
Engel structures and Legendrian foliations

Jiro ADACHI ’(足立二郎, 大阪大・理)

Department of Mathematics,
Osaka University

0Introduction

The goals of this short article are to introduce the notion and properties
of an Engel structures and to announce the results in [A]. For the precise
proofs, see [A].

In any category of geometry, exotic structures are interesting objects
to study. In addition, the classification is an important problem. Engel
structures are largely dominated by the characteristic foliations. This
paper is devoted to the characterization of Engel structures on $M$ $\mathrm{x}S^{1}$ and
$M\cross I$ , where $M$ is a3-dimensional manifold, with the same characteristic
foliation as the standard Engel structure. The results are described in
Section 2.

In the following section, we define an Engel structure and introduce
some properties. The notions, Prolongations of contactstructures (Sec-
tion 1.2), twisting property and Development mappings (Section 1.3), are
important for the proof of the results in this article.
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1Introduction to Engel structures

In this section, we define an Engel structure, and introduce some impor-
tant properties.

1.1 Basic definitions

Amaximally non-integrable distribution of rank 2on a4-dimensi0nal
manifold is called an Engel $st$ ucture. More precisely, it is defined as
follows. Let $W$ be a4-dimensional manifold. Adistribution of rank 2or
a2-plane field $V$ on $W$ is adistribution of 2-dimensional tangent planes
$D_{p}\subset TPW$ , $p\in W$ . It is considered as arank 2subbundle of the tangent
bundle $TW$ . We can think of $V$ as alocally ffee sheaf of smooth vector
fields on $M$ . Let $[D, D]$ denote the sheaf generated by all Lie brackets
$[X, \mathrm{Y}]$ of vector fields $X$ , $\mathrm{Y}$ on $M$ , which are cross sections of V. We set
$D^{2}:=D$ $+[D, D]$ and $D^{3}:=D^{2}+[D, D^{2}]$ .

Definition. Adistribution $V$ of rank 2on a4-dimensional manifold $W$

is called an Engel strucrure if it satisfies,

$\dim D^{2}=3$ , $\dim D^{3}=4$ , (1.1)

at any point $p\in W$ .

We note that $D^{2}$ is adistribution of rank 3and $D^{3}$ is the tangent
bundle $TW$ itself, if $V$ is an Engel structure. This corank 1distribution
$D^{2}$ is an even-contact structure on $W$ . Let $\mathcal{E}$ denote it. An even-contact
$st$ ucture is, by definition, acorank 1distribution on an even-dimensional
manifold, which is defined, at least locally, by 1-form0with aproperty
that $\theta\Lambda(d\theta)^{n/2-1}$ is never-vanishing $(n-1)$-form, where $n$ is the dimension
of the manifold. An even-contact structure $\mathcal{E}$ on a4-manifold $W$ has a
characteristic 1-dimension. We define arank 1subdistribution $\mathcal{L}(\mathcal{E})$ of $\mathcal{E}$

by $[\mathcal{L}(\mathcal{E}), \mathcal{E}]\subset \mathcal{E}$. In this case, its rank is 1. It is called the characteristic
line field of $\mathcal{E}=D^{2}$ or sometimes of $D$ . We call the 1-dimensional folia-
tion obtained by integrating the characteristic line field the characteristic
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foliation of $D^{2}$ or 7). We note that an Engel structure $V$ should include
its characteristic line field to satisfy the Engel condition (1.1).

Contact structures are sometimes described in terms of contact forms.
Similarly, Engel structures are described in terms of pairs of differential
1-forms. Apair of 1-forms $(\alpha, \beta)$ on a4-manifold $W$ is called an Engel
pair of 1-forms if it satisfies the following three conditions,

(1) $\alpha\Lambda\beta\Lambda$ clot never vanishes,

(2) $\alpha\Lambda\beta\Lambda d\beta\equiv 0$ ,

(3) $\beta\Lambda d\beta$ is anever-vanishing 3-f0rm.

