On the number of crossed homomorphisms — reduction to *p*-subgroups (斜準同型の個数に関する予想の *p*-群への帰着)

> 近畿大学・理工学部 淺井 恒信 (Tsunenobu Asai) Department of Mathematics, Kinki University

愛媛大学・理学部 庭崎 隆 (Takashi Niwasaki) Department of Mathematics, Ehime University

This is a joint work of Yugen Takegahara, Naoki Chigira and authors.

1 Situation

Let C and H be groups, and suppose that C acts on H by a homomorphism $\varphi: C \to \operatorname{Aut}(H)$. We indicate by ^ch the element $\varphi(c)(h)$ for $c \in C$ and $h \in H$. Let $H \rtimes C$ denote the semidirect product of H and C with canonical epimorphism $\pi: H \rtimes C \to C$.

Given a map $\lambda: C \to H$, we define a new map

$$\tilde{\lambda}: C \to H \rtimes C$$
 by $\tilde{\lambda}(c) = \lambda(c)c$.

Then the composition $\pi \circ \tilde{\lambda}$ coincides with the identity map id_C on C, and conversely, a map $f: C \to H \rtimes C$ satisfying $\pi \circ f = \operatorname{id}_C$ has the form $\tilde{\lambda}$ for some $\lambda: C \to H$. This property always underlies our arguments below. For example, we can show that

$$\lambda = \eta \iff \tilde{\lambda} = \tilde{\eta} \iff \tilde{\lambda}(C) = \tilde{\eta}(C)$$

for any maps $\lambda, \eta: C \to H$, namely, we can identify a map λ with a suitable subset of $H \rtimes C$. Further, as subgroups of $H \rtimes C$, the normalizer $N_H(\tilde{\lambda}(D))$ coincides with the centralizer $C_H(\tilde{\lambda}(D))$ for any subset Dof C.

A map $\lambda: C \to H$ is called a crossed homomorphism (or derivation, cocycle) if $\tilde{\lambda}: C \to H \rtimes C$ is a group homomorphism, or equivalently,

$$\lambda(cd) = \lambda(c) \cdot {}^c \lambda(d) \text{ for all } c, d \in C.$$

The zero-map which sends every element of C to the identity element of H is a crossed homomorphism. We denote by $Z^1(C, H)$ the set of crossed homomorphisms from C to H. The most important example of $Z^1(C, H)$ is Hom(C, H), the set of homomorphisms, for the trivial action of C on H. Another well-known example is the first cocycle group of a C-module H with respect to the bar resolution of C. In general, $Z^1(C, H)$ does not have a group structure unless H is abelian.

For each $\lambda \in Z^1(C, H)$, we can easily verify that $\tilde{\lambda}: C \to H \rtimes C$ is a splitting monomorphism of π (i.e., $\tilde{\lambda}$ is a homomorphism satisfying $\pi \circ \tilde{\lambda} = \mathrm{id}_C$), and $\tilde{\lambda}(C)$ is a complements of H in $H \rtimes C$ (i.e., $\tilde{\lambda}(C)$ is a subgroup of $H \rtimes C$ such that $H \cap \tilde{\lambda}(C) = 1$ and $H\tilde{\lambda}(C) = H \rtimes C$). A converse statement also holds, namely, $Z^1(C, H)$ is in one-to-one correspondence with the set of complements of H in $H \rtimes C$. All of our arguments in this report can be stated in terms of complements in semidirect groups.

2 Conjecture

Only in this section, we assume that both C and H are finite groups. Then $Z^1(C, H)$ is finite set; we denote by $|Z^1(C, H)|$ its cardinality. A well-known theorem of Frobenius states that

 $|\{h \in H \mid h^n = 1\}| \equiv 0 \pmod{\gcd(n, |H|)}$ for any integer n,

which can be expressed with our notation as

 $|\text{Hom}(C, H)| \equiv 0 \pmod{\gcd(|C|, |H|)}$ for any cyclic group C.

A number of proofs can be found, for example, in Brauer [5], Burnside [6], Curtis-Reiner [7], M. Hall [8], Isaacs-Robinson [10], and Zassenhaus [12]. P. Hall [9] extended the theorem to crossed homomorphisms as

 $|Z^{1}(C,H)| \equiv 0 \pmod{\gcd(|C|,|H|)}$ for any cyclic group C.

