}^{0}<0$ , the $g^{a}h^{-c}$-twisted vacuum energy. In particular, if
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$E_{g^{a}h}^{0}-C\geq 0$ for all $(a, c)=1$ then $Z$ $\{\begin{array}{l}hg\end{array}\}$ $(\tau)$ is holomorphic on $\mathbb{H}/\Gamma(m, n)$ and

is therefore constant.
We now apply these various ideas in order to describe and understand aspects

of Monstrous and Generalized Moonshine.

2Monstrous Moonshine
The Moonshine Modul$\mathrm{e}$

$V^{\mathfrak{h}}$ is an orbifold VOA formed from the Leech lattice
VOA $V_{\Lambda}$ and is based on an involution lifted from the reflection involution of the
Leech lattice [FLM]. FLM have also conjectured that $V^{\mathfrak{h}}$ is the unique holomor-
phic $C=24$ VOA with graded $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{J}(\mathrm{r})$ [FLM]. There is considerable evidence
to support this conjecture. In particular, there are 38 specific automorphism
classes $g$ of the Conway simple group (whose double cover is the Leech lattice
automorphism group) for which it is believed $V^{\mathfrak{h}}=(V_{\Lambda})_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g)}$ [T2]. Furthermore,
for each such Conway automorphism $g$ there is anatural “dual automorphism”
$g^{*}$ of $(V_{\Lambda})_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g)}$ for which $V_{\Lambda}=((V_{\Lambda})_{\mathrm{o}\mathrm{r}\mathrm{b}}^{(g\}})_{\mathrm{o}\mathrm{r}\mathrm{b}}^{(g\rangle}$.[T2]. For such $g$ of prime order
$(p=2,3,5,7,13)$ these constructions are discussed in far greater detail in [DM].

The automorphism group of $V^{\mathfrak{h}}$ is the Monster group $\mathrm{M}$ of order

$|\mathrm{M}|=2^{46}.3^{20}.5^{9}.7^{6}.11^{2}.13^{3}.17.19.23.29.31.41.47.59.71$ . (14)

Conway and Norton [CN] conjectured and Borcherds rigorously proved [B] that

for each $g\in \mathrm{M}$ the Thompson series Tg (r) $=Z$ $\{\begin{array}{l}g1\end{array}\}$ $(\tau)$ of (6) is ahauptmodul

for agenus zero fixing modular group $\Gamma_{g}$ . This means that $T_{g}(\tau)$ is invariant
under some modular group $\Gamma_{g}$ and $T_{g}(\tau)$ is the unique modular function (llp to
an additive constant) on the quotient space $\mathbb{H}/\Gamma_{g}$ with a simple pole at $q=0$

and unit residue. Tg (r) then defines a1-1 mapping between $\mathbb{H}/\Gamma_{g}$ and the genus
zero Riemann sphere. The Thompson series for the identity element is thus $J(\tau)$

of (5). In general, for $g$ of order $n$ , $T_{g}(\tau)$ is found to be $\Gamma_{0}(n)$ invariant up to $m^{\mathrm{t}\mathrm{h}}$

roots of unity where $m|n$ and $m|24$ where $\Gamma \mathrm{o}(n)=$ $\{$ $(\begin{array}{ll}a bc d\end{array})\in SL(2, \mathbb{Z})|c=$

$0\mathrm{m}\mathrm{o}\mathrm{d} n\}$ . In the language of the last section, the Monster elements with $m=1$

are normal automorphisms while those with $m\neq 1$ are anomalous. $T_{g}(\tau)$ is
then fixed by $\Gamma_{g}$ where $\mathrm{F}0(\mathrm{n})\subseteq\Gamma_{g}$ and $\Gamma_{g}$ is contained in the normalizer of
$\Gamma_{0}(N)$ in $SL(2,\mathrm{R})$ where $N=nm[\mathrm{C}\mathrm{N}]$ . This normalizer contains the s0-called
Fricke involution $W_{N}$ : $\tauarrow-1/N\tau$ so that all the clases of $\mathrm{M}$ can be divided
into Fricke and non-Fricke classes according to whether or not $T_{g}(\tau)$ is invariant
under $W_{N}$ . There are atotal of 51 non-Fricke classes of which 38 are normal
and there are atotal of 120 Fricke classes of which 82 are normal.

