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AN INTRODUCTION TO THE SPECIAL MCKAY
CORRESPONDENCE

HRSSIK% 8  hiE® (YUKARI ITO)
TOKYO METROPOLITAN UNIVERSITY

1. INTRODUCTION

This note is based on the paper “Special McKay correspondence ”
[9] by the author and we will show you more concrete exmaple to see
the structures.

Let us consider an example of 2-dimensional quotient smgulanty
which is obtained from the action of a cyclic group

First, we recall the toric resolution of cyclic quotient singularities
because the quotient space C?/G is a toric variety.

Let R? be the 2-dimensional real vector space, {€|i = 1,2} its stan-
dard base, L the lattice generated by e! and e?, N := L+ Y Zv, where
the summation runs over all the elements v = 1/r(1,a) € G = C,,,

and ,

o= {Zm,-ei eR? z;>0,Vi,1<i< 2}
=1

the naturally defined rational convex polyhedral cone in Ng = N ®zR.

The corresponding affine torus embedding Y, is defined as Spec(C[s N

M), where M is the dual lattice of N and & the dual cone of o in Mg

defined as & := {¢ € Mg|¢(x) > 0,Vz € o}

Then X = C?/G corresponds to the toric variety which is induced
by the cone o within the lattice N.

Fact 1 We can construct a simplicial decomposition S with the
verteces on the Newton Boundary, that is, the convex hull of the lattice
points in o except origin.

Fact 2 If X := X is the corresponding torus embedding, then Xg
is non-singular. Thus, we obtain the minimal resolution 7 = =g :
X = Xg — C?/G =Y. Moreover, each lattice point of the Newton
boundary corresponds to an exceptional divisor.
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Example Let us look at the example of the cyclic quotient singu-
larity of type C73 which is generated by the matrix ((E) g) where

€" = 1. The toric resolution of this quotient singularity is given by the
triangulation of a lattice N: = Z2 + 1(1,3)Z with the lattice points:
See Figure 1.1.

©,7)

FIGURE 1.1. toric resolution of C?/G

From this Newton polytope, we can see that there are 3 exceputional
divisors and the dual graph gives the configuration of the exceptional
components with a deformed coordinate from the original coordinate
(z,y) on C? as in Figure 1.2.

Therefore we have 4 affine pieces in this example and we have 4
coordinate systems corresponding to each affine piece.

In any example of the original McKay correspondence, all of non-
trivial irreducible representations appear as the corresponding repre-
sentations to the exceptional divisors. However, in this case, there
are only three exceptional curves though there are six non-irreducible
representations. Thereofore we must find the three “special” represen-
tations among the six representations, if there exists the generalized
McKay correspondence.

At the end of this note, we can find the corresponding special irre-
ducible representations, and you will see two ways to find them. The
first original definition will be written in the section 3, and you will be
able to see more easy way finally.

This paper is organized as follows: In the next section, we will give
a brief history of the McKay correspondence and we will discuss the
special representations and the generalized McKay correspondence in



FIGURE 1.2. configuration of X

the following section. In section four, we treat G-Hilbert schemes as a
resolution of singularities, consider the relation with the toric resolution
in the cyclic case, and show how to find the special representations by
combinatorics. In the final section, we will compare the difiiculties of
the caliculations of the special representations between the original way
and this new combinatorial way with an example.

2. McKAY CORRESPONDENCE

We will review a history of the McKay correspondece in this section.

The McKay correspondence is originally a correspondence between
the topology of the minimal resolution of a 2-dimensional rational
double point, which is a quotient singularity by a finite group G of
SL(2,C), and the representation theory (irreducible representations or
conjugacy classes) of the group G. We can see the correspondence via
Dynkin diagrams, which came from McKay’s observation in 1979 [16].

Let G be a finite subgroup of SL(2,C), then the quotient space
X := C?/G has a rational double point at the origin. As there exists
the minimal resolution X of the singularity, we have the exceptional
divisors E;. The dual graph of the configuration of the exceptional

divisors is just the Dynkin diagram of type A,, D,, Eg, E; or Eg.
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On the other hand, we have the set of the irreducible representations
pi of the group G up to isomorphism and let p be the natural repre-
sentation in SL(2,C). The tensor product of these representations

Pi ® p = Xii_g0si;pj,

where r is the number of the non-trivial irreducible representations,
gives a set of integers a;; and it determines the Cartan matrix which
defines the Dynkin diagram. !