It is known that the distribution $V$ $:=\{\alpha=0, \beta=0\}$ defined by an Engel
pair of 1-forms is an Engel structure (see [Ge]). Under these conditions
above, the 1-form $\beta$ defines an even-contact distribution as $D^{2}=\{\beta=0\}$ ,
and the characteristic line field $\mathcal{L}(D^{2})$ is defined as akernel of the 3-f0rm
$\beta\Lambda \mathrm{d}\mathrm{p}$ . For an even-contact distribution $\mathcal{E}=\{\beta=0\}$ , avector field $X_{0}$ is
called the characteristic vector field of $\mathcal{E}$ , if it satisfies $X_{0^{\lrcorner}}\Omega=\beta\Lambda d\beta$ for
some volume form $\Omega$ on $W$ . We note that it generates the characteristic
line field and foliation of $\mathcal{E}$ .

Engel structures have no local invariant, similarly to contact and sym-
plectic structures. There exists alocal normal form, written as akernel
of two differential l-forms,

$dy$ $-z\cdot dx=0$ , $dz$ $-w\cdot dx=0$ , (1.2)

where $(x, y, z, w)$ is acoordinate system. Further, it is known that this
property occurs only on line fields, contact structures, even-contact struc-
tures, and Engel structures, among regular tangent distributions on man-
ifolds (see [M1], [VG]). The fact above indicates the importance of the
study of Engel structures. However, different from contact structures,
global stability does not hold for Engel structures, that is, the Gray type
theorem does not hold. The moduli of the characteristic foliation are the
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obstructions to global stability. It is proved by A. Golubev and R. Mont-
gomery in [Go] and [M2] that adeformation of an Engel structure is
realized by an isotopy if it fix the characteristic line field. If the above
two differential 1-forms(1.2) are defined globally on $\mathbb{R}^{4}$ , the obtained
Engel structure is called the standard Engel structure on $\mathbb{R}^{4}$ . Let $D_{st}$

denote it. The standard Engel structure has its characteristic line field
spanned by avector field in the $w$ direction, $\mathcal{L}(D_{st}^{2})=\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}\langle\partial/\partial w\rangle$ .
V. Gershkovich constructs in [Ge] examples of Exotic Engel structures
on $\mathbb{R}^{4}$ with non-trivial characteristic line fields. To study exotic Engel
structures with the same characteristic line field as the standard Engel
structure is amotivation for this paper.

1.2 Prolongation procedures of contact manifolds.

The notion of prolongation is introduced by E. Cartan in the theory of
exterior differential systems (see [C], [BCG3]). We consider the prolonga-
tions of contact structures on 3-manifolds. Let 4be acontact structure
on a3-manifold $M$ , namely acertain 2-plane field. We construct anew
4-dimensional manifold ffom $\xi$ by fibrewise projectivizations,

$\mathrm{P}(\xi):=\cup \mathrm{P}(\xi_{p})p\in M$ ’

where $\mathrm{P}(\xi_{p})$ is aprojectivization of atangent plane $\xi_{p}$ . Apoint of $\mathrm{P}(\xi)$

can be regarded as aline $l$ in the contact plane $\xi_{p}$ through the origin.
The constructed 4-manifold $\mathrm{P}(\xi)$ has astructure of acircle bundle over
$M$ . Let $\pi:\mathrm{P}(\xi)arrow M$ be its projection. This 4-manifold is endowed
with a2-plane field $D(\xi)$ induced naturally as follows. We define 2-plane
$D(\xi)_{q}\subset T_{q}(\mathrm{P}(\xi))$ at $q=(p, l)$ $\in \mathrm{P}(\xi)$ . Apoint $q=(p, l)$ $\in \mathrm{P}(\xi)$ is
regarded as apair of apoint $p\in M$ and atangent line $\mathit{1}\subset\xi_{p}\subset T_{p}M$ .
Then we set $D(\xi)_{q}:=(\mathrm{c}1\pi^{-1})_{q}l$ . Thus we obtain a2-plane field $D(\xi)$

on a4-manifold $\mathrm{P}(\xi)$ . We call this $(\mathrm{P}(\xi),D(\xi))$ the prolongation of a
contact structure 4on a3-manifold $M$ . It is known that the prolongation
$(\mathrm{P}(\xi), D(\xi))$ is an Engel manifold (see [M2]). We note that the prolonge$\mathrm{d}$
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manifold $\mathrm{P}(\xi)$ is diffeomorphic to $M\cross S^{1}$ if the contact structure 4belongs
to the trivial class as plane fields. In this paper we consider this case
especially.

