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1Situation
Let $C$ and $H$ be groups, and suppose that $C$ acts on $H$ by ahomomorphism $\varphi:Carrow \mathrm{A}\mathrm{u}\mathrm{t}(H)$ . We

indicate by $\mathrm{c}h$ the element $\varphi(c)(h)$ for $c\in C$ and $h\in H$ . Let $H\mathrm{r}C$ denote the semidirect product of $H$

and $C$ with canonical epimorphism $\pi:H\mathrm{r}Carrow C$ .
Given amap $\lambda:Carrow H$ , we define anew map

$\tilde{\lambda}:Carrow H\mathrm{r}C$ by $\tilde{\lambda}(c)=\lambda(c)c$.

Then the composition $\pi 0\tilde{\lambda}$ coincides with the identity map $\mathrm{i}\mathrm{d}o$ on $C$ , and conversely, amap $f:Carrow H\mathrm{r}C$

satisfying $\pi\circ f=\mathrm{i}\mathrm{d}c$ has the form Afor some $\lambda:Carrow H$ . This property always underlies our arguments
below. For example, we can show that

$\lambda=\eta\Leftrightarrow\tilde{\lambda}=\tilde{\eta}\Leftrightarrow\tilde{\lambda}(C)=\tilde{\eta}(C)$

for any maps $\lambda,$ $\eta:Carrow H$ , namely, we can identify amap $\lambda$ with asuitable subset of $H\mathrm{r}C$. Further, as
subgroups of $H\mathrm{r}C$ , the normalzer $N_{H}(\cdot\tilde{\lambda}(D))$ coincides with the centralizer $C_{H}(\tilde{\lambda}(D))$ for any subset $D$

of $C$ .
Amap $\lambda:Carrow H$ is called acrossed homomorphism (or derivation, cocycle) if $\tilde{\lambda}:Carrow H\aleph C$ is a

group homomorphism, or equivalently,

$\lambda(cd)=\lambda(c)\cdot \mathrm{G}\lambda(d)$ for all $\mathrm{c},d\in C$.

The zerO-map which sends every element of $C$ to the identity element of $H$ is acrossed homomorphism.
We denote by $Z^{1}(C, H)$ the set of crossed homomorphisms from $C$ to $H$ . The most important example of
$Z^{1}(C, H)$ is $\mathrm{H}\mathrm{o}\mathrm{m}(C,H)$ , the set of homomorphisms, for the trivial action of $C$ on $H$ . Another well-known
example is the first cocycle group of a $C$-module $H$ with respect to the bar resolution of $C$ . In general,
$Z^{1}(C, H)$ does not have agroup structure unless $H$ is abelian.

For each $\lambda\in Z^{1}(C,H)$ , we can easily verify that $\tilde{\lambda}:Carrow H\mathrm{r}C$ is asplitting monomorphism of $\pi$ (i.e.,
$\tilde{\lambda}$ is ahomomorphism satisfying $\pi 0\tilde{\lambda}=\mathrm{i}\mathrm{d}c$ ), and $\tilde{\lambda}(C)$ is acomplements of $H$ in $H\mathrm{x}C$ (i.e., $\tilde{\lambda}(C)$ is
asubgroup of $H\mathrm{x}C$ such that $H\cap\tilde{\lambda}(C)=1$ and $H\tilde{\lambda}(C)=H\mathrm{x}C)$ . Aconverse statement $\mathrm{a}\mathrm{k}\mathrm{o}$ holds,
namely, $Z^{1}(C,H)$ is in one to one correspondence with the set of complements of $H$ in $H\mathrm{r}C$ . All of our
arguments in this report can be stated in terms of complements in semidirect groups.
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2Conjecture
Only in this section, we assume that both $C$ and $H$ are finite groups. Then $Z^{1}(C,H)$ is finite set; we

denote by $|Z^{1}(C,H)|$ its cardinality. Awell-known theorem of Frobenius states that

$|\{h\in H|h^{n}=1\}|\equiv 0$ (mod $\mathrm{g}\mathrm{c}\mathrm{d}(n,$ $|H|)$ ) for any integer $n$ ,

which can be expressed with our notation as

$|\mathrm{H}\mathrm{o}\mathrm{m}(C, H)|\equiv 0$ (mod $\mathrm{g}\mathrm{c}\mathrm{d}(|C|,$ $|H|)$ ) for any cyclic group $C$.

