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1 Introduction
Let $G$ be afinite group, $p$ aprime, $R$ the ring of algebraic integers in some finite
Galois extension field $K$ of $\mathrm{Q}$ which contains enough roots of unity, $P$ aprime ideal
of $R$ lying over $p\mathrm{Z}$ , $R_{P}$ the localization of $R$ at $P$ , and $k$ be the residue class field
$R_{P}/PR_{P}$ of characteristic $p$ .

For terminology used in modular representation theory, see [10].
Let Irr(G) be the set of complex irreducible characters of $G$ , $e$ aprimitive idem-

potent of the center $Z(R_{P}G)$ of $R_{P}G$ , i.e., ablock idempotent of $G$ . Let $B$ be the
$p$-block of $G$ corresponding to $e$ .

-We say that $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(G)$ belongs to $B$ and write $\chi\in B$ , if $\chi(e)\neq 0$ .

-We also say that an indecomposable right $kG$ modular $M$ belongs to $B$ , if $M\overline{e}\neq$

$0$ , where $\overline{e}$ is the image of $e$ via the canonical epimorphism from $R_{P}G$ to $kG$ . We
also write $M\in B$ .

Definition 1.1 For $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(G)$ , let $d(\chi)$ be the exponent of the highest power of $p$

in $|G|/\chi(1)$ . Let $d(B)= \max\{d(\chi)|\chi\in B\}$ .

-For ablock $B$ , there exists a $p$-subgroup $D$ of $G$ such that every irreducible kG-
module belonging to $B$ is isomorphic to adirect summand of a $kG$-module induced
from a $kD$-module and that $|D|=p^{d(B)}$ .

The above $D$ is unique up to $G$-conjugate and called adefect group of $B$ .

-For any $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(G)$ and aconjugacy class $C$ of $G$ , the value

$\sum_{g\in C}\chi(g)/\chi(1)=\chi(g)|G|/\chi(1)|C_{G}(g)|$

lies in $R$ . The map from $Z(kG)$ to $k$ sending any $\hat{C}=\sum_{g\in C}g$ in $Z(kG)$ to
$\sum_{g\in C}\chi(g)/\chi(1)$

$\mathrm{m}\mathrm{o}\mathrm{d} P$ gives a $k$-algebra homomorphism. It does not depend
on the choice of $\chi\in B$ and is denoted by $\omega_{B}$ .

Definition 1.2 Let $B$ be a block of $G$ and $H$ a subgroup of G. If a block $b$ of $H$

satisfies $\omega_{B}(\hat{C})=\omega_{b}(\overline{C\cap H})$ for all conjugacy class $C$, of $G$ , th en we write $b^{G}=B$ .

If this is the case, ate call $b^{G}$ the induced block and that the induced block can be
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Theorem 1.3 (The first main theorem of Brauer) Let $D$ be a $p$ -subgroup of $G$ .
Then, there exists a bijection be rween the set of blocks of $G$ with defect group $D$ and
the set of blocks of $N_{G}(D)$ with defect group D. Moreover, for a block $B$ of $G$ with
defect group $D$ , the corresponding block $b$ is the unique block of $N_{G}(D)$ with defect
group $D$ such that $b^{G}=B$ .

2Conjectures in the 20th century
For $H\leq G$ , ablock $B$ of $G$ and $d\in \mathbb{Z}$ , let Irr(H, $B$ , $d$ ) be the set of ordinary
irreducible characters $\chi$ in Irr(iJ) belonging to ablock $b$ of $H$ with $b^{G}=B$ and
$d(\chi)=d$ , and we denote by $k(H, B, d)$ its cardinality. Note that if ablock $B$ of
$G$ with defect group $D$ corresponds to ablock $b$ of $N_{G}(D)$ via Brauer’s first main
theorem, then we have $\mathrm{I}\mathrm{r}\mathrm{r}(N_{G}(D), B, d)=\mathrm{I}\mathrm{r}\mathrm{r}(N_{G}(D), b, d)$ for all $d$ .

Conjecture 2.1 (Alperin-McKay Conjecture, $1970’ \mathrm{s}$ , [9], [1]) Suppose that a block
$B$ of $G$ with defect group $Dco$ responds to a block $b$ of $N_{G}(D)$ via Brauer’s first
main theorem. Then,

$k(G, B, d(B))=k(N_{G}(D), b, d(b)).7$

Remark 2.2 For a block $B$ of $G_{r}$ Brauer’s height zero conjecture asks whether
$k(G, B, d)=0$ for all $d$ with $d\neq d(B)$ if and only if $B$ has an abelian defect group.