Further, we consider some variants of prolongations. Let $(\mathrm{P}(\xi), D(\xi))$

be the prolongation of acontact structure 4on a3-manifold $M$ . We
define anew 4-manifold $\mathrm{P}_{n}(\xi)$ by fibrewise $n$-fold covering of $\mathrm{P}(\xi)$ ,

$\mathrm{P}_{n}(\xi):=\cup \mathrm{P}_{n}(\xi_{p})p\in M$ ’

where $\mathrm{P}_{n}(\xi_{p})$ is an $n$-fold covering space of $\mathrm{P}(\xi_{p})$ . Let $\varphi_{n}$ : $\mathrm{P}_{n}(\xi)arrow \mathrm{P}(\xi)$

be afibrewise covering bundle mapping. We obtain acorresponding Engel
structure $D_{n}(\xi)$ on $\mathrm{P}_{n}(\xi):(\varphi_{n})_{*}D_{n}(\xi)=D(\xi)$ . This pair $(\mathrm{P}_{n}(\xi),D_{n}(\xi))$

is called the $n$ -fold prolongation of acontact structure on a3-manifold
$M$ . According to this notation, we have $(\mathrm{P}(\xi),D(\xi))=(\mathrm{P}_{1}(\xi),D_{1}(\xi))$ .
When the given contact structure $\xi$ on a3-manifold $M$ is trivial as plane
fields, $\mathrm{P}_{n}(\xi)$ is diffeomorphic to $M\cross S^{1}$ for any $n$ $\in \mathrm{N}$ . Then we obtain
acorresponding Engel structure $\overline{D}_{n}(\xi)$ , $n=1,2,3$ , $\ldots$ on $M\cross S^{1}$ . In
addition, we consider afibrewise universal covering of aprolongation
$\mathrm{P}(\xi)$ , and let $(\tilde{\mathrm{P}}(\xi),\tilde{D}(\xi))$ denote it.

Next, we consider the deprolongation procedure, the inverse of the
prolongation, in asense. Similarly to the above, we consider deprolon-
gation of Engel structures especially. Let $D$ be an Engel structure on a
4-manifold $W$ , $\mathcal{E}:=D^{2}$ its even-contact structure, and $L(\mathcal{E})$ its charac-
teristic foliation. We consider the leaf space $W/L(\mathcal{E})$ and its projection
$\pi:Warrow W/L(\mathcal{E})$ . The foliation $L(\mathcal{E})$ is said to be nice, according to
[M2], if $W/L(\mathcal{E})$ is asmooth 3-manifold and $\pi$ is asubmersion. We sup-
pose here that $L(\mathcal{E})$ is nice. We set $\xi(\mathcal{E}):=\pi_{*}\mathcal{E}$ . It is a2-plane field
on $W/L(\mathcal{E})$ , which is well defined because the characteristic vector field
$X_{0}$ , along $L(\mathcal{E})$ , preserves the even-contact structure $\mathcal{E}$ . In fact, the even-
contact structure $\mathcal{E}=D^{2}$ is determined by the second 1-form $\beta$ of the
Engel pair of 1-forms $(\alpha, \beta)$ . Since the characteristic vector field $X_{0}$ is
defined so that $X_{0}\lrcorner(\beta\Lambda d\beta)=0$ (see Section 1.1), we have $L_{X_{0}}\beta=f\cdot\beta$ ,

118



for some function $f$ . This implies that $X_{0}$ preserves $\mathcal{E}$ . Therefore, we
have $\xi(\mathcal{E})_{\pi(p)}:=(d\pi)_{p}(\mathcal{E}_{p})=(d\pi)_{q}(\mathcal{E}_{q})$ for any point $q$ on the same leaf
of $L(\mathcal{E})$ as $p$ because $\pi$ is the projection along $L(\mathcal{E})$ or $X_{0}$ . It is known
that this distribution $\xi$ $=\xi(\mathcal{E})$ is acontact structure on $W/L(\mathcal{E})$ (see
[M2], [Ge] $)$ . We call this $(W/L(\mathcal{E}), \xi(\mathcal{E}))$ the deprolongation of the Engel
structure $D$ .