Anumber of proofs can be found, for example, in Brauer [5], Burnside [6], $\mathrm{C}\mathrm{u}\mathrm{r}\mathrm{t}\mathrm{i}\epsilon$-Reiner [7], M. $\mathrm{H}\mathrm{a}\mathrm{U}[8]$ ,
Isaacs-Robinson [10], and Zassenhaus [12]. P. Hall [9] extended the theorem to crossed homomorphisms
as

$|Z^{1}(C,H)|\equiv 0$ (mod $\mathrm{g}\mathrm{c}\mathrm{d}(|C|,$ $|H|)$ ) for any cyclc group $C$.

Later, Yoshida [11] showed another generalization:

$|\mathrm{H}\mathrm{o}\mathrm{m}(C,H)|\equiv 0$ (mod $\mathrm{g}\mathrm{c}\mathrm{d}(|C|,$ $|H|)$ ) for any abelian group $C$.

Furthermore, Yoshida and the first author of this report conjectured the following in [4].

Conjecture. Let $C’$ be the comrnutator subgroup of a finite group C. Then

$|Z^{1}(C,H)|\equiv 0$ (mod $\mathrm{g}\mathrm{c}\mathrm{d}(|C/C’|,$ $|H|)$ ).

This conjecture is still unsolved. The main theorem of this report is

Theorem 1. To prvve the conjecture, we may assurne that $C$ is an abelian $p$-grvup and $H|.s.a$ $p$-group

for a common prime $p$ .

The methods and tools for the proof of Theorem 1are the subject matter of the remaining sectiOn8.
Applying our method to the argument of [4], we can also prove the following weaker result.

Theorem 2. Let $\Phi(C/C’)$ denote the ffhttini subgroup of $C/C’$ . Then

$|Z^{1}(C, H)|\equiv 0$ mod $\mathrm{g}\mathrm{c}\mathrm{d}(\frac{|C/C’|}{|\Phi(C/C’)|}, |H|)$ .

On the other hamd, the conjecture has been verified in the following cases ([4], [2], [3], [1]):

(1) both $C$ and $H$ are abelian $\mathrm{p}$ groups;
(2) $C=(c$} $\mathrm{x}E$ , the direct product of acyclic pgroup ($c\rangle$ and an elementary abelan $\Psi$-group $E$;

(3) $C=\langle c\rangle \mathrm{x}\langle c_{p^{2}}\rangle$ , where $p>2$ and ($c\rangle$ is acyclic $p$-group, while { $c_{p}\mathrm{a}\rangle$ is acydic group of order $p^{2}|$.
(4) $C=\langle c_{1}\rangle \mathrm{x}\langle c_{2}\rangle$ , an arbitrary abelian group of rank 2, while $H$ is one of the dihedral, the semidihedral

and the generalized quaternion 2-gr0ups.

3Group Actions
As stated in \S 1, the set $Z^{1}(C,H)$ may not have agroup structure. To prove the conjecture, we need

several group actions on $Z^{1}(C,H)$ . Here we introduce the following concepts without finiteness assumption

of $C$ and $H$ .
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Action of $H$ . For given $h\in H$ and $\lambda\in Z^{1}(C, H)$ , the composition map

Inn $h\circ\overline{\lambda}:C\prec^{\overline{\lambda}}H*Carrow H\aleph C1\mathrm{n}\mathrm{n}h$

is asplitting monomorphism of the canonical epimorphism $\pi:H\aleph Carrow C$ , where Inn $h$ is the inner
automorphism by $h$ . Thus the H-part, denoted by $h\lambda$ , of Inn $h\mathrm{o}\tilde{\lambda}$ becomes acrossed homomorphism.
More precisely, we can define $h\lambda\in Z^{1}(C, H)$ by

$(^{h}\lambda)(\mathrm{c})=(h\cdot\lambda(c)c\cdot h^{-1})c^{-1}=h\cdot\lambda(c)\cdot \mathrm{C}h^{-1}=[h,\tilde{\lambda}(c)]\lambda(c)$ for each $c\in C$.
In terms of complements, the well-definedness of $h\lambda$ corresponds to the fact that the conjugate of a
complement $\tilde{\lambda}(C)\leq HnC$ by $h$ is still acomplement. Therefore, $H$ acts on $Z^{1}(C,H)$ in this way. Note
that we can show that the stabilizer of Ain $H$ coincides with $C_{H}(\tilde{\lambda}(C))=N_{H}(\tilde{\lambda}(C))$ as noticed in 51.