Then we have a one-to-one numerical correspondence between non-
trivial irreducible representations {p;} and irreducible exceptional curves
{E:;}, that is, the intersention matrix of the exceptional divisors can be
written as (—1)x Cartan matrix.

This phenomenon was explained geometrically in terms of vector
bundles on the minimal resolution by Gonzalez-Sprinberg and Verdier
({7]) ? by case-by-case computations in 1983. In 1985, Artin and Verdier
[1] proved this more generally with relexive modules and this theory was
developed by Esnault and Knoérrer ([5], [6]) for more general quotient
surface singularities. After Wunram [21] constructed a nice generalized
McKay correspondence for any quotient surface singularities in 1986 in
his dissertation, Riemenschneider intoruduced the notion of “special
representation etc.” and made his propaganda for the more generalized
McKay correspondence [18]. 3

In dimension three, we have several “McKay correspondences” but
they are just bijections between two sets: Let X be the quotient sin-
gularity C?/G where G is a finite subgroup of SL(3,C). Then X has
a Gorenstein canonical singularity of index 1 but not a terminal sin-
gularity. It is known that there exist crepant resolutions X of this
singularity. The crepant resolution is a minimal resolution and pre-
serves the triviality of the canonical bundle in this case.

As the McKay correspondence, following bijections are known:

(1) (Tto-Reid [12]) cohomology group H%(X,Q) < {the conjugacy
classes of “age” i in G}. _

(2) (Ito-Nakajima [10])Grothendieck group K (X) <> {the irreducible
representations of G}, where G is a finite abeliar‘nv group.

(3) (Bridgeland-King-Reid [3]) Derived category D(X) > {the irre-
ducible representations of G} for any finite subgroups.

1More precisely, the Cartan matrix is defined as the matrix 2E — A, where E is
the (r — 1) x (r — 1) identity matrix and A = {a;;} (i,j # 0).

2They gave the name McKay correspondence (in French, la correspondance de
McKay) in this paper!

3Similar generalization for G C GL(2,C) was obtained by Gonzalez-Sprinberg.



Remark 2.1. In (1), the age of g € G is defined as follows: After
diagonalization, if g* = 1, we obtain ¢’ = diag(e?, ¢®, %) where € is a
primitive r~th root of unity. Then age(g): = (a + b+ ¢)/r. For the
identity element id, we define age(id)= 0 and all ages are integers if
G C SL(3,C).

The correspondence (2) can be included in (3), but note that the
2-dimensional numerical McKay correspondence can be explained very
clearly as a corollary of the result in [10].

As a generalization of the first McKay correspondence (1), we have
precise correspondence for each 2i-th cohomology with conjugacy classes
of age i for any ¢ = 1,--- ,n — 1 in dimension n which was given by
Batyrev and Kontsevich by “motivic integration” under the assumption
of the existence of a crepant resolution, and this idea was developed to
“string theoretic cohomology” for all quotient singularities (cf.[2]).

And we can see that the string theoretic Euler number of the res-
olution is the same as the order of the acting group G in case G C
GL(n,C), but it is different from the usual topological Euler number
of the minimal resolution. Of course, it is very interesting to consider
the geometrical meaning of these new invariants.

By the way, in (2) we don’t have such a difference among representa-
tions like age. But the author is interested in the relation between the
group theory and the classical topological invariants. Then we would
like to remind the reader of the notion of special representations which
give some difference between irreducible representations. The special
representations were defined by Riemenschneider and Wunram [18],
which correspond to an exceptional divisor of the minimal resolution
of a 2-dimensional quotient singularity.