Let $(W, D)$ be an Engel manifold with the characteristic foliation $L(D^{2})$ ,
and $M\subset(W, D)$ an embedded 3-manifold. We assume that $M$ is trans-
verse to the characteristic foliation $L$ . Then we can take aneighborhood
$U$ of $M$ as aflow-box for $L$ . In this neighborhood $U$ , the foliation $L$ is
nice in the sense above. Thus we can apply the deprolongation proce-
dure. In this case, we can identify the leaf space $U/L(D^{2})$ with $M$ . Then
the obtained contact structure is $\pi_{*}D^{2}=TM\cap D^{2}$ . In the case where
the Engel manifold is aprolongation $(\mathrm{P}(\xi),D(\xi))$ of acontact structure
4on a3-manifold $M$ and embedded 3-manifold is across section $M_{\theta}$ ,
the characteristic foliation $L(D(\xi)^{2})$ is nice globally. Then, the leaf space
$\mathrm{P}(\xi)/L(D^{2})$ is identified with $M_{\theta}=M$ and the obtained structure is the
original 4.

1.3 Twisting property and Development mappings.

The development mapping is alocal Engel diffeomorphism or an immer-
sion into aprolongation $(\mathrm{P}(\xi),D(\xi))$ or $(\tilde{\mathrm{P}}(\xi),\tilde{D}(\xi))$ , introduced in [M2].
It is constructed by aproperty that an Engel structure is twisting along
leaves of its characteristic foliation. First, we observe the twisting condi-
tion of Engel structures. Let us recall that an Engel structure $D$ contains
its characteristic line field $\mathcal{L}=\mathcal{L}(D^{2})\subset D$ of $D^{2}=:\mathcal{E}$ . Let $\tilde{D}$ be an-
other rank 2distribution which is contained in $\mathcal{E}$ and contains $\mathcal{L}=\mathcal{L}(\mathcal{E})$ :
$\mathcal{L}\subset\tilde{D}\subset \mathcal{E}$ . Then the twisting condition:

$\tilde{D}+[\mathcal{L},\tilde{D}]=\mathcal{E}$ (1.3)

implies that $\tilde{D}$ is Engel, that is, the Engel condition (1.1). Let $X_{0}$ be a
characteristic vector field of $\mathcal{E}$ , and V avector field which forms abasis of
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$\tilde{D}$ with $X_{0}$ . We note $[V, \mathcal{E}]\not\subset \mathcal{E}$ because $V$ is independent of the integrable
subdistribution $\mathcal{L}(\mathcal{E})\subset \mathcal{E}$ . Then the derived distributions are

$\tilde{D}^{2}=\tilde{D}+[\mathcal{L},\tilde{D}]+[V,\tilde{D}]=\mathcal{E}$ ,
$\tilde{D}^{3}=\mathcal{E}+[L,\mathcal{E}]+[V,\mathcal{E}]=\mathcal{E}+[V,\mathcal{E}]$ ,

where we use the fact that the rank of $\tilde{D}$ is 2. Therefore we obtain
$\dim\tilde{D}^{2}=3$ , $\dim\tilde{D}^{2}=4$ , namely, the Engel condition (1.1).

Using this twisting condition, we construct amapping from adomain
in an Engel manifold with anice characteristic foliation to aprolon-
gation of some contact structure. Let $(W,D)$ be an Engel manifold,
and $L=L(D^{2})$ the characteristic foliation. Let $U\subset(W, D)$ be ad0-
main where the characteristic foliation $L$ is nice in the sense above, and
$\pi:Uarrow U/L$ the projection to the leaf space. We set $\xi:=\pi_{*}(D^{2})$ . It is
adeprolonged contact structure on $U/L$ from V. Let $l\subset W$ be aleaf
of $L$ , and $q\in l$ $\cap U$ apoint. Prom another point of view, $l$ is apoint
of the leaf space $U/L$ . For apoint $q\in l$ , there corresponds atangent
2-plane $D_{q}\subset T_{q}U$ . Since an Engel distribution $D$ contains the charac-
teristic line field $\mathcal{L}=\mathcal{L}(D^{2})$ , and is contained in $D^{2}:\mathcal{L}\subset D$ $\subset D^{2}$ , there
corresponds atangent line $d\pi_{q}(D_{q})\subset d\pi_{q}(D_{q}^{2})=\xi_{l}$ , that is, apoint of
$\mathrm{P}(\xi_{l})$ . In this way, we obtain amapping from $l$ to $\mathrm{P}(\xi_{l})$ . As the domain
$U$ with anice foliation is regarded as aunion of leaves $\bigcup_{l\cap U\neq\emptyset}(l \cap U)$ , we
obtain amap from anice domain $U$ to aprolongation $\mathrm{P}(\xi)$ . We call this
mapping $\Phi_{D}$ : $Uarrow \mathrm{P}(\xi)$ the development mapping associate to the Engel
structure $D$ . The twisting condition (1.3), and the argument following it,
ensure that this development mapping is diffeomorphic locally. Prom the
construction, the development mapping $\Phi_{D}$ preserves the characteristic
line field and another line field in the Engel distribution twisting in the
sense of the twisting condition, with respect to the given $V$ on $U$ and the
prolongation $D(\xi)$ on $\mathrm{P}(\xi)$ . Therefore the development mapping is an En-
gel diffeomorphic locally (see [M2]). We consider the lift $\tilde{\Phi}_{D}$ : $Uarrow\tilde{\mathrm{P}}(\xi)$