Change of Actions. Fix an element $\lambda\in Z^{1}(C,H)$ . Then the complement $\tilde{\lambda}(C)$ acts on $H$ by conju-
gation in $HnC$. This induces another action of $C$ on $H$ , i.e., $Carrow H\mathrm{r}Carrow\tilde{\lambda}1\mathrm{n}\mathrm{n}$ Aut(H). We denote by
$Z \frac{1}{\lambda}(C, H)$ the set of crossed homomorphisms for this action. It is easy to show that there exists abijection

$\lambda_{r}$ : $Z \frac{1}{\lambda}(C, H)arrow Z^{1}(C,H)$ given by $(\lambda_{r}\eta)(c)=\eta(c)\lambda(c)$ for $\eta\in Z\frac{1}{\lambda}(C,H),$ $c\in C$.
In terms of complements, this means the trivial fact that the both sets, $Z^{1}(C, H)$ and $Z \frac{1}{\lambda}(C, H)$ , correspond
to the complements of $H$ in $HnC=H\mathrm{x}\tilde{\lambda}(C)$ . Note that this bijection induces a $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}- \mathrm{r}\mathrm{e}\mathrm{g}\dot{\mathrm{u}}\mathrm{l}\mathrm{a}\mathrm{r}$ action
(i.e., every non-identity element has no fixed point) of the first cocycle group $Z^{1}(C, Z(H))$ on the set
$Z^{1}(C, H)$ , where the $C$-module $Z(H)$ denotes the center of $H$ .

4 As Functors
We shall consider ‘left-exactness’ of $Z^{1}(-, -)$ , although the values are objects in the category of sets

where exactness of sequences is not defined.

First variable. Suppose that $D$ is anormal subgroup of $C$, namely, there exists ashort exact sequence
$1arrow Darrow Carrow C/Darrow 1$ of groups. We wish to consider a problm whether there exists an exact
sequence such as

$1arrow Z^{1}(C/D,H_{?})arrow Z^{1}(C,H)arrow Z^{1}(D, H)\mathrm{r}\mathrm{e}\epsilon$ ,

where $\mathrm{r}\mathrm{e}\mathrm{s}$ is the restriction map and $H_{?}$ is some subgroup of $H$ on which $D$ acts trivially. Whereas we
can not find such acommon subgroup $H_{?}$ , we can prove the following.

Theorem 3. Suppose that $\mu\in Z^{1}(D,H)$ is an element $of\mathrm{r}\mathrm{e}\mathrm{s}(Z^{1}(C, H))$ , namely, there exists an element
$\lambda\in Z^{1}(C,H)$ such that $\mathrm{r}\mathrm{e}\mathrm{s}(\lambda)=\mu$ . Then the bijection $\lambda_{r}$ : $Z_{\tilde{\lambda}}^{1}(C,H)arrow Z^{1}(C,H)$ introduced in the
previous section induces a bijection

$\lambda_{r}$ : $Z_{\tilde{\lambda}}^{1}(C/D, C_{H}(\overline{\mu}(D)))arrow \mathrm{r}\mathrm{e}\mathrm{s}^{-1}(\mu)$.

F.or a moment, we return to the conjecture. Assume ffiat $C$ and $H$ are finite groups, and that $D$ is
anormal subgroup of $C$. Then $Z^{1}(C,H)= \bigcup_{\mu\in Z^{1}(D,H)}\mathrm{r}\mathrm{e}\mathrm{s}^{-1}(\mu)$ . Note that the restriction map is an
H-map, and that the stabilizer of $\mu\in Z^{1}(D,H)$ in $H$ is $C_{H}(\tilde{\mu}(D))$ . Hence it follows from Theorem 3that

$|_{h\in H}\cup \mathrm{r}\mathrm{e}\mathrm{s}^{-1}(^{h}\mu)|=|H/C_{H}(\tilde{\mu}(D))|\cdot|\mathrm{r}\mathrm{e}\mathrm{s}^{-1}(\mu)|=|H/C_{H}(\tilde{\mu}(D))|\cdot|Z_{\tilde{\lambda}}^{1}(C/D, C_{H}(\tilde{\mu}(D)))|$ ,
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which is divisible by $\mathrm{g}\mathrm{c}\mathrm{d}(|\mathrm{C}\mathrm{l}7/-|, |H|)$ if $C/D$ is abelian and if the conjecture holds for $z\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}_{\ovalbox{\tt\small REJECT}}(C/D,$

$\mathrm{t}^{11}1\ovalbox{\tt\small REJECT}_{H(\ovalbox{\tt\small REJECT}(D)))}$ .

This is the reason why we may assume that $C$ is an abelian $2\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}$ in the conjecture.