Later, Yoshida [11] showed another generalization:

 $|\text{Hom}(C,H)| \equiv 0 \pmod{\gcd(|C|,|H|)}$ for any abelian group C.

Furthermore, Yoshida and the first author of this report conjectured the following in [4].

Conjecture. Let C' be the commutator subgroup of a finite group C. Then

 $|Z^1(C,H)| \equiv 0 \pmod{\gcd(|C/C'|,|H|)}.$

This conjecture is still unsolved. The main theorem of this report is

Theorem 1. To prove the conjecture, we may assume that C is an abelian p-group and H is a p-group for a common prime p.

The methods and tools for the proof of Theorem 1 are the subject matter of the remaining sections. Applying our method to the argument of [4], we can also prove the following weaker result.

Theorem 2. Let $\Phi(C/C')$ denote the Frattini subgroup of C/C'. Then

$$|Z^1(C,H)| \equiv 0 \mod \gcd(\frac{|C/C'|}{|\Phi(C/C')|},|H|).$$

On the other hand, the conjecture has been verified in the following cases ([4], [2], [3], [1]):

(1) both C and H are abelian p-groups;

(2) $C = \langle c \rangle \times E$, the direct product of a cyclic *p*-group $\langle c \rangle$ and an elementary abelian *p*-group E;

- (3) $C = \langle c \rangle \times \langle c_{p^2} \rangle$, where p > 2 and $\langle c \rangle$ is a cyclic p-group, while $\langle c_{p^2} \rangle$ is a cyclic group of order p^2 ;
- (4) $C = \langle c_1 \rangle \times \langle c_2 \rangle$, an arbitrary abelian group of rank 2, while H is one of the dihedral, the semidihedral and the generalized quaternion 2-groups.

3 Group Actions

As stated in §1, the set $Z^1(C, H)$ may not have a group structure. To prove the conjecture, we need several group actions on $Z^1(C, H)$. Here we introduce the following concepts without finiteness assumption of C and H. Action of *H*. For given $h \in H$ and $\lambda \in Z^1(C, H)$, the composition map

$$\operatorname{Inn} h \circ \tilde{\lambda} \colon C \xrightarrow{\lambda} H \rtimes C \xrightarrow{\operatorname{Inn} h} H \rtimes C$$

is a splitting monomorphism of the canonical epimorphism $\pi: H \rtimes C \to C$, where $\operatorname{Inn} h$ is the inner automorphism by h. Thus the *H*-part, denoted by ${}^{h}\lambda$, of $\operatorname{Inn} h \circ \tilde{\lambda}$ becomes a crossed homomorphism. More precisely, we can define ${}^{h}\lambda \in Z^{1}(C, H)$ by

$$({}^{h}\lambda)(c) = (h \cdot \lambda(c)c \cdot h^{-1})c^{-1} = h \cdot \lambda(c) \cdot {}^{c}h^{-1} = [h, \tilde{\lambda}(c)]\lambda(c) \text{ for each } c \in C.$$

In terms of complements, the well-definedness of ${}^{h}\lambda$ corresponds to the fact that the conjugate of a complement $\tilde{\lambda}(C) \leq H \rtimes C$ by h is still a complement. Therefore, H acts on $Z^{1}(C, H)$ in this way. Note that we can show that the stabilizer of λ in H coincides with $C_{H}(\tilde{\lambda}(C)) = N_{H}(\tilde{\lambda}(C))$ as noticed in §1.

Change of Actions. Fix an element $\lambda \in Z^1(C, H)$. Then the complement $\tilde{\lambda}(C)$ acts on H by conjugation in $H \rtimes C$. This induces another action of C on H, i.e., $C \xrightarrow{\tilde{\lambda}} H \rtimes C \xrightarrow{\text{Inn}} \text{Aut}(H)$. We denote by $Z_{\tilde{\lambda}}^1(C, H)$ the set of crossed homomorphisms for this action. It is easy to show that there exists a bijection

$$\lambda_r\colon Z^1_{\overline{\lambda}}(C,H) o Z^1(C,H) \quad ext{given by} \quad (\lambda_r\eta)(c)=\eta(c)\lambda(c) \quad ext{for} \quad \eta\in Z^1_{\overline{\lambda}}(C,H), \ c\in C.$$

In terms of complements, this means the trivial fact that the both sets, $Z^1(C, H)$ and $Z^1_{\bar{\lambda}}(C, H)$, correspond to the complements of H in $H \rtimes C = H \rtimes \tilde{\lambda}(C)$. Note that this bijection induces a semi-regular action (i.e., every non-identity element has no fixed point) of the *first cocycle group* $Z^1(C, Z(H))$ on the set $Z^1(C, H)$, where the C-module Z(H) denotes the center of H.