In particular, we would like to discuss special representations and
the minimal resolution for quotient surface singularities from now on.
Around 1996, Nakamura and the author showed another way to the
McKay correspondence with the help of the G-Hilbert scheme, which
is a 2-dimensional G-fixed set of the usual Hilbert scheme of |G|-points
on C? and isomorphic to the minimal resolution. Kidoh [14] proved
that the G-Hilbert scheme for general cyclic surface singularities is
the minimal resolution. Then Riemenschneider checked the cyclic case
and conjectured that the representations which are given by the Ito-
Nakamura type McKay correspondence via G-Hilbert scheme are just
special representations in 1999 ([19]) and this conjecture was proved
by A. Ishii recently ([8]). In this paper, we will give another charac-
terization of the special representations by combinatorics for the cyclic
quotient case using results on the G-Hilbert schemes.
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As a colorful introduction to the McKay correspondence, the author
would like to recommend a paper presented at the Bourbaki seminar by
Reid [17] and also on the Web page (http://www.maths.warwick.ac.uk/
~miles/McKay), one can find some recent papers related to the McKay
correspondence.

3. SPECIAL REPRESENTATIONS

In this section, we will discuss the special representations. Let G be
a finite small subgroup of GL(2, C), that is, the action of the group G
is free outside the origin, and p be a representation of G on V. G acts
on C? x V and the quotient is a vector bundle on (C? \ {0})/G which
can be extended to a reflexive sheaf F on X: = C?/G.

For any reflexive sheaf F on a rational surface singularity X and the
minimal resolution 7: X — X. We define a sheaf F: = r*F/torsion.

Definition 3.1. ([5]) The sheaf F is called a full sheaf on X.

Theorem 3.2. ([5]) A sheaf F on X is a full sheaf if the following
conditions are fulfilled:

1. .7: is locally free,

2 Fis _generated by global sectwns,

3. HY(X,F' ®wg) =0, where V means the dual.

Note that a sheaf F is indecomposable if and only if the correspond-
ing representation p is irreducible. Therefore we obtain an indecom-
posable full sheaf F; on X for each irreducible representation p;, but
in general, the number of the irreducible representations is larger than
that of irreducible exceptional components. Therefore Wunram and
Riemenschneider inroduced the notion of a speciality for full sheaves:

Definition 3.3. ([18]) A full sheaf is called special if and only if
HY(X,F)=0.

A reflexive sheaf F on X is special if F is so.

A representation p is special if the associated reflexive sheaf F on X
is special.

'With these definitions, following equivalent conditions for the spe-
ciality hold: .
Theorem 3.4. ([18], [21])

1. F is special <> FRuwg — [(f@wx)“’] is an isomorphism,
2. F 1s special <= F ® wg/torsion) is mﬁea:we

3. p is a special representation <> (9%2) R (02 ®V)C = (02 ®
V)€ is surjective.
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Then we have following nice generalized McKay correspondence for
quotient surface singularities:

Theorem 3.5. ([21]) There is a bijection between the set of special
non-trivial indecomposable mﬂfxive modules F; and the set of irre-
ducible components E; via ¢,(F;)E; = 6;; where c; is the first Chern
class, and also a one-to-one correspondence with the set of special non-
trivial irreducible representations.

As a corollary of this theorem, we get the original McKay correspon-
dence for finite subgroups in SL(2,C) back because in thsi case all
irreducible representations are special.

4. G-HILBERT SCHEMES AND COMBINATORICS

In this section, we will discuss G-Hilbert schemes and a new way
to find the special representations for cyclic quotient singularities by
combinatorics.

Hilbert scheme of n-points on C2? can be described as a set of ideals:

Hilb™(C?) = {I C Clz,y] | I : ideal, dim Clz, y]/I = n}.

It is a 2n-dimensional smooth projective variety. The G-Hilbert scheme
Hilb%(C?) was introduced in the paper by Nakamura and the author
([11]) as follows:

Hilb®(C?) = {I C C[z,y] | I : G-invariant ideal, C|z,3]/I = C[G]},

where |G| = n. This is a union of components of fixed points of G-
action on Hilb"(C?) and in fact it is just the minimal resolution of the
quotient singularity C2/G. It was proved for G € SL(2,C) in [11] first
by the properties of Hilb®(C?) and finite group action of G and they
state a McKay correspondence in terms of ideals of G-Hilbert schemes.