of the development mapping. We also call this the development mapping.
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2 Engel structures on M $\cross S^{1}$ , M $\cross I$ .
–Statements of results.

First of all we define the invariant, twisting number, for an Engel struc-
ture. In this paper, Engel structures on $M\cross S^{1}$ and $M\cross I$ with trivial
characteristic foliations are investigated. We say acharacteristic folia-
tion $L$ is trivial if it is isotopic to afoliation which consists of leaves
$\{pt\}\cross S^{1}\subset M$ $\mathrm{x}S^{1}$ or $\{pt\}\cross I$ $\subset M\cross I$ . In the following, we suppose
that these isotopies have been applied. Namely, we assume in the follow-
ing that atrivial characteristic foliation consists of leaves $\{pt\}\cross S^{1}$ or
$\{pt\}\cross I$ . In this case, we can define invariants for Engel structures. Let
$D$ be an Engel structure on $M\cross S^{1}$ with atrivial characteristic foliation.
An Engel structure, as a2-plane field, is spanned by the characteristic
line field and aline field twisting along leaves of the characteristic folia-
tion (see Section 1.3). Now each leaf of characteristic foliation is afibre
$\{pt\}\mathrm{x}$ $S^{1}\subset M$ $\mathrm{x}S^{1}$ . Then we can define the twisting number for Engel
structures on $M\cross S^{1}$ and $M\cross I$ . We begin with $M\cross S^{1}$ . Let 7) be
an Engel structure on $M$ $\cross S^{1}$ with atrivial characteristic foliation, and
$\xi$ $=\xi(D)$ its deprolongation. Let $\mathit{1}\in L(D^{2})$ be aleaf of the characteristic
foliation corresponding to apoint $p\in M=(M\cross I)/L(D^{2})$ . We note
that 1is diffeomorphic to $S^{1}$ . Then we obtain amapping from $l$ $\cong S^{1}$ to
$\mathrm{P}(\xi_{p})\cong \mathbb{R}P^{1}\cong S^{1}$ , defined as $\theta-*D_{(p,\theta)}\cap T_{p}M$ , which can be regarded
as amapping $S^{1}arrow S^{1}$ . The twisting number $\mathrm{t}\mathrm{w}(D)$ of $D$ is defined as
the degree of this mapping. We suppose that the orientation of afibre
$l$ is defined by the characteristic vector field $X_{0}$ . Considering the basis
$(v_{0}, v_{1})$ of 4such that $[X_{0}, v_{0}]=v_{1}$ , we obtain an orientation of 4, and
then that of $S^{1}\cong \mathrm{P}(\xi_{p})$ . We consider the above degree with respect to
those orientations. We note that it is independent of the choice of points
$p\in M$ . In other words, the Engel structure $V$ with the twisting number
$\mathrm{t}\mathrm{w}(D)=n$ is Engel diffeomorphic to $(\mathrm{P}_{n}(\xi),D_{n}(\xi))$ by the development
mapping, where $\xi=\xi(D)$ . Next, we define the minimal twisting number
for Engel structures on $M\mathrm{x}$ I with trivial characteristic foliations. Let $\overline{D}$
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be an Engel structure on $M$ $\cross I$ with the trivial characteristic foliation,

