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SUM OF THE EDGE LENGTHS OF A GEODESIC GRAPH

KRR TRE - B2 R —# (Kazuhiro Ichihara)
Department of Information and Computer Sciences,

Nara Women’s University

ABSTRACT

Consider an embedding of a complete graph of order four into the 2-
sphere such that each edge becomes a shortest geodesic connecting its end-
points. Then we show that the sum of the edge lengths is at most 47, and
is bigger than 3r if the graph is not contained in any hemisphere.
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1. RESULTS

In this article, we consider a finite graph geodesically embedded into
a surface with constant curvature metric, and estimate the sum of the
edge lengths. As usual, we regard a finite graph as a 1-dimensional cellular
complex by setting a vertex as a 0-cell and an edge as a closed 1-cell. Given
an embedding f of a finite graph into a surface, its image G is obviously
identified with the original graph. Thus we say that the image of a vertex
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and an edge under f a vertez and an edge of G. By S%, we mean the
two dimensional sphere endowed with the Riemannian metric of constant

curvature +1. Then our result is the following.

Theorem 1. Let G be the image of an embedding of the complete graph
K4 of order 4 into S*. Suppose that

(1) each edge of G is a shortest geodesic arc on S* connecting its end-
points, and
(2) G is not contained in any hemisphere of S*.

Let E be the sum of the length of the edges of G. Then 3w < E < 4x holds.

This almost follows from the result of Guddum [1]. In fact, his theorem
in [1] implies the inequality 37 < E < 47. In the next section, we will
prove the theorem above using purely elementary spherical geometry.

A generalization of this estimate to the case of any graph embedded in n-
sphere S™ will appear in [4]. Our estimate depends upon the combinatorics
of the graph only.

Here we append an easy observation for more general cases. Let F, be
a closed, orientable surface of genus g > 2 with a fixed Riemannian metric
of constant curvature —1. For convenience, let Fy denote S2.

Proposition 1. Let G be the image of an embedding of a graph into F,
where g # 1. Suppose that

(1) each edge e of G is a shortest geodesic arc on F, connecting its
endpoints, and |
(2) the closure of each component of F; — G is a convez polygon on Fj,.

Then the sum of the length of the edges of G 1is greater than w|2 — 2g|.

Proof. Let o be a complementary face of G, i.e., the closure of a component
of F, — G. By Area(c) and Length(do) , we denote the area of ¢ and
the length of the boundary 8¢ of o respectively. We consider the ratio
Area(o)/Length(do). This ratio is strictly less than the corresponding
ratio for the disk on F, which has equilong boundary as o. See [2] for
a survey. By elementary calculations, the ratio for such a disk is shown
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to be less than 1 for any g # 1. This implies Length(0c) > Area(o)

holds. By summing the inequalities up over all complementary faces, we
have ) Length(dc) > Y Area(o) = 2|2 — 2g|, where the last equality
follows from the Gauss-Bonne’s theorem. Then the sum of the length of
the edges of G, which is equal to the half of Y Length(dc), is greater than
7|2 — 2g]. O

2. PROOF

Let us start with recalling fundamentals of spherical geometry. Let u;,
ug, u3 be points on S? such that no two of them are antipodal and no great
circle includes all the three points. Let A; be the closed hemisphere whose
boundary contains the other two points than u; and whose interior contains
w; for ¢ = 1,2,3. The spherical triangle A with the vertices u;, uz, us is
defined as the intersection A; N Az N Asz. Then we have the following:

e A is convex, i.e., any pair of points in A is connected by a geodesic
arc in A. Moreover the arc is shortest among the arcs connecting
the points, and the length is equal to the spherical distance between
the points which is strictly less than =.

o The length of an edge of A is less than the sum of the length of the
other two edges (the triangle inequality).

Proof of Theorem 1. Let vy, va, 3, v4 bé the vertices of G. Let e;; denote the
edge of G connecting v; and v; for 1 < 4,5 < 4. Note that the assumption
(1) implies that the length of e;; is equal to the spherical distance di; on
52 between v; and vj for 1 <4, j < 4. Thus it suffice to show that

3r < Z d,'j < 4.
1<i<; <4

In the following, the antipodal point of v; is denoted by v;,4 for 1 < i < 4.
Also d;; denotes the spherical distance between v; and v; for 1 <i,5 < 8.

