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1 Introduction

Obtaining volume formulae for basic polyhedra is one of the basic and impor-
tant problems in geometry. In hyperbolic space this problem has been attacked
from its birth. An orthoscheme is a simplex of a generalization (with respect to
dimensions) of a right triangle. Since any hyperbolic polyhedra can be decom-
posed into finite number of orthoschemes, the first step of solving the problem
is to obtain a volume formula for orthoschemes. In three-dimensional case,
N. L. Lobachevsky [Lo] found in 1839 a volume formula for orthoschemes. Thus
the next step is to find a formula for ordinary tetrahedra.

Although the lengths of six edges of tetrahedra determine their sizes s and
shapes, in hyperbolic space it is known that the six dihedral angles also plays



the same role. Actually the valuables of the Lobachevsky’s formula mentioned
above are dihedral angles, and following this way we can obtain a volume formula
for generalized hyperbolic tetrahedra in terms of the six dihedral angles (the
meaning of the term “generalized” will be explained later). Here we note that,
by the fact mentioned previous paragraph, we can construct such a formula from
that of orthoschemes. But in this case we have to calculate the dihedral angles of
orthoschemes from those of tetrahedra. It is emphasized that the formula can be
calculated directly from the dihedral angles of a given generalized tetrahedron.

The first answer to this problem was (at least the author is aware) given by
W.-Y. Hsiang in 1988. In [Hs| the formula was presented through an integral
expression. On the other hand, many volume formulae for hyperbolic polyhe-
dra is presented via Lobachevsky function or the dilogarithm function (see, for
example, [Ve]). The first such presentation was given by Y. Cho and H. Kim
in 1999 (see [CK]). Their formula was derived from that of ideal tetrahedra,
and has the following particular property: due to the way of the proof it is not
symmetric with respect to the dihedral angles. Thus the next problem is to
obtain its essentially symmetrical expression. Such a formula was obtained by
J. Murakami and M. Yano in about 2001. In [MY] they derived it from the
quantum 67-symbol, but the proof is to reduce it to Cho-Kim'’s one.

In hyperbolic space it is possible to consider that vertices of a polyhedron
lie “outside the space and its sphere at infinity.” For each such vertex there is
a canonical way to cut off the vertex with its neighborhood. This operation is
called a truncation at the vertex, which will be defined more precisely in Sec-
tion 3, and we thus obtain convex polyhedron (possibly non-compact) with finite
volume. Such a polyhedron appears, for example, as fundamental polyhedra for
hyperbolic Coxeter groups or building blocks of three-dimensional hyperbolic
manifolds with totally geodesic boundary. Since the volume of hyperbolic man-
ifolds are topological invariants, it is meaningful, also for 3-manifold theory, to
obtain a volume formula for such polyhedra.

R. Kellerhals presented in 1989 that the formula for orthoschemes can be
applied, without any modification, to “mildly” truncated ones at principal ver-
tices (see [Ke| for detail). This result inspires that Murakami-Yano'’s formula
"also may be applied to generalized hyperbolic tetrahedra, tetrahedra of each ver-
tices being finite, ideal or truncated (see Definition 3.2 for precise definition),
and this is the main result of this report (see Theorem 1.1). Here we note that,
although the lengths of the edges emanating from a vertex at infinity are infin-
ity, the dihedral angles may be finite. This is another reason why we take not
the edge lengths but the dihedral angles as the valuables of our volume formula.

The key tool for the proof is so-called Schlafli’s differential formula, a simple
description for the volume differential of polyhedra as a function of the dihedral
angles and the volume of the apices. Since the volume formula is a function of
the dihedral angles, to apply Schlafli's differential formula we have to translate
the dihedral angles of a generalized tetrahedron to the lengths of its edges.
This requirement yields a necessary and sufficient condition of a set of positive
numbers to be the dihedral angles of a generalized simplex (see Theorem 3.3).
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W. Fenchel asked in [Fe] a necessary and sufficient conditions for a given set
of positive real numbers to be the dihedral angles of a hyperbolic n-simplex.
F. Luo answered in [Lu] this question. Theorem 3.3 in this report is a general-
ization of his result.