Conjecture 2.3 (Broue’, $1980’ \mathrm{s}$ , [2], [3]) Suppose that a block $B$ of $G$ with defect
group $D$ corresponds to a block $b$ of $N_{G}(D)$ via Brauer’s first main theorem and that
$D$ is abelian.

(i) (Perfect Isometry Conjecture) Do there eist a bijection $\varphi$ : Irr(G) $\cap Barrow$

$\mathrm{I}\mathrm{r}\mathrm{r}(N_{G}(D))\cap b$ and a map $\epsilon$ : Irr(G) $\cap Barrow\{\pm 1\}$ such that

$\mu(g, h)=\sum_{\chi\in 1\mathrm{r}\mathrm{r}(G)\cap B}\epsilon(\chi)\chi(g)\varphi(\chi)(h)$
, $(g\in G, h\in N_{G}(D))$

satisfies;
If $\mu(g, h)\neq 0$ , then $g$ and $h$ are both $p$ -regular or both p-singular.
Both $\mu(g, h)/|C_{G}(g)|$ and $\mu(g, h)/|C_{N_{G}(D)}(h)|$ lie in $R_{\mathcal{P}}p$

(ii) (Derived Equivalence Conjecture) Does there exist a bounded complex

$\mathrm{C}$ :. . . $arrow C_{i+1}arrow C_{i}arrow\cdots$

of $R_{P}G- R_{P}N_{G}(D)$ -bimodules with each $C_{i}$ left $R_{P}G$-projective and right $R_{P}N_{G}(D)-$

projective such that $\mathrm{C}\otimes_{R_{\mathcal{P}}N_{G}(D)}\mathrm{C}^{*}\cong eRvG$ and C’ $\otimes_{R_{\mathcal{P}}G}\mathrm{C}\cong fR_{P}N_{G}(D)$ , where
$e$ and $f$ are block idempotents of $B$ and $b$ , respectively 9
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(iii) (Splendid Equivalence Conjecture [13]) Does there exist a bounded complex

$\mathrm{C}$ :. . . $arrow C_{i+1}arrow C_{i}arrow\cdots$

of $R_{P}G- R_{P}N_{G}(D)$ -bimodules as in (ii) such that each $C_{i}$ is a $\Delta(D)$ projective p-
permutation module, where $\Delta(D)=\{(g, g^{-1})|g\in D\}\varphi$

If $\varphi$ and $\epsilon$ in (i) above exist, then we say that $\varphi$ is aa perfect isometr$ry$ between
$B$ and $b$ . If $\mathrm{C}$ in (ii) above exists, then we say that $B$ and $b$ are derived equivalent
If $\mathrm{C}$ in (iii) above exists, then we say that $B$ and $b$ are splendidly equivalent

-If the derived equivalence conjecture holds for $B$ , then the perfect isometry
conjecture is also true for B. (See \S 3 of [2].)

-A $\Delta(D)$ projective -permutation module is by definition adirect summand of
amodule induced from $\Delta(D)$ .

-A complex of $R_{P}G- R_{P}N_{G}(D)$ -bimodules with the properties described in (iii)
exists if and only if acomplex of $kG- kN_{G}(D)$-bimodules with similar properties
exists. (Rickard [13]) This fact is based on aresult of Scott [18].

A radical $p$ -subgroup $P$ is a-subgroup of $G$ satisfying $O_{p}(N_{G}(P))=P$ , where
$O_{p}(H)$ is the maximal normal $p$-subgroup of $H$ for afinite group H. A radical
p-chain

$\underline{C}$ : $O_{p}(G)<P_{1}<P_{2}<\cdots<P_{n}$

is chain of psubgroups $P_{i}$ of $G$ starting with $O_{p}(G)$ such that $O_{\mathrm{P}}( \bigcap_{i=1}^{j}N_{G}(P_{i}))=Pj$

for all $j$ with $1\leq j\leq n$ . Let 72 be the set of radical pchains of $G$ and $\mathcal{R}/G$ aset of
representatives of $G$-orbits in 72. For $\underline{C}\in \mathcal{R}$ , let $N_{G}( \underline{C})=\bigcap_{i=1}^{n}N_{G}(P_{i})$ and $|\underline{C}|=n$ .
For chain normalizers, we have the following.