Second variable. Suppose that $K$ is asubgroup of $H$ , which need not be normal nor closed under the

action of $C$ . Let MaP(C, $K\backslash H$) denote the set of maps from $C$ to the right cosets $K\backslash H$ . We wish to

consider aproblem whether there exists an exact sequence such as

$1arrow Z^{1}(C,K_{?})arrow Z^{1}(C,H)arrow \mathrm{M}\mathrm{a}\mathrm{p}(C,K\backslash H)$

for some subgroup $K_{?}$ of $K$ ;namely, we wish to describe the condition that two elements of $Z^{1}(C, H)$

have the same values in $K\backslash H$ . For this problem, Brauer [5] gave an answer in the case where $C$ is cyclic

with trivial action on $H$ , i.e., $Z^{1}(C,H)=\mathrm{H}\mathrm{o}\mathrm{m}(C,H)$ . We can generalze his answer as follows.

We say that two elements $\eta$,Aof $Z^{1}(C,H)$ are equivalent with regard to $K,$ if

$K\eta(c)=K\lambda(c)$ for all $c\in C$.

In this case, we write $\eta\sim_{K}$ A. On the other hand, let $K_{\tilde{\lambda}(C)}$ denote the maximal $\tilde{\lambda}(C)$ -invariant subgroup

of $K$ :

$K_{\tilde{\lambda}(C)}=\cap\tilde{\lambda}(c)_{K}$ .
$c\in C$

Proposition 4. Let $K$ be a subgroup $ofH$ , and $\eta,$ $\lambda\in Z^{1}(C,H)$ . Then $\eta\sim K$ Aif and only if $\eta\sim K_{1(G)}\lambda$.
In other words, if $\eta\sim K\lambda$, then $\eta(c)\lambda(c)^{-1}\in K_{\overline{\lambda}(C)}$ .

Theorem 5. Let $K$ be a subgroup of $H$ , and $\lambda\in Z^{1}(C, H)$ . Then the bijection $\lambda_{\mathrm{r}}$ : $Z_{\frac{1}{\lambda}}(C, H)arrow Z^{1}(C, H)$

induces the bijection

$\lambda_{r}$ : $Z_{\tilde{\lambda}}^{1}(C,K_{\tilde{\lambda}(G)})arrow\{\eta\in Z^{1}(C, H)|\eta\sim_{K}\lambda\}$ .

This is an answer of the problem above, whereas acommon subgroup $K_{?}$ can not be taken. Further,

Brauer [5] introduced another equivalence relation, which can be generalized as follows.

We say that two elements $\eta$,Aof $Z^{1}(C,H)$ are uteakly equivalent eoith regard to $K$ , if there exists an
element $k\in K$ such that $\eta\sim Kk\lambda$, whe$\mathrm{r}$e $k\lambda$ is defined in the previous section. In this case, we write

$\eta\approx\kappa\lambda$ .

Theorem 6. Let $K$ be a subgroup of $H,$ $k\in K$ and $\lambda\in Z^{1}(C, H)$ . Then $\lambda\sim Kk\lambda$ if and only if
$k\in K_{\overline{\lambda}(C)}$ . Therefore we have a $bije\epsilon tion$

$\{\eta\in Z^{1}(C,H)|\eta\approx_{K}\lambda\}=$ $\cup$ $\{\eta\in Z^{1}(C,H)|\eta\sim_{K}k\lambda\}$

k\epsilon {K/K工{c)]

$\simeq$ $\cup$ $Z_{h}^{1}(\tilde{\lambda}C,K_{\iota^{-}\mathrm{x}(C)})$ ,
k\epsilon [K/Ki(。}】

where $[K/K_{\overline{\lambda}(G)}]$ denotes a cornplete set of representatives of $K/K_{\overline{\lambda}(C)}$ .

We return to the conjecture. Assume that $C$ and $H$ are finite groups, and that $K$ is a subgroup of $H$ .
Then $Z^{1}(C, H)$ is the union of the weakly equivalence classes with regard to $K$ . However, it follows from

Theorem 6that

$| \{\eta\in Z^{1}(C,H)|\eta\approx_{K}\overline{\lambda}\}|=|K/K_{\overline{\lambda}(C)}|\cdot|Z\frac{1}{\lambda}(C, K_{\tilde{\lambda}(C)})|$ ,
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which is divisible by $\mathrm{g}\mathrm{c}\mathrm{d}(|C/C’|, |K|)$ if the conjecture holds for $Z_{\tilde{\lambda}}^{1}(C,K_{\tilde{\lambda}(O)})$ . This is the reason why
we may assume that $H$ is a $p \frac{-}{}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}$ in the conjecture.

Finally, we remark that if $K$ is closed under the action of $\tilde{\lambda}(C)$ , then $\sim K$ and $\approx_{K}$ are the same relation.
In [1], we used $\sim K$ to calculate $|Z^{1}(C,H)|$ , where $H$ is an exceptional 2-group and $K$ is acharacteristic
subgroups of $H$ .
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