1.1 Volume formula for generalized hyperbolic tetrahedra

Let T = T(A,B,C,D,E,F) be a generalized tetrahedron in the three-
dimensional hyperbolic space H3 whose dihedral angles are A,B,C,D,E,F.
Here the configuration of the dihedral angles are as follows (see also Figure 1):
three edges corresponding to A, B and C arise from a vertex, and the angle D
(resp. E, F') is put on the edge opposite to that of A (resp. B, C). Let G be
the Gram matriz of T defined as follows:

1 —cosA —cosB —cosF
G = —cos A 1 —cosC —cosE
| —cosB —cosC 1 —-cosD

—cosF —cosE —cosD 1

Figure 1: The dihedral angles of T

Let a := expv—14,b:=expv/—1B,..., f = expv—1F, and let U(2,T) be
the complex valued function defined as follows:

U(2,T) = % {Lia(z) + Liz(abdez) + Liy(acdf z) + Lia(bcef2)
— Lis(—abez) — Liz(—aefz) — Lig(—bdf 2) — Liz(—cdez)},

where Liy(2) is the dilogarithm function defined by the analytic continuation of
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the following integral:

Tlog(l —t
Lis(z) := — / gg(—t—)dt for a positive real number z.
0

We denote by z; and 2z, the two complex numbers defined as follows:

sinAsin D +sinBsinE +sinC'sin F' — v/detG

“a= —zad+be+cf+abf+ace+bcd+def+abcdef’
o sinAsinD +sinBsinE +sinCsin F' + Vdet G
9 =

) .
ad+be+ cf + abf + ace + bed + def + abede f

Theorem 1.1 (A volume formula for generalized tetrahédra) The vol-
ume Vol(T') of a generalized tetrahedron T is given as follows:

Vol(T) = 28 (U (1, T) = Uz, ), (L1)

where & means the imaginary part. : m]

1.2 Other known volume formulae for tetrahedra

In this subsection we recall some known formulae and results for tetrahedra

before Cho and Kim’s one. The notations are those in Figure 1, and the function"

A(z) means the Lobachevsky function defined as follows:

T
Alz) := ——/ log |2sint| dt.
0

The relationship between A(z) and Lis(z) is as follows (see, for example, [Ki,

§1.1.4]):
SLis(expv—-1z) = ‘7A(§) for any z € R.

1.2.1 Volume formulae for orthoschemes

In three-dimensional case, an orthoscheme is a tetrahedron with angles B, F
‘and F are /2 (i.e., the edge vyiv, is orthogonal to the face vyv3vy, and the
face v1v3v3 is orthogonal to the edge v3vy).

It is known that in [Lo] N. I. Lobachevsky found a volume formula for or-
thoschemes. Later R. Kellerhals proved in [Ke] that his formula can be applied
to orthoschemes with truncations at vertices v; and/or v4 (and furthermore she
constructed a formula for Lambert cubes). The formula is as follows:

Theorem 1.2 (The volume formula for orthoschemes) The volume
Vol(T) of an (maybe partially truncated) orthoscheme T is given as follows:

Vol(T) = 7 {A(4+6)~A(A=6) +A(5+C~6) +A(5 ~C~0)
+A(D +6) ~ A(D - 8) +2A(g- -0)},
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V/cos2 C — sin® Asin? D

where 6 ;= arcsin
cos Acos D

1.2.2 Volume formulae for ideal tetrahedra

An ideal tetrahedron is a tetrahedron with all vertices lying at the sphere at
infinity. In this case the sum of the dihedral angles of edges emanating from an
ideal vertex is . This implies that the dihedral angles of edges opposite to each
other are equal, namely 4 = D, B = E and C = F. J. Milnor proved in [Mi]
the following volume formula for ideal tetrahedra:

Theorem 1.3 (The volume formula for ideal tetrahedra) The volume
Vol(T') of an ideal tetrahedron T is given as follows:

Vol(T) = A(4) + A(B) + A(C). 0

1.2.8 Maximal volume tetrahedra

U. Haagerup and H. Munkholm proved in [HM] that, in hyperbolic space of
dimension greater than one, a simplex is of maximal volume if and only if it
is ideal and regular. Once we extend the class of tetrahedra to the generalized
ones in this report, the maximal volume generalized tetrahedron is the truncated
‘tetrahedron of all dihedral angles are 0, namely the ideal right-angled octahedron
(see Theorem 4.2 of [Us2]).