Lemma 2.4 (Knorr, Robinson) Let $\underline{C}\in \mathrm{R}$ . Then, for any block $b$ of $N_{G}(\underline{C})_{f}$ the
induced block $b^{G}$ can be defined.
Conjecture 2.5 (Dade, $1990’ \mathrm{s}$ , [5], [6]) Let $B$ be a block of $G$ with defect group $D$ .
Suppose that $D\neq\{1\}$ and $O_{p}(G)=\{1\}$ . Then,

$\sum_{\underline{C}\in \mathcal{R}/G}(-1)^{|\underline{C}|}k(N_{G}(\underline{C}), B, d)=0$

for all $dq$

Remark 2.6 There are several forms of Dade’s conjecture. They involve the num-
$ber$ of invariant characters under the automorphism action, that of projective irre-
ducible characters, etc.

-Dade’s conjecture (the projective form) implies the Alperin-McKay conjecture.
(See Corollary 17.15 and Theorem 18.5 of [6])

-Suppose that $D$ is abelian. Then, Broue’s perfect isometry conjecture implies
Dade’s conjecture. (See 52 of [2 ].)
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3Conjectures in the 21st century

Definition 3.1 For $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(G)$ , let $r(\chi)$ be the $p’$ -part $of|G|/\chi(1)$ in $(\mathbb{Z}/p\mathbb{Z})^{*}$ the
group of units of the finite field $\mathbb{Z}/p\mathbb{Z}$ .

For $H\leq G$ , ablock $B$ of $G$ , an integer $d$ and an element $r$ of $(\mathbb{Z}/p\mathbb{Z})^{*}$ , let
Irr(G), $B$ , $d$ , $[\pm r])$ denote the set of irreducible characters $\chi$ in Irr(H, $B$ , $d$) such that
$r(\chi)=\pm r$ , and let $k(H, B, d, [\pm r])$ denote its cardinality.

Conjecture 3.2 (Alperin-McKay-Isaacs-Navarro Conjecture, 2001, [7]) Let a block
$B$ of $G$ $with$ defect group $D$ corresponds to a block $b$ of $N_{G}(D)$ via Brauer’s first
main theorem. Then,

$k(G, B, d(B), [\pm r])=k(N_{G}(D), b, d(b), [\pm r])$

for all $r\in(\mathbb{Z}/p\mathbb{Z})^{*}Q$

Conjecture 3.3 (October 2001, see [17], [19]) Let $B$ be a block of $G$ $with$ defect
group D. Suppose that $D\neq\{1\}$ and $O_{p}(G)=\{1\}$ . Then,

$\sum_{\underline{C}\in R/G}(-1)^{|\underline{C}|}k(N_{G}(\underline{C}), B, d, [\pm r])=0$

for all $d\in \mathbb{Z}$ and $r\in(\mathbb{Z}/p\mathbb{Z})^{*}q$

-There are also several forms of Conjecture 3.3.

-The projective form of Conjecture 3.3 implies the Alperin-McKay-Isaacs-Navarro
conjecture. The proof is similar to those of Corollary 17.15 and Theorem 18.5 of [6].

Also, the following should be noticed.

Remark 3.4 Suppose that $B$ is principal and $D$ is abelian. Assume further that
group’s perfect isometry conjecture holds for $B$ and the trivial character of $G$ cor-
responds to that of $N_{G}(D)$ via the perfect isometr$ry$ . Then, Conjectures 3.2 and 3.3
holds for $B$ .

The reason is sketched as follows. Let $b$ be the Brauer correspondent of $B$ .
Suppose that there exist abijection $\varphi$ : Irr(G) $\cap Barrow \mathrm{I}\mathrm{r}\mathrm{r}(N_{G}(D))\cap b$ and amap
$\epsilon$ : Irr(G) $\cap Barrow\{\mathrm{i}1\}$ satisfying the condition. Then, we have an isomorphism

$\tilde{\varphi}$ : $Z(eR_{P}G)arrow Z(fR_{P}N_{G}(D))$

of $R_{P}$-algebras satisfying

$\tilde{\varphi}(e)=\sum_{\chi\in 1\mathrm{r}\mathrm{r}(G)\cap B}\frac{\epsilon(\chi)|G|/\chi(1)}{|N_{G}(D)|/\varphi(\chi)(1)}e_{\varphi(\chi)}$ ,
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where $e_{\varphi(\chi)}$ is the central idempotent of $KN_{G}(D)$ corresponding to $\varphi(\chi)$ . (See \S 1 of
[2].) In particular