Later Kidoh ([14]) proved that the G-Hilbert scheme for any small
cyclic subgroup in GL(2, C) is also the minimal resolution of the corre-
sponding cyclic quotient singularities and Riemenschneider conjectured
that the G-Hilbert scheme for any G C GL(2,C) is the minimal reso-
lution of the quotient singularity C?/G and it was based on his result.
That is, he checked the irreducible representation which are given by
the ideals of G-Hilbert scheme, so-called Ito-Nakamura type McKay
correspondence, are just the same as the special representations de-
fined by himself [19], see also [18] Recently A. Ishii ([8]) proved more
generally that the G-Hilbert scheme for any small G C GL(2,C) is
always isomorphic to the minimal resolution of the singularity C*/G
and the conjecture is true:
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Theorem 4.1. ([8]) Let G be a finite small subgroup of GL(2,C).
(i) G-Hilbert scheme Hilb®(C?) is the minimal resolution of C2/G.
(i1) Fory € Hilb®(C?), denote by I, the ideal corresponding to y and
let m be the marimal ideal of O¢z corresponding to the origin 0. If y
1s in the exceptional locus, then, as representations of G, we have

42) I,/mI,={Pi®P if y € E; andy & E; for j #1,
VIV T \mesom ifycEnNE,

where p; is the special representation associated with the ireducible ez-
ceptional curve E;.

Remark 4.3. In dimension two, we can say that G-Hilbert scheme is
the same as a 2-dimensional irreducible component of the G-fixed set
of Hilb®(C?). A similar statement holds for G ¢ SL(3,C) in dimen-
sion three, that is, the G-Hilbert scheme is a 3-dimensional irreducible
component of the G-fixed set of Hilb™(C3) and a crepant resolution of
the quotient singularity C3/G. In this case note that Hilb™(C3) is not
smooth.

Moreover, Haiman proved that S,-Hilbert scheme Hilb5(C?") is a
crepant resolution of C2"/S,, = n-th symmetric product of C2, i.e.,

Hilb%(C?) = Hilb™(C?)
in process of the proof of n! conjecture. (cf. [13])

From now on, we restrict our considerations to G ¢ GL(2,C) cyclic.
Wunram constructed the generalized McKay correspondence for cyclic
surface singularities in the paper [20] and we have to consider the cor-
responding geometrical informations (the minimal resolution, reflex-
ive sheaves and so on) to obtain the special representations. Here we
would like to give a new characterization of the special representations
in terms of combinatorics. It is much easier to find the special repre-
sentation because we don’t need any geometrical objects, but based on
the result of G-Hilbert schemes.

Let us discuss the new characterization of the special representations
in terms of combinatorics. Let G be a cyclic group C,, which is gener-

. (€ O
ated by a matrix 0 &
a character map C|z,y] — C[t]/t" as z > t and y + 1%, then we have
a corresponding characters for each monomials in Clz,y].

Let I, be the ideal of the G-fixed point p in the G-Hilbert scheme,
then we can define the following sets.

where €” = 1 and ged(r,a) = 1 and consider
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Consider a G-invariant subscheme Z, C C? for which H%(Z,,0z,) =
Ocz/1, is the regular representation of G. Then the G-Hilbert scheme
can be regarded as a moduli space of such Z,.

Definition 4.4. The set of monomials in Cfz,y] Y(Z,) is called G-
cluster if all monomials on Y (Z,) are not in I, and it can be drawn as
a Young diagram of |G| boxes.

Definition 4.5. For any small cyclic group G, let B(G) be the set of
monomials which are not divisible, by any G-invariant monomial and
call it G-basis.

Definition 4.6. If |G| = r, thenlet L(G) be {1,z,--- ,z" Y, y,--- ,y""1},

i.e., the set of monomials which cannot be devided by =7, " or zy. We
call it L-space for G because the shape of this diagram looks as the
chapital “L.”

Definition 4.7. The monomial 2™y" is of weight k if m + an = k.