The following graphs show the relationships between the dihedral angle and
the volume or the edge length of regular tetrahedra. The dihedral angle varies
from 0 to arccos 3 ~ 1.230959. The angle 0 corresponds to the regular ideal
octahedron mentioned as above, and the angle arccos 31,,- corresponds to the Eu-
clidean regular tetrahedron, corresponding to infinitesimally small hyperbolic
regular tetrahedra. The dihedral angle of the regular ideal tetrahedron is 7/3.
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2 Preliminaries

In this section we review several well-known facts about hyperbolic geometry.
See, for example, [Us] for more precise explanation and the proofs of the propo-
sitions.

The n + 1-dimensional Lorentzian space EV'™ is the real vector space R"*!
of dimension n + 1 with the Lorentzian inner product (x,y) := —Toyo + T1y1 +
-++ 4 TpYn, where * = (zo,71,...,7,) and ¥ = (Y0,¥1,-..,Yn). Let Hr :=
{x € E'"|(x,x) = —1} be the (standard) hyperboloid of two sheets, and let

Hf = {xz € E'"|(z,x) = —1 and & > 0} be its upper sheet. The restriction
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volume
A

8A(§) ~ 3.66
3

3A(g-) ~ 1.01-

e 5, 50gle
0 02 04 06 08 1 1
. T arccos 3 ~ 1.23
3

truncated tetrahedron
Figure 2: Volume of a regular tetrahedron

of the quadratic form induced by (-,-) on E* to the tangent space of H; is
positive definite and gives a Riemannian metric on H}" . The space obtained
from Hy equipped with the metric above is called the hyperboloid model of the
n-dimensional hyperbolic space, and we denote it by H". Under this metric the
hyperbolic distance, say d, between two points @ and y can be measured by the
following formula:

(m, y) = —coshd. (2.1)

Let L = {xeE'"™ | (z,z) =0} be the (standard) cone and let Lt :=
{:c € El» I (z,z) =0and zo >0 } be its upper half. Then a ray in L* started
from the origin o corresponds to a point in the ideal boundary of H". The set
of such rays forms the sphere at infinity, and we denote it by sg;l. Then each
ray in LT becomes a point at infinity of H".

Let us denote by P the radial projection from El'" — {a: c Elm | zo=0 } to
an affine hyperplane P} := {a: e Ebn | To=1 } along the ray from the origin o.
The projection P is a homeomorphism on H" to the n-dimensional open unit ball
B™ in P} centered at the origin (1,0,0,...,0) of P}, which gives the projective
model of H™. The affine hyperplane P} contains not only B™ and its set theoretic
boundary 8B" in P}, which is canonically identified with S%;!, but also the
outside of the compactified projective model B := B"U8B™ ~ H*LUS% L. So P
can be naturally extended to the mapping from E'® — {0} to the n-dimensional
real projective space P* := P} UP? , where PZ, is the set of lines in the affine
hyperplane {m ¢ El" |:vo = 0} through o. We denote by Ext B” the exterior
of B® in P".

The (standard) hyperboloid of one sheet Hs is defined to be Hg =
{x € E'" | (z,x) = 1}. For an arbitrary point u in Hg, we define a half-space
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Figure 3: Edge length of a regular tetrahedron

R, and a hyperplane P, in E}" as follows:
Ru == {zeE"|(su)<0},

P, = {xe€E'|(x,u)=0}=08R,.

We denote by 'y, (resp. Il,) the intersection of R,, (resp. P,) and B". Then
I1,, is a geodesic hyperplane in H", and the correspondence between the points
in Hg and the half-spaces I'y, in H" is bijective. We call u a normal vector to
P, (or T,). The following two propositions are on relationships between the
Lorentzian inner product and geometric objects.