4 As Functors

We shall consider 'left-exactness' of $Z^{1}(-,-)$, although the values are objects in the category of sets where exactness of sequences is not defined.

First variable. Suppose that D is a normal subgroup of C, namely, there exists a short exact sequence $1 \rightarrow D \rightarrow C \rightarrow C/D \rightarrow 1$ of groups. We wish to consider a problem whether there exists an *exact* sequence such as

$$1 \to Z^1(C/D, H_?) \to Z^1(C, H) \xrightarrow{\operatorname{res}} Z^1(D, H),$$

where res is the restriction map and $H_{?}$ is some subgroup of H on which D acts trivially. Whereas we can not find such a common subgroup $H_{?}$, we can prove the following.

Theorem 3. Suppose that $\mu \in Z^1(D, H)$ is an element of $res(Z^1(C, H))$, namely, there exists an element $\lambda \in Z^1(C, H)$ such that $res(\lambda) = \mu$. Then the bijection $\lambda_r \colon Z^1_{\overline{\lambda}}(C, H) \to Z^1(C, H)$ introduced in the previous section induces a bijection

$$\lambda_r: Z^1_{\tilde{\lambda}}(C/D, C_H(\tilde{\mu}(D))) \to \operatorname{res}^{-1}(\mu).$$

For a moment, we return to the conjecture. Assume that C and H are finite groups, and that D is a normal subgroup of C. Then $Z^1(C,H) = \bigcup_{\mu \in Z^1(D,H)} \operatorname{res}^{-1}(\mu)$. Note that the restriction map is an H-map, and that the stabilizer of $\mu \in Z^1(D,H)$ in H is $C_H(\tilde{\mu}(D))$. Hence it follows from Theorem 3 that

$$\left|\bigcup_{h\in H} \operatorname{res}^{-1}({}^{h}\mu)\right| = |H/C_{H}(\tilde{\mu}(D))| \cdot |\operatorname{res}^{-1}(\mu)| = |H/C_{H}(\tilde{\mu}(D))| \cdot |Z_{\tilde{\lambda}}^{1}(C/D, C_{H}(\tilde{\mu}(D)))|,$$

which is divisible by gcd(|C/D|, |H|) if C/D is abelian and if the conjecture holds for $Z^1_{\tilde{\lambda}}(C/D, C_H(\tilde{\mu}(D)))$. This is the reason why we may assume that C is an abelian p-group in the conjecture.

Second variable. Suppose that K is a subgroup of H, which need not be normal nor closed under the action of C. Let $Map(C, K \setminus H)$ denote the set of maps from C to the right cosets $K \setminus H$. We wish to consider a problem whether there exists an exact sequence such as

$$1 \to Z^1(C, K_?) \to Z^1(C, H) \to \operatorname{Map}(C, K \setminus H)$$

for some subgroup $K_?$ of K; namely, we wish to describe the condition that two elements of $Z^1(C, H)$ have the same values in $K \setminus H$. For this problem, Brauer [5] gave an answer in the case where C is cyclic with trivial action on H, i.e., $Z^1(C, H) = \text{Hom}(C, H)$. We can generalize his answer as follows.

We say that two elements η, λ of $Z^1(C, H)$ are equivalent with regard to K, if

$$K\eta(c) = K\lambda(c)$$
 for all $c \in C$.

In this case, we write $\eta \sim_K \lambda$. On the other hand, let $K_{\tilde{\lambda}(C)}$ denote the maximal $\tilde{\lambda}(C)$ -invariant subgroup of K:

$$K_{\tilde{\lambda}(C)} = \bigcap_{c \in C} \tilde{\lambda}^{(c)} K.$$

Proposition 4. Let K be a subgroup of H, and $\eta, \lambda \in Z^1(C, H)$. Then $\eta \sim_K \lambda$ if and only if $\eta \sim_{K_{\bar{\lambda}(C)}} \lambda$. In other words, if $\eta \sim_K \lambda$, then $\eta(c)\lambda(c)^{-1} \in K_{\bar{\lambda}(C)}$.