Let us describe the method to find the special representations of G
with these diagrams:

Theorem 4.8. For a small finite cyclic subgroup of GL(2,C), the
irreducible representation p; is special if and only if the correspond-
ing monomial in B(G) are not contained in the set of monomials

B(G)\ L(G).

Proof. In Theorem 3.4 (3), we have the definition of the special rep-
resentation, and it is not easy to compute all special representations.
However look at the behavior of the monomials in C|z,y] under the
map ®; (22,)° ® (O ® Vi) — (22, ® V)€ for each representation p;:

First, let us conmder the monomial bases of each set. Let V; = Ce;
and p(g)e; = €. An element f(z, y)da: Ady® p; is in (02, ® V;)C if
and only if

' f(z,y)dz Ady -t @ e = f(z,y)dz A dy,
that is,
9*(f(z,y)dz A dy) = €~ (f(z,y)dz A dy).

Therefore the monomial base for (2, ® V;)¢ is a set of monomials
f(z,y) such that

9: f(zy) = €N f(z,y)

under the action of G, that is, monomials of welght i—(a+1).

Similarly, we have the monomial bases for (0%, )€ as the set of mono-
mials f(z.y) of weight r — (a + 1).
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The monomial bases for (O¢2 ® V;)€ is given as a set of monomials
f(z,y) of weight 3.

Let us check the surjectivity of the map ®;. If ®; is surjective, then
all the monomial bases in (22; ® V;)¢ can be obtained as a product of
the monomial basis of two other sets. Therefore the degree of the mono-
mials in (Q2; ® V;)¢ must be higher than the degree of the monomials
in (O ® V;)C.

Now look at the map ®,,;. The vector space (O ® Vo41)C is
generated by the monomials of weight a+1, i.e., %!, zy,--- ,3® where
ab=a+1 mod r. On the other hand, (2%; ® V,41)€ is generated by
the degree 0 monomial 1. Then the map ®,,; is not surjective.

By this, if a monomial of type z™y™, where mn # 0, is a base of
(Oc2 ®V;)C, then there exists a monomial ™1y in (Q2, ® V;)€ and
the degree become smaller under tha map ®;. This means ®; is not
surjective.

Moreover, if the bases of (Oc: ® V;)€ is generated only by z* and 3/
where aj =i mod r, then the degrees of the monomials in (02, ® ;)¢
is bigger and ®; is surjective. Thus we have the assertion. -

Remark 4.9. From this theorem,‘ we can also say that a representation
p;i is special if and only if the number of the generators of the space
(Oc2 ® V;)C is 2.

Theorem 4.10. Let p be a fized point by G-action, then we can define
an ideal I, by the G-cluster and the configuration of the exceptional
locus can be described by these data.

Proof. The defining equation of the ideal I, is given by

% = of’,
yb = B4,
za—dyb—c = ﬂ,

where a and 3 are complex numbers and both z* and y° (resp. ¥® and
z9) correspond the same representation (or character).

The pair (a, B) is a local affine coorinate near the fixed point p and
it is also obtained from the calculation with toric geometry. Moreover
each axis of the affine chart is just a exceptional curve or the original
axis of C2. The exceptional curve is isomorphic to a P! and the points
on it is written by the ratio like [z* : y®] (resp. [z : y°]) which is
corresponding to a special representation p, (resp. p4). The fixed
point p is the intersection point of 2 exceptional curves E, and Ey.

Thus we can get the whole space of exceptional locus by deformation
of the point p and patching the affine pieces. | O
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We will see a concrete example in the following section. Here we
would like to make one remark as a corollary:

Corollary 4.11. For A,-type simple singularities, all n+1 affine charts
can be described by n + 1 Young diagrams of type (1,--- ,1,k).

Proof. In A, case, zy is always G-invariant, hence B(G) = L(G).
Therefore we have n + 1 G-clusters and each of them corresponds to
the monomial ideal (z*,y"**2, zy). a

5. EXAMPLE
Now let us go back to our example in the first section: the cyclic quo-
tient singularity of type C7 3 which is generated by the matrix (8 g)

where € = 1.