To illustrate and understand some of these ideas consider $g$ normal of prime
order $p$ . Then one finds two general cases: (i) $g$ is non-Fricke and $\Gamma_{g}=\Gamma_{0}(p)$

which is of genus zero for $(p-1)|24$ i.e. $p=2,3,5,7,13(\mathrm{i}\mathrm{i})g$ is Fricke and
$\Gamma_{g}=\Gamma_{0}(p)+\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\Gamma_{0}(p)+=\langle\Gamma_{0}(p), W_{p}\rangle$ which is of genus zero for $\mathrm{e}\mathrm{x}\mathrm{a}\iota \mathrm{t}\mathrm{l}\mathrm{y}$

the primes $p||\mathrm{M}|$ i.e. the primes appearing in (14). Many of these propertie
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can be understood in terms of the orbifolding of $V^{\mathfrak{h}}$ with respect to (g) [T1],
[T2]. Firstly from above $T_{g}(\tau)$ is invariant under $\Gamma(p, 1)$ . In particular, $T_{g}(\tau)=$

$T_{g^{-1}}(\tau)$ so that the coefficients of $T_{g}(\tau)$ are real Monster characters. But the
Monster has no real irrational characters and so the coefficients are rational
characters implying that $T_{g}(\tau)=T_{g^{a}}(\tau)$ since $g$ and $g^{a}$ are conjugate for $a\neq$

$0\mathrm{m}\mathrm{o}\mathrm{d} p$ . Hence $T_{g}(\tau)$ is $\Gamma_{0}(p)$ invariant and can be singular on $\mathbb{H}/\Gamma_{0}(p)$ only
at the inequivalent cusps $\tau=i\infty$ and 0. $T_{g}(\tau)$ has asimple pole by definition at
$q=0$ and is singular at $\tau=0$ if and only if the $g$-twisted vacuum energy $E_{g}^{0}<0$ .
If $E_{g}^{0}\geq 0$ then $T_{g}(\tau)$ cannot be Fricke invariant, has aunique simple pole and is
therefore the hauptmodul for agenus zero fixing group of type $\Gamma_{0}(p)$ . Explicitly
one finds $T_{g}( \tau)=\frac{24}{p-1}+[\eta(\tau)/\eta(p\tau)]\overline{p}-2L1$ where $p$ is restricted to $p=2,3,5,7,13$
aas above.

If Tg{ $\mathrm{r})$ is Pricke invariant then clearly $T_{g}(\tau)=Z$ $\{\begin{array}{l}g1\end{array}\}$ $(\tau)=Z$ $\{\begin{array}{l}1g\end{array}\}$ $(\mathrm{p}\tau)$

and so
$E_{g}^{0}=- \frac{1}{p}$ , $\dim M_{g}(0)=1$ . (15)

The converse is also true as follows: Consider the To (p) invariant $f(\tau)=T_{g}(\tau)-$

$T_{g}(W_{p}(\tau))$ . $f(\tau)$ is holomorphic and therefore constant on $\mathbb{H}/\Gamma_{0}(p)$ . But $f(\tau)$

is odd under the action of $W_{p}$ and therefore vanishes. Hence invariance under
the Fricke involution results from (15). Furthermore, $T_{g}(\tau)$ has aunique simple
pole at $q=0$ on $\mathbb{H}/\Gamma_{0}(p)+\mathrm{m}\mathrm{d}$ is therefore the hauptmodul for agenus zero
fixing group.

Let us next consider the nature of the orbifold VOA $(V\#)_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g\rangle}$ obtained for $g$

normal and of order $p$ . For $g$ non-Pricke $Z$ $\{\begin{array}{l}1g\end{array}\}(\tau)$ $= \frac{24}{p-1}+O(q^{1/}?)$ from (11) so

that $Z_{\mathrm{o}\mathrm{r}\mathrm{b}}^{(g)}=J(\tau)+24=Z_{\Lambda}$ . In these cases $g$ is dual to one of the Conway group
prime ordered automorphisms discussed above so that we expect $(V^{\mathfrak{h}})_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\{g)}=V_{\Lambda}$ .
Considering the orbifolding of the Moonshine Module with respect to aFricke
element it follows from (11) that since $Z$ $\{\begin{array}{l}1g\end{array}\}$ $(\tau)=q^{-1/p}+0+O(q^{1/p})$ then
$Z_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g)}=J(\tau)$ i.e. we expect $(V^{\mathfrak{h}})_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g\}}=V^{\mathfrak{h}}$ again provided the FLM uniqueness
conjecture holds.