$\frac{\epsilon(\chi)|G|/\chi(1)}{|N_{G}(D)|/\varphi(\chi)(1)}$

is aunit in $\mathbb{Z}/p\mathbb{Z}$ independent of $\chi$ . Since $\varphi(1_{G})=1_{N_{G}(D)}$ , we must have

$\frac{\epsilon(\chi)|G|/\chi(1)}{|N_{G}(D)|/\varphi(\chi)(1)}=\pm\frac{|G|}{|N_{G}(D)|}\equiv \mathrm{i}1$
$\mathrm{m}\mathrm{o}\mathrm{d} p$

for all $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(G)$ $\cap B$ . Thus, $\mathrm{r}(\mathrm{x})=\pm r(\varphi(\chi))$ for all $\chi\in \mathrm{I}\mathrm{r}\mathrm{r}(G)$ $\cap B$ . Hence
Conjecture 3.2 follows. This observation is due to Broue. For Conjecture 3.3, we
use standard pairings of chains and Brauer’s third main theorem. (\S 2 of [20].)

Let $\mathcal{H}$ be the subgroup of Gal(K) defined by

$7\#$ $=$ {a $\in \mathrm{G}\mathrm{a}1(\mathrm{K})$ $|P^{\sigma}=P$ },

namely, $\mathcal{H}$ is the decomposition group. For ablock $B$ of $G$ , let $\mathcal{H}_{B}$ denote the
set of elements $\mathrm{a}\in \mathcal{H}$ which $\sigma$ stabilize Irr(G) $\cap B$ as aset. This time, for $\sigma\in$

$\mathcal{H}$ , let Irr(G, $B$ , $d$ , $[\pm r]$ , $\sigma$ ) denote the set of $\sigma$-invariant irreducible characters in
Irr(H, $B,$ $d,$ $[\pm r]$ ), and $k(H, B, d, [\pm r], \sigma)$ its cardinality. Note that, if ablock $B$ of
$G$ with defect group $D$ corresponds to ablock $b$ of $N_{G}(D)$ via Brauer’s first main
theorem, then $\prime H_{B}=\mathcal{H}_{b}$ .

Conjecture 3.5 (Alperin-McKay-Isaacs-Navarro Conjecture, July 2002, [11]) Sup-
pose that a block $B$ of $G$ with defect group $D$ corresponds to a block $b$ of $N_{G}(D)$ via

Brauer’s first main theorem. Then,

Irr(G, $B$ , $d(B)$ , $[\pm r]$ ) and $\mathrm{I}\mathrm{r}\mathrm{r}(N_{G}(D), b, d(b), [\pm r])$

are isomorphic as $\mathcal{H}_{B}(=\mathcal{H}_{b})$ -sets for all $r\in(\mathbb{Z}/p\mathbb{Z})^{*}q$

Remark 3.6 The original for$m$ of the above states that

$k(G, B, d(B), [\pm r], \sigma)=k(N_{G}(D), b, d(b), [\pm r], \sigma)$

for all $r$ and $\sigma\in \mathcal{H}$ . However, $\iota t$ can be seen that this is equivalent to Conjecture

3.5. One can see it by using the theory of Burnside rings.

Of course, we have one more conjecture.

Conjecture 3.7 (August 2002) Let $B$ be a block of $G$ with defect group D. Suppose

that $D\neq\{1\}$ and $O_{p}(G)=\{1\}$ . Then,

$\sum_{Q\in \mathcal{R}/G}(-1)^{|\underline{C}|}k(N_{G}(\underline{C}), B, d, [\pm r], \sigma)=0$

for all $d\in \mathbb{Z}$ , $r\in(\mathbb{Z}/p\mathbb{Z})^{*}$ and a $\in \mathcal{H}_{B}$ ?

-There are also several forms of Conjecture 3.7
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Remark 3.8 Suppose that B is principal and D is abelian. Of course, B is $\mathcal{H}-$

invariant. Then, if B and its Brauer co respondent b are splendidly equivalent with
an $\mathcal{H}$ -invariant complex, then Conjecture 3.5 holds for B.