By the Theorem 3.4, we have a way to find the three special repre-
sentations corresponding to the exceptional curves, i.e., let us consider
when the map (Q%z)G ® (Oc2 @ V)¢ — (02, @ V)C is surjective.

As a basis of the (Ocz ® V)€ , we have the following:

il i i )
T T I I |
=] OO WN -

-

fun—y

-

The basis of the space (Q%,)G is {z3,y}.

Moreover, we have the following basis of the space (02, ® V)S:

Conlit it ol i i i
1 1 T
~J OO o QU N

—~—

S

8

N~

—’

{7, zy, zy*}

Thus the map will be surjective when k = 1,2 or 3, and we have
three special representations p,, p; and ps.

Now we have a chance to use our new way to find the special repre-
sentations! Let us draw the diagram which corresponds to the G-basis




and L-space. First we have the following G-basis B(G) and the cor-
responding characters in a same diagram. In Figure 5.1 we draw the
L-space as shaded part in B(G).

FIGURE 5.1. G-basis B(G) and the characters

Now we have three monomials zy, z2y and z3y in B(G) \ L(G) and
they correspond to the characters (resp. representations) 4, 5 and 6
(resp. ps, ps and pg). Therefore we can find a set of special repre-
sentations, that is, {py, p2, p3}, and find the corresponding G-clusters,
representing the origin of the affine charts of the resolution, can be
drawn as 4 young diagrams and get the corresponding special repre-
sentations in this case. See Figure 5.2.

Let us see the meanings of the corresponding G-clusters in this case.
From Y(Z,) for (2), we obtain an ideal I, = (y*, z?, zy?) for the origin of
the affine chart (2) in Figure 1.2, and the corresponding representations
are py, p; and po. If we take the maximal ideal m of Oc2 corresponding
to the origin 0, then we have

L/mIy, 2 p; @ p2 ® po-
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(N (2) (3) 4

FIGURE 5.2. G-cluster Y(Z,)

Similarly we have the ideal I; = (3?, 23, zy?) and
I3 /ml3 = p, © p3 D po.

These descriptions coincide with the results of Theorem 4.1 for an
intersecting point at Ey N E,.

For any other points p on the exceptional component E;, we must
have

I,/mI, 2 p; ® po. (*)

In fact, we can see that on the exceptional divisor F; in this example
was determined by the ratio z2 : 43, that is, the corresponing ideal of
a point on E; can be described as I, = (az? — By, zy? — v). Therefore

the ratio (a : 8) gives the coordinate of the exceptional curve (¢ P!)
and we also have (x).

We discussed special McKay correspondence in 2-dimensional case in
this paper. In dimension three, it is convenient to consider crepant res-
olutions as a minimal resolution and we have much more complicated
situation. Even in the case G C SL(3,C), we have H4(X,Q) # 0
in general. Of course we can use the same definition for the special
representations in the higher dimensional case, but all non-trivial ir-
reducible representations of G C SL(3,C) are special. On the other
hand, the number of the exceptional divisors is less than that of the
non-trivial irreducible representations. Therefore, it looks very difficult
to generalize this special McKay correspondence. That is, we should
make a difference, say a kind of the grading, in the set of the special
(or non-trivial) representations like “age” of the conjugacy classes.
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However, there are good news: In 2000, Craw [4] constructed a co-
homological McKay correspondence for the G-Hilbert schemes where
G is an abelian group, and in this correspondence we can see the
2-dimensional special McKay correspondence. And recently, the au-
thor found a way to obtain a polytope which corresponds to the 3-
dimensional G-Hilbert schemes for abelian subgroups in SL(3,C) by
combinatorics. There are many crepant resolutions in general in higher
dimension, but G-Hilbert scheme for G C SL(3,C) is a unique crepant
resolution, and the configuration of the exceptional locus of the special
crepant resolution, G-Hilbert scheme, can be determined in terms of a
Grobner basis. (Let us call this the Grobner method.) Moreover, we
can get another characterization of special representations for cyclic
quotient surface singularities by this Grobner method. So the author
is dreaming of having a more simple and beautiful formulation of the
McKay correspondence in the future.
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