First we consider the case that a couple of the vertices, say v; and v,, are
antipodal, equivalently, di; = 7. This implies that diz+ds; = dig+dsa =7
holds. Together with 0 < d34 < 7, we have 37 < D i<i <j<a G S 4.

Next consider the case that all the four vertices are contained in a great
circle. Suppose for example that v, vq, v3, v4 lies in a great circle I' in this



order. Since G is the image of an embedding, the edge e;3 is not contained
in I". This implies that e;3 is a half of a great circle and di3 = 7. Also we
see that dys = m and so we obtain Zlgi<j$4 di; = 4m.

Thus, in the following, we assume that d;; # 7 for 1 < 4,5 < 4 and at
most three vertices of G lie on a great circle.

Next consider the case that three vertices are contained in a great circle.
Suppose for example that v1, v2 and v lie on a great circle. Then, by the
triangle inequality, we have dg; + da2 > di2, dso + dss > daz and dgs +dyg; >
d3;. These are added to obtain

2(dgy + day + daz) > dyg + doa + day =27 .
Thus

Z dij =(d41+d42 +d43)+d12 4+doz+d3y >T+2r =31

1<i<j<4

In the same way as above, we have dys+dss+dsr > 7. Since dgj = T—dy(j14)
forj=1,2,3, '

Z di; = (da +dag +dss)+dis + dzé + da;

= 31 — (dss + dsg + das) + dra + daz + day

< 3r—7m+27 =4nr

holds.

Finally we consider the case that the four vertices are in a general posi-
tion: We assume that d;; # 7 for 1 < ¢,j < 4 and at most two vertices of
G lie on a great circle. This means that for any three of the points there is
a triangular face which includes the three points as vertices.

Then, by the triangle inequality, we have ds3 +dgs > ds6, dsa + des > dss,
dss + ds4 > das and dgs + des > dzs. Add these to obtain

dss + des + dsq + deg > dag + dss -

Here note that d;; = 7 — di—g); for i = 5,6, j = 1,2,3, and dss = dp2.
These imply that

4m — (dis + dos + dig + dzs) > dag + di2 .
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Consequently we have

In the following, let A be the spherical triangle bounded by e;3, e23 and

€31.
Claim 1. The antipodal point vs of vy is included in the interior of A.

Proof. Let T'; be the great circle including an edge of A but not including
v; for ¢ = 1,2,3. By the assumption above, v4 and hence vg never lie on
I’y UT2 UT3. Note that I'; UT; UT's decomposes S? into eight spherical
triangles. |

Assume for a contradiction that vg is not included in the interior of A.
Then v, is included in the interior of one of the seven spherical triangles
other than the antipodal image of A. This implies all the four points vy,
Vg, v3 and vy are included in the closed hemisphere bounded by one of I'y,
Ty or I's. Since the four vertices are assumed in a general position, there

is a hemisphere which contains whole G. This contradicts the assumption
(2) of the theorem. O

Claim 2. The inequality dy3 + di3 > dgy + dgs holds.

Proof. Since the length of each edge is less than m, the edge e;3 intersects
the great circle including v, and vs at just one point vg. Let dig or dg; denote
the distance between v; and vg for 1 < ¢ < 9. The distance d;g is realized
by a geodesic arc included in e;3 and also is dgs. Thus dy3 = dyg+des holds.

The distance dyg is realized by a geodesic arc eqg in A since A is convex.
In particular, the arc eyg contains vs and so dag = dag + dgg holds.

Together with the triangle inequality dis +dio > dag and dgs + dgz > das,
we conclude

dia + dy3 = dy3 + dig + doz > dg + dg3 = dog + dgg + dos > dag + ds3 -
|

In the same way, we have dg; + daa > ds; + dss and ds; + ds2 > ds; + ds3.
By adding these inequalities, we obtain

dig + dos + da; > dsy + ds2 + dss -



Together with the equations dg; = m — dy; for ¢ = 1,2, 3, we conclude that

Z dij>37'i'— Z dk4.

1<i<;j<3 1<k<3
This completes the proof. O
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