The reason is almost the same as before, since if the complex which gives asplendid
equivalence is $\prime H$-invariant, then the function $\mu$ in Broue’s conjecture is $\mathcal{H}$-invariant.
Thus (7-invariant characters must correspond to $\sigma$-invariant characters by the perfect
isometry $\varphi$ .

This gives rise to the following version of Brou\’e’ $\mathrm{s}$ conjecture.

Conjecture 3.9 (Galois Invariant Splendid Equivalence Conjecture) Suppose that
a block $B$ of $G$ with defect group $D$ corresponds to a block $b$ of $N_{G}(D)$ via Brauer’s
first main theorem and that $D$ is abelian. Does there exist an $\mathcal{H}_{B}$ -invariant bounded
complex

$\mathrm{C}$ :. . . $arrow C_{i+1}arrow C_{i}arrow\cdots$

of $R_{P}G- R_{P}N_{G}(D)$ -bimodules such that each $C_{i}$ is a $\Delta(D)$ -projective $p$ -per mutation
module, where $\Delta(D)=\{(g, g^{-1})|g\in D\}\rho$

If such a $\mathrm{C}$ exists, then we say that asplendid equivalence between $B$ and $b$ is
Galois invariant.

4Cyclic defect case
If adefect group of ablock is cyclic, then, we have the following.

Theorem 4.1 Suppose that a block B of G has a cyclic defect group. Then, all
conjectures appearing in the previous section hold for B.

It suffices to show that Conjectures 3.7 and 3.9 are true. In this situation,
Rouquier proved that the splendid equivalence conjecture is true. ([15]) The complex
he constructed is $\mathcal{H}_{B}$ -invariant. Thus Conjecture 3.9 is true. For Conjecture 3.7 we
use the standard reduction through the normalizer of the unique subgroup of $D$ of
order $p$ . (\S 9 of [5])

5Areduction theorem
In [6] Theorem 16.4, Dade proved areduction theorem. This can be generalized
easily to the situation involving $r$ . Instead of giving ageneral result, we consider
the following situation.

5.1 Let P be a cyclic normal p subgroup of G with $|P|=p^{s}$ . Assume that a Sylow
p subgroup S of G is $P\cross Q$ for a cyclic subgroup Q of G.
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Proposition 5.2 (i) Assume 5.1 and suppose that $O_{p}(G)=P$ . (Note that then $P$

is radical) Then, we have the following.

$\sum_{\underline{C}\in RG/G}(-1)^{|\underline{C}|}k(N_{G}(\underline{C}), B, d, [\pm r])=0$

for all $p$ blocks $B$ of $G$ with $d(B)>s$ , and for all $d$ and $r$ .
(ii) Assume 5.1. For any block $B$ of $G$ with defect group $S$ , there exists a Galois

invariant splendid equivalence between $B$ and its Brauer $co$ respondent.

For (i), an argument similar to that found in the proof of Theorem 16.4 in [6] gives
the result. It can be used when obtaining cancellation results for Dade’s conjecture.
(Conjecture 3.3.) For (ii) the proof uses Rouquier’s construction [15] of complex for
cyclic defect case and the argument of Marcus [8] for the existence of extensions of
complexes. As an application of (ii) above, we have the following.

Corollary 5.3 Assume that a Sylow $p$ -subgroup $S$ of $G$ is an elementary abelian of
order $p^{2}$ . Then, for a block $B$ with defect group $S$ , Conjecture 3.9 implies Conjecture
3.7.

For the proof of the above, consider aradical -chain starting with $1<P$ for
some $P$ with $|P|=p$ . If such achain exists, then $N_{G}(P)$ satisfies 5.1 and thus

$k(N_{G}(1<P), B, d, [\pm r], \sigma)=k(N_{G}(1<P<S), B, d, [\pm r], \sigma)$

for all $d$ , $r$ and $\sigma\in \mathcal{H}_{B}$ by Proposition 5.2 (ii). Now, the remaining radical p-chains
are the trivial one and $1<S$ . Thus, the result holds.