and $\overline{\xi}=\xi(\overline{D})$ its deprolongation. We take apair $(V_{0}, V_{1})$ of non-vanishing
vector fields on $M$ , which is apositively oriented basis of $\xi$ as above, such
that $V_{0}$ defines the induced Legendrian foliation $\mathcal{F}_{0}=F(M\cross\{0\},\overline{D})$ .
Then we obtain afamily $g_{t}$ : $Marrow \mathbb{R}$ of functions, which satisfies that
$g_{0}\equiv 0$ and that the vector fields $(V_{0}\cdot\cos(g_{t}\pi)+V_{1}\cdot\sin(g_{t}\pi))$ define the
line fields $\overline{D}\cap TM_{t}$ , by identifying $M_{t}$ with $M$ . We call the non-negative
integer $n$ $\in \mathbb{Z}_{\geq 0}$ such that $n \leq\min_{p\in M}g_{1}<n$ $+1$ the minimal twisting

number of $\overline{D}$ . Let $\mathrm{t}\mathrm{w}_{-}(\overline{D})$ denote it. We note that it is independent of
the choice of $V_{1}$ and the orientation of $V_{0}$ .

Next, we consider the induced Legendrian foliations. Let $D$ be an En-
gel structure on $M\cross S^{1}$ or $M\cross I$ with atrivial characteristic foliation
$L(D^{2})$ . Let us identify cross sections of $M\cross S^{1}$ and $Mxl$ with $M$ itself by
the standard projection. This projection is the projection along the char-
acteristic foliation $L(D^{2})$ too. We note that this $M$ is transverse to the
characteristic foliation $L(D^{2})$ . It is known that the even-contact structure
$D^{2}$ induce acontact structure $\xi(D^{2})$ on $M$ (see [M2] and [Ge]). It does not
depend on the choice of the cross section (see Section 1.2). Similarly the
Engel distribution 7) induce an 1-dimensional foliation $F(M,D)$ on $M$ by
the integral of the line field defined by the intersection of $V$ and $M$ . We
note that the leaves of this foliation $F(M, D)$ are tangent to the induced
contact structure $\xi(D^{2})$ everywhere. Curves in contact 3-manifolds, which
are tangent to the contact structures everywhere, are called Legendrian
curves. We call this foliation $\mathcal{F}(M,D)$ the induced Legendrian foliation.

Now, we are ready to state the results of this paper. First, we consider
Engel structures on $M\cross S^{1}$ with trivial characteristic foliations.

Theorem 1. (1) Let $\xi$ , $\langle$ be parallelizable contact structures, that is, they
have global framings. If the prolonged Engel struc tures $\overline{D}(\xi)$ and $\overline{D}(\zeta)$ are
isotopic preser ving the characteristic foliation, then the contact $st$ uctures

$\xi$ and $\zeta$ are isotopic.
(2) For any Engel srructure $V$ on a 4-dimensional manifold $M\cross S^{1}$ with $a$
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trivial characteristic foliation, there exist a contact structure 4on $M$ and
a natural number $n$ $\in \mathrm{N}$ , for which the $n$ -fold prolonged Engel structure

$\overline{D}_{n}(\xi)$ of 4on $M\cross S^{1}$ is isotopic to V.

In other words, this theorem implies the following.

Corollary 1. Engel $st$ uctures on $M\cross S^{1}$ with trivial characteristic f0-
liations are characterized, up to isotopies, by isotopy classes of contact
structures on $M$ and the twisting number $\mathrm{t}\mathrm{w}(D)\in \mathrm{N}$ .

We note that we can construct an Engel structure $\overline{D}_{n}(\xi)$ on $M\cross S^{1}$

for any isotopy class [4] of of contact structures on $M$ which are trivial
as plane fields, and anatural number $n\in \mathrm{N}$ .

Next, we show that Engel structures on $M$ $\cross I$ with the trivial char-
acteristic foliation are determined by the induced contact structures, the
minimal twisting numbers, and the induced Legendrian foliations on both
ends $M\cross$ $\partial I$ .

Theorem 2. (1) Let $D$ and $D\sim be$ Engel struc rures on $M\cross I$ with the trivial
characteristic foliations. If they have the same induced contact structure,
induced Legendrian foliations on both ends $M\cross\partial I$ , and minimal twisting
number, then they are isotopic relative to the ends.
(2) Let 4be a parallelizable contact stmcture on a 3-manifold $M_{f}(F_{0}, F_{1})$

a pair of Legendrian foliations on $(M, \xi)$ , and $n\in \mathbb{Z}_{\geq 0}$ a non-negative
integer. Then there exists an Engel structure $V$ $=D(\xi, 0, 1, n)$ on
$M$ $\cross I_{f}$ which has the induced contact structure $\xi(D)=\xi$, the induced
$Legendr\dot{\mathrm{v}}an$ foliations $F(M\cross\{i\}, D)=F_{i}$ , i $=0,$ 1, and the minimal
twisting number $\mathrm{t}\mathrm{w}_{-}(D)=n$ .