All of these concepts can be suitably generalized to include all normal Mon-
ster automorphisms [TI],[T2]. Thus, subject to assumptions like those made
above, orbifolding $V\#$ with respect to any of the 38 normal non-Pricke Monster
classes results in the Leech theory whereas orbifolding with respect to any of the
82 normal Fricke Monster classes results in $V^{\mathfrak{h}}$ again assuming the FLM unique-
ness conjecture. Furthermore, assuming anumber of other important properties
it can also be shown that for $g$ normal then if $(V^{\mathfrak{h}})_{\mathrm{o}\mathrm{r}\mathrm{b}}^{(g)}=V_{\Lambda}$ then $T_{g}(\tau)$ is a
hauptmodul and $g$ is non-Pricke whereas if $(V^{\mathfrak{h}})_{\mathrm{o}\mathrm{r}\mathrm{b}}^{(g\rangle}=V^{\mathfrak{y}}$ then conditions such
as (15) and others must hold and $T_{g}(\tau)$ is aFricke invariant hauptmodul. (That
the anomolous classes are hauptmoduls follows from the s0-called power map
formula for Thompson series [CN],[TI] $)$ . This all leads to the following general
principle for explaining Monstrous Moonshine: Monstrous Moonshine is equiv
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alent to the property that for all normal elements g of M either $(V\#)_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g\rangle}=V\#$

or $(V\#)_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g)}=V_{\Lambda}[\mathrm{T}2]$ .

2.1 Generalized Moonshine
Consider the orbifolding of $V\#$ with respect to $\langle g, h\rangle$ for commuting $g$ , $h\in \mathrm{M}$

[T3],[IT1],[IT2]. Norton’s Generalized Moonshine conjecture [N] states that the

twisted graded $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}Z$ $\{\begin{array}{l}hg\end{array}\}$ is either constant or is ahauptmodul for some
genus zero fixing group. In general, afar wider variety of genus zero modu-
lar groups arise in Generalized Moonshine than those appearing in Monstrous
Moonshine.

Some parts of Norton’s conjecture follow directly from the orbifold analysis
of Section 1. For example, the twisted $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ is aconstant if $E_{g^{a}h^{-\mathrm{e}}}^{0}\geq 0$ for all
$(a,c)=1$ i.e. when all the elements of $\{g^{a}h^{-c}, (a, c)=1\}$ are non-Fricke and
so the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ is holomorphic and therefore constant. Another set of immediately
understood examples arises when $\langle g, h\rangle=\langle u\rangle$ for some $u\in \mathrm{M}$ . Then the corre-
sponding graded $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ can be transformed to the Thompson series $T_{u}(\tau)$ via an
appropriate modular transformation (8) so that in these cases, the hauptmodul
property follows directly from Monstrous Moonshine [T3],[DLM]. For example,
if $g$ and $h$ have $\mathrm{c}\mathrm{o}$-prime orders then this situation holds.

We will consider from now on $g$ normal Fricke and of prime order $p$ and
$h\in C_{\mathit{9}}=C(g, \mathrm{M})$ normal of order $pk$ for $k\geq 1$ or $k$ prime. Such commuting
pairs occur only for $p\leq 13$ . Since $\dim M_{g}(0)=1$ the coefficients of the twisted
graded $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ are characters for $C_{g}$ (up to apossible overall trivial factor). In
most cases these characters are rational but in some others they are irrational.
The centralser groups that arise for $p\leq 13$ are

for the Baby Monster, Fischer, Harada-Norton, Held, Mathieu and $\mathrm{L}_{3}(3)$ finite
simple groups [CCNPW]. For all such normal generators $g$ , $h$ that are also
independent we further have that

$Z$ $\{\begin{array}{l}hg\end{array}\}$ $(p \tau)=\frac{1}{q}+0+O(q)$ , (16)

i.e. $h$ acts as unity on $M_{\mathit{9}}(0)$ . Consider $(V\#)_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g,h)}$ as acomposition of orbifoldings
with respect to any pair of independent generators $u,v$ of $\langle g, h\rangle$ as in (12). For
$u^{a}v^{b}$ Fricke let $\phi_{u^{a}v^{b}}$ (it) denote the action of $u$ on $M_{u^{a}v^{b}}(0)$ . Then one can show
[IT1]:

1. If $h$ is Fricke then $(V^{\mathfrak{h}})_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g,h)}=V^{\mathfrak{h}}$ . If $u$ is Fricke then $uav$ is also Fricke
for aunique $a$ $\mathrm{m}\mathrm{o}\mathrm{d} o(u)$ with $o(u^{a}v)=o(v)$ and $\phi_{u^{a}v}(u)=1$ .