6Examples

Let us give examples of blocks whose defect groups are not abelian. Let $G$ be the
sporadic simple Conway’s group $Co_{2}$ or $Co_{3}$ , and let $p=5$ . We verify Conjecture

3.7 in this case. ASylow 5-subgroup $S$ of $G$ is an extra special group of order
$5^{3}$ and exponent 5. It follows from the Atlas [4] that groups of order $5^{2}$ are not

radical 5-subgroups of $G$ . Moreover, among subgroups of order 5, one generated by

a $5B$-element is aradical 5-subgroup, while the center of $S$ , which is generated by a
$5A$-element is not aradical 5-subgroup of $G$ . Let $P$ denote asubgroup generated by

a $5B$-element and $S’$ aSylow 5-subgroup of $N_{G}(P)$ . Note that $S’$ is an elementary

abelian of order $5^{2}$ . Then the following give representatives of radical 5-chain of $G$ .

1, $1<P$, $1<P<S’$ , $1<S$

Now, by the argument in the paragraph following Corollary 5.3, in order to verify

Conjecture 3.7 it suffices to consider only the trivial chain and $1<S$ . The characte$\mathrm{r}$
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tables of G and $N_{G}(S)$ are found in [4] and [12], respectively. The principal 5-bl0ck
B of G is the only 5-block of G with defect group S and $N_{G}(S)$ has of course only
the principal block. The numbers of relevant characters are shown as follows.

$\frac{(d,\pm r)(3,\pm 1)(3,\pm 2)(2,\pm 1)(2,\pm 2)}{k(Co_{2},B,d,[\pm r])101034}$

$k(N_{Co_{2}}(S), B, d, [\pm r])$ 10 10 3 4
$k(Co_{3}, B, d, [\pm r])$ 10 10 2 4
$k(N_{Co_{3}}(S), B, d, [\pm r])$ 10 10 2 4

For C02) irreducible characters in $B$ with defect 3are all $\mathcal{H}$-invariant, Let us
consider those with defect 2. In the notation of the Atlas [4], we have

Irr $(Co_{2}, B, 2, [\pm 1])=$ { $\chi_{12}$ , X13, $\chi_{28}$ },
$\mathrm{I}\mathrm{r}\mathrm{r}(Co_{2}, B, 2, [\pm 2])=$ { $\chi_{31}$ , X32, X45, $\chi_{55}$ },

with $\chi_{12}(1)=\chi_{13}(1)=10395$ $=2079\cdot 5$ , $\chi_{28}(1)=212520$ $=42504\cdot 5$ , $\chi_{31}(1)=$

$\chi_{32}(1)=239085$ $=47817\cdot 5$ , $\chi_{45}(1)=637560$ $=127512\cdot 5$ , $\chi_{55}(1)=1943040$ $=$

388608 $\cdot 5$ . Among those, only $\chi_{12}$ , X13, X32, X32 have irrational values involving
$\sqrt{-15}$ . It follows that, if $\sigma\in \mathcal{H}$ sends $\sqrt{-15}$ to $-\sqrt{-15}$ , then $\chi_{12}^{\sigma}=\chi_{13}$ and
$\chi_{31}^{\sigma}=\chi_{32}$ .

On the other hand, characters of $N_{Co_{2}}(S)$ with defect 3are all $\mathcal{H}$-invariant, and
in the notation of [12], we have

Irr $(N_{Co_{2}}(S), B, 2, [\pm 1])=$ { $\chi_{17}$ , X13, $\chi_{19}$ },
Irr$(N_{Co_{2}}(S), B, 2, [\pm 2])=$ { $\chi_{24}$ , X25, X26, $\chi_{27}$ },

with $\chi_{17}(1)=\chi_{18}(1)=\chi_{19}(1)=20=4- 5$ , $\chi_{24}(1)=\chi_{25}(1)=\mathrm{X}26(1)=40=8- 5$,
$\chi_{27}(1)=60=12\cdot 5$ . Among those, only $\chi_{17}$ , X13, $\chi_{24}$ , $\chi_{25}$ have irrational values
involving $\sqrt{-15}$ , and if $\sigma\in \mathcal{H}$ sends $\sqrt{-15}\mathrm{t}\mathrm{o}-\sqrt{-15}$ , then $\chi_{17}^{\sigma}=\chi_{18}$ and $\chi_{24}^{\sigma}=\mathrm{X}25$ ,
Hence, we have

$k(Co_{2}, B, d, [\pm r], \sigma)=k(N_{Co_{2}}(S), B, d, [\pm r], \sigma)$

for all $d$ , $r$ and $\sigma$ .
For $Co_{3}$ , in the notation of [4] we have the following.