This theorem implies the following.

Corollary 2. Engel structures on $M\cross I$ with the trivial characteristic

foliation are determined by the induced contact structures and the induced
Legendrian foliations on both ends $M\cross\partial I$ and the minimal twisting num-
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This Theorem 1implies that Engel structures on $M\cross S^{1}$ with the triv-
ial characteristic foliation are classified, up to isotopy, if contact structures
on the 3-manifold $M$ are classified. The classification of contact structure
has been an important problem for along time. There are some results
on this subject (for example, [Ell], [E12], [K], [Et], [Gi], [H]). Here we
take $S^{3}$ for example.
Example. Let us consider Engel structures on $S^{3}\cross S^{1}$ with trivial
characteristic foliations. Contact structures on $S^{3}$ are classified, up to
isotopy, to the following structures (see [Ell], [E12]): atight structure $($ ,
overtwisted structures $\xi_{m}$ , $m\in \mathrm{Z}$ . Then, any Engel structure o$\mathrm{n}$

$S^{3}\cross S^{1}$

with atrivial characteristic foliation is isotopic to one of the foUowings:

$\overline{D}_{n}(\zeta)$ , $\overline{D}_{n}(\xi_{m})$ , $n\in \mathrm{N}$ , $m\in \mathbb{Z}$ .

These Engel structures are not isotopic each other.

References

[A] J. Adachi, Engel structures with trivial characteristic foliations,
Algebr. Geom. Topol. 2(2002), 239-255.

[BCG3] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt,
P. A. Griffiths, Exterior differential systems, Mathematical Sci-
ences Research Institute Publications, 18. Springer-Verlag, New
York, 1991.

[C] E. Cartan, Sur quelques quadratures dont Velement differentiel con-
tient des fonctions arbitraires, Bull. Soc. Math. Prance 29 (1901),
118-130.

[Ell] Ya. Eliashberg, Classification of overtwisted contact st uctures on
3-manifolds, Invent. Math. 98 (1989), 623-637.

[E12] Ya. Eliashberg, Contact 3-manifolds twenty years since J. Mar-
tinet’s work, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2,
165-192.

124



[Et] J. B. Etnyre, Tight contact srructures on lens space, Commun.
Contemp. Math. 2(2000), no. 4, 559-577.

[Ge] V. Gershkovich, Exotic Engel structures on $\mathbb{R}^{4}$ , Russian J. Math.
Phys. 3(1995), no. 2, 207-226.

[Go] A. Golubev, On the global stability of maximally nonholonomic
twO-plane fields in four dimensions, Internat. Math. ${\rm Res}$ . Notices
1997, n0.ll, 523-529.

[Gi] E. Giroux, Structures de contact en dimension trois et bifurcations
des feuilletages de surfaces, Invent. Math. 141 (2000), no. 3, 615-
689.

[H] K. Honda, On the classification of tight contact structures I, Geom.
Topol. 4(2000), 309-368.

[K] Y. Kanda, The classifications of contact structures on 3-t0rus,
Comm. Anal. Geom. 5(1997), 413-438.

[M1] R. Montgomery, Generic distr ibutions and Lie algebras of vector
fields, J. Differential Equations 103 (1993), no. 2, 387-393.

[M2] R. Montgomery, Engel deformations and contact structures, North-
ern California Symplectic Geometry Seminar, Amer. Math. Soc.
Transl. Ser. 2, 196, 103-117, Amer. Math. Soc, Providence, RI,
1999.

[VG] A. Vershik and V. Gershkovich, Nonholonomic dynamical systems.
Geometry of distributions and variational problems, Encyclopaedia
Math. Sci. 16 (1994), 1-81.

Department of Mathematics,
Osaka University,
Toyonaka Osaka 560-0043, Japan,
$\mathrm{e}$-mail:adachi@math.sci.osaka-u.ac.jp

125