2. If $h$ is non-Fricke then $(V^{\mathfrak{h}})_{\mathrm{o}\mathrm{r}\mathrm{b}}^{(g,h\rangle}=V_{\mathrm{A}}$ .
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Hence the orbifold VOA $(V^{\mathfrak{h}})_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g,h\rangle}$ is either the Moonshine Module or the
Leech lattice theory again and properties of the singularities of the twisted
$\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(16)$ can be determined. Other constraints on the singularities can also be
proved [IT1]. In [IT1] and [IT2] we have shown that these results together with
the other properties of twisted traces reviewed above are sufficient to determine
the twisted $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ pole structure for those traces with rational coefficients for
$k=1$ and $k$ prime and for those traces with irrational coefficients for $k=1$ .
Furthermore, in each case the twisted $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ is the hauptmodul for agenus zero
fixing group generated by $\Gamma(p,pk)$ and some other modular symmetries under
which all of the twisted $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ singularities are identified. This accounts for ap-
proximately 130 non-trivial cases not directly related to Monstrous Moonshine.
This analysis also provides many restrictions on the possible Monster classes
to which the elements of $\langle g, h\rangle$ may belong. An analysis for rational traces for
$o(g)=pak$ , $k$ prime has now been completed in [I].

2.2 Some Examples and Conclusion
We illustrate these results with two basic examples where the twisted $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(16)$

has rational coefficients. Then one can show in general that (16) is $\Gamma_{0}(p^{2}k)$

invariant [IT1]. We then have the folowing examples:
Example 1. Suppose that $g$ and its Monster conjugates $g^{a}$ , for $a\neq \mathrm{O}\mathrm{m}\mathrm{o}\mathrm{d} p$,

are the only Fricke elements in $\{g^{a}h^{-\mathrm{c}}, (a, c)=1\}$ . Then (16) has aunique
simple pole at $q=0$ and is therefore ahauptmodul for agenus zero group
$\Gamma \mathrm{o}(p^{2}k)$ . This restricts the possible values of $p^{2}k$ to 4, 8, 9, 12, 18 and 25. In
practice $p^{2}k=25$ does not occur. Thus very specific conditions are placed on
the possible Monster classes to which the elements of $\{g^{a}h^{-\mathrm{c}}, (a, c)=1\}$ may
belong.

Example 2. Suppose that $g$ and $h$ (and their Monster conjugates) are the
only Fricke elements in $\{g^{a}h^{-\mathrm{c}}, (a,c)=1\}$ . Then from 1above $(V^{\mathfrak{h}})_{\mathrm{o}\mathrm{r}\mathrm{b}}^{\langle g,h)}=V^{\mathfrak{h}}$ .
It also follows with $u=g^{-1}$ and $v=h$ that $g^{-a}h$ is Fricke for aunique $a$ $\mathrm{m}\mathrm{o}\mathrm{d} p$

with $o(g^{-a}h)=pk$ and $\phi_{g^{-a}h}(g^{-1})=1$ . By assumption this implies $a=0$ and
hence $\phi_{h}(g^{-1})=1$ . Then acting with the Fricke involution $W_{p^{2}k}$ : $\tauarrow-1/p^{2}k\tau$

we find

$Z$ $\{\begin{array}{l}hg\end{array}\}$ $(pW_{p^{2}k}( \tau))=Z[g^{-1}h](pk\tau^{-})=\frac{1}{q}+0+O(q)$.

Following asimilar argument to that given earlier we find that (16) is ahaupt-
modul for { $\Gamma_{0}(p^{2}k)$ , $W_{p^{2}k}\rangle$ . Such groups only exist when $p^{2}k=4,8,9,12,18$ ,
20, 25, 27, 49 or 50. In practice $p^{2}k=49$ and 50 do not occur. Thus again spe-
cific conditions are placed on the possible Monster classes to which the elements
of $\{g^{a}h^{-\mathrm{c}}, (a, c)=1\}$ may belong.

We conclude with aremark on another constraint on the Monster group
that arises from Moonshine (and alittle group theory). Suppose that $p^{2}||\mathrm{M}|$ .
Then $\mathrm{M}$ must contain an Abelian subgroup $H$ of order $p^{2}$ . Either (a) $H=\langle g\rangle$
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with $o(g)=p^{2}$ or (b) $H=\langle g, h\rangle$ with $o(g)=o(h)=p$ . If (a) then $T_{g}$ is a
hauptmodul for either $\Gamma_{0}(p^{2})$ or $\langle\Gamma_{0}(p^{2}), W_{p^{2}}\rangle$ for which $p=2,3,5$ only. If (b)
then the genus zero groups found only occur $p\leq 13$ . Hence $p^{2}\{|\mathrm{M}|$ for $p>13$

as can indeed be observed from (14).
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