Irr $(Co_{3}, B, 3, [\pm 1])=\{\chi_{2},$ $\chi_{3},$ $\chi_{4}$ , X13, X19, X21, X25, X32, X32, $\mathrm{X}33,$ ,
$\mathrm{I}\mathrm{r}\mathrm{r}(Co_{3}, B, 3, [\pm 2])=$ { $\chi_{1},$ $\chi_{6},$ $\chi_{7},$ $\chi_{8},$ $\chi_{9}$ , X13, $\mathrm{X}4$ , X33, X34, $\chi_{42}$ },
Irr $(Co_{3}, B, 2, [\pm 1])=\{\chi_{27}, \chi_{30}\}$ ,
$\mathrm{I}\mathrm{r}\mathrm{r}(Co_{3}, B, 2, [\pm 2])=$ { $\chi_{10}$ , Xll, Xi3, $\chi_{40}$ },

with $\chi_{10}(1)=\chi_{11}(1)=3520$ $=704- 5$ , $\chi_{15}(1)=8855$ $=1771- 5$ , $\chi_{27}(1)=57960$ $=$

$11592\cdot 5$ , $\chi_{30}(1)=80960$ $=16192- 5$ , $\chi_{40}(1)=249480$ $=49896- 5$ . Among those only
$\chi_{6}$ , $\chi_{7}$ , Xis, $\chi_{19}$ have irrational values involving $\sqrt{-11}$ , and $\chi_{10}$ and $\chi_{11}$ have those
involving $\sqrt{-5}$ . Any $\sigma\in?${ leaves $\sqrt{-11}$ invariant, since $\sqrt{-11}$ is expressed as the
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Gauss sum and 5is asquare in $\mathbb{Z}/11\mathbb{Z}$ . Moreover, it follows that, if $\sigma\in \mathcal{H}$ sends
$\sqrt{-5}\mathrm{t}\mathrm{o}-\sqrt{-5}$ , then $\chi_{10}^{\sigma}=\chi_{11}$ .

On the other hand, for $N_{Co_{3}}(S)$ , in the notation of [12] we have the following.

$\mathrm{I}\mathrm{r}\mathrm{r}(N_{Co_{3}}, B, 3, [\pm 1])=\{\chi_{9}, \chi_{10}, \chi_{11}, \chi_{12}, \chi_{13}, \chi_{14}, \chi_{15}, \chi_{16}, \chi_{17}, \chi_{18}\}$,
$\mathrm{I}\mathrm{r}\mathrm{r}(N_{Co_{3}}, B, 3, [\pm 2])=\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}, \chi_{6}, \chi_{7}, \chi_{8}, \chi_{23}, \chi_{24}\}$,
Irr $(N_{Co_{3}}, B, 2, [\pm 1])=\{\chi_{25}, \chi_{26}\}$ ,
$\mathrm{I}\mathrm{r}\mathrm{r}(N_{Co_{3}}, B, 2, [\pm 2])=\{\chi_{19}, \chi_{20}, \chi_{21}, \chi_{22}\}$ .

There are 14 characters having irrational values. However, they are W-invariant
except for $\chi_{19}$ and X205 which have values involving $\sqrt{-5}$ . It follows that, if $\sigma\in \mathcal{H}$

sends $\sqrt{-5}$ to $-\sqrt{-5}$ , then $\chi_{19}^{\sigma}=\chi_{20}$ . Hence, we have

$k(Co_{3}, B, d, [\pm r], \sigma)=k(N_{Co_{3}}(S), B, d, [\pm r], \sigma)$

for all $d$ , $r$ and $\sigma$ .
Concerning sporadic simple groups, several results are known. In [14] Rouquier

verified Perfect Isometry Conjecture for all principal blocks with abelian defect
groups. In [7], Isaacs and Navarro confirmed the 2001 version of Alperin-McKay-
Isaacs-Navarro Conjecture in the group form using [21]. Up to now, Conjecture 3.3
was verified for all primes for sporadic simple groups except for $J_{4}$ , $Fi_{24}’$ , $BM$ , $M$ .
Conjectures 3.7 and 3.9 have not been verified in almost all cases. For current situa-

tion of Broue’s conjecture, see, for example, 5.2 of [16]. In particular, the results on
Brou\’e’ $\mathrm{s}$ conjecture for sporadic simple groups include those for $J_{1}$ for $p=2$ , $M_{11}$ ,
$M_{22}$ , $M_{23}$ , ON, $HS$ for $p=3$ and $J_{2}$ for $p=5$ .
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