Theorem 5. Let K be a subgroup of H, and $\lambda \in Z^1(C, H)$. Then the bijection $\lambda_r \colon Z^1_{\lambda}(C, H) \to Z^1(C, H)$ induces the bijection

$$\lambda_r\colon Z^1_{\bar{\lambda}}(C,K_{\bar{\lambda}(C)})\to \{\eta\in Z^1(C,H)\mid \eta\sim_K \lambda\}.$$

This is an answer of the problem above, whereas a common subgroup $K_{?}$ can not be taken. Further, Brauer [5] introduced another equivalence relation, which can be generalized as follows.

We say that two elements η, λ of $Z^1(C, H)$ are weakly equivalent with regard to K, if there exists an element $k \in K$ such that $\eta \sim_K {}^k \lambda$, where ${}^k \lambda$ is defined in the previous section. In this case, we write $\eta \approx_K \lambda$.

Theorem 6. Let K be a subgroup of H, $k \in K$ and $\lambda \in Z^1(C, H)$. Then $\lambda \sim_K {}^k \lambda$ if and only if $k \in K_{\overline{\lambda}(C)}$. Therefore we have a bijection

$$\{\eta \in Z^{1}(C,H) \mid \eta \approx_{K} \lambda\} = \bigcup_{k \in [K/K_{\lambda(C)}]} \{\eta \in Z^{1}(C,H) \mid \eta \sim_{K} {}^{k}\lambda\}$$
$$\simeq \bigcup_{k \in [K/K_{\lambda(C)}]} Z^{1}_{k_{\lambda}}(C,K_{k_{\lambda(C)}}),$$

where $[K/K_{\tilde{\lambda}(C)}]$ denotes a complete set of representatives of $K/K_{\tilde{\lambda}(C)}$.

We return to the conjecture. Assume that C and H are finite groups, and that K is a subgroup of H. Then $Z^1(C, H)$ is the union of the weakly equivalence classes with regard to K. However, it follows from Theorem 6 that

$$\left|\left\{\eta\in Z^1(C,H)\mid\eta\approx_K\bar{\lambda}\right\}\right|=\left|K/K_{\bar{\lambda}(C)}\right|\cdot\left|Z^1_{\bar{\lambda}}(C,K_{\bar{\lambda}(C)})\right|,$$

which is divisible by gcd(|C/C'|, |K|) if the conjecture holds for $Z^1_{\bar{\lambda}}(C, K_{\bar{\lambda}(C)})$. This is the reason why we may assume that H is a p-group in the conjecture.

Finally, we remark that if K is closed under the action of $\tilde{\lambda}(C)$, then \sim_K and \approx_K are the same relation. In [1], we used \sim_K to calculate $|Z^1(C, H)|$, where H is an exceptional 2-group and K is a characteristic subgroups of H.

References

- [1] T. Asai, T. Niwasaki, and Y. Takegahara, Crossed homomorphisms from rank 2 abelian to exceptional *p*-groups, 2002, preprint.
- [2] T. Asai and Y. Takegahara, On the number of crossed homomorphisms, Hokkaido Math. J. 28 (1999), 535-543.
- [3] _____, |Hom(A,G)|, IV, J. Algebra 246 (2001), 543-563.
- [4] T. Asai and T. Yoshida, |Hom(A,G)|, II, J. Algebra 160 (1993), 273-285.
- [5] R. Brauer, On a theorem of Frobenius, Amer. Math. Monthly 76 (1969), 562-565.
- [6] W. Burnside, The Theory of Groups of Finite Order, 2nd ed., Cambridge University Press, 1907.
- [7] C. W. Curtis and I. Reiner, *Representation theory of finite groups and associative algebras*, 2nd ed., Pure and Appl. Math., Interscience Publishers, New York, 1966.
- [8] M. Hall, The Theory of Groups, MacMillan, New York, 1959.
- [9] P. Hall, On a theorem of Frobenius, Proc. London Math. Soc. (2) 40 (1935), 468-501.
- [10] I. M. Isaacs and G. R. Robinson, On a Theorem of Frobenius: Solutions of $x^n = 1$ in finite groups, Amer. Math. Monthly 99 (1992), no. 4, 352-354.
- [11] T. Yoshida, |Hom(A,G)|, J. Algebra 156 (1993), 125-156.
- [12] H. Zassenhaus, The Theory of Groups, 2nd ed., Chelsea Publishing Company, New York, 1958.