Proposition 2.1 Let = and y be arbitrary two non-parallel points in Hg. Then
one of the followings hold:

(1) Two geodesic hyperplanes Il and II, intersect if and only if {=,y)| <1.
In this case the (hyperbolic) angle, say 0, between them measured in I'y
and Ty, is calculated by the following formula:

(x,y) = —cos@. (2.2)

(2) Two geodesic .i}-lgerplanes I, and I1, never intersect in B", i.e., they in-
tersect in ExtB7, if and only if |(x,y)| > 1. In this case the (hyperbolic)
distance, say d, between them is calculated by

|(é:, y)| = coshd, (2.3)

and then I, and I1, are said to be ultraparallel.
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(3) Two geodesic hyperplanes Il and II, intersect not in B™ but in OB™ if
and only if |{(z,y)| = 1. In this case the angle and the distance between
them is 0, and then Il and Il are said to be parallel. a

Proposition 2.2 Let ® be a point in B™ and let II, be a geodesic hyperplane
whose normal vector is y € Hg with (x,y) < 0. Then the distance d between x
and Iy is obtained by the following formula:

(z,y) = —sinhd. O (2.4)

Let v be a point in ExtB”. Then P~}(v) N Hg consists of two points
and, independent of the choice of ¥ € P~1(v) N Hg, we can define the same
hyperplane II3. We call Il the polar geodesic hyperplane to v and v the pole
of ITg. Then the following proposition holds:

Proposition 2.8 Let v be a point in Ext B™.
(1) Any hyperplane through v with intersecting B™ s perpendicular to Ilg in

H"™.
(2) Let u be a limit point of I3, i.e., u € P, NOB". Then the line through u
and v is tangent to 8B™. O

3 A characterization theorem for the dihedral
angles of generalized hyperbolic simplices

Unlike spherical or Euclidean one, in hyperbolic geometry we can consider not
only points at infinity but also points “beyond infinity.” This situation can be
easily seen in the projective ball model, and it extends the concept of polyhedra.
Such polyhedra is called the generalized polyhedra. We start this section with
their precise definition.

In this section we assume n > 3. We also note that any polyhedron in P}
intersecting B™ can be moved to the one containing the origin of P} by the
action of orientation-preserving isomorphisms of H".

Definition 3.1 Let A be a polyhedron in P} containing the origin of P¥. Sup-
pose each of the interior of its ridge (i.e., (n — 2)-dimensional face) intersects
B~

1. Let v be a vertex of A in Ext B®. The (polar) truncation of A at v is an
operation of omitting the pyramid of apex v with base polyhedron IIzNA,
and then capping the open end by IIg N A (see Figure 4).

2. The truncated polyhedron A’ obtained from A is a polyhedron in B" by
the truncation at all vertices in Ext B™. O
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Figure 4: The truncation of A at v

It should be noted that we regard vertices of A as those of A/, namely we do
not call vertices (in the ordinary sense) arose by the truncation “vertices of
A’ A vertex v of A is called finite (resp. ideal, ultraideal) when v € B™ (resp.
8B",ExtB").

Definition 8.2 A generalized polyhedron in H" is either an ordinary polyhedron
or a truncated polyhedron described above. O

We note that, by definition, the generalized polyhedra are of finite volume in
H".

Let o™ be an n-dimensional generalized simplex in the projective model
with vertices {v;};;, where I := {1,2,...,n+1}. Then we regard the lift of
its vertices to El" as follows: if a vertex v is finite, then the lift is uniquely
determined by P~!(v) N H}. If a vertex is ultraideal, there are two choice of
the lift, and we choose the one defining the half-space containing o”. If a vertex
is ideal, we do not need at this point to determine the exact lift in L*. The i-th
facet of o™ is the (n — 1)-dimensional face of 6™ opposite to v;.

Let G be a matrix of order n + 1. We prepare several notations on matrices
which will be used later.

1. We denote by G;; the submatrix of order n obtamed from G by removing
the ith row and jth column.

2. We denote a cofactor of G by ¢;; := (—1)**7 det G

3. Suppose G is a real symmetric matrix. Then we denote by sgnG the
signature of G, i.e., if sgnC (a,b) then G has a positive and b negative
eigenvalues. ‘

The following theorem tells us a necessary and sufficient condition of a set of
positive numbers to be the dihedral angles of a generalized simplex. For the
proof, see [Us2].
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Theorem 8.3 Suppose the following set of positive numbers is given:
{Bij (S [O,ﬂ’”’i,j € I,B,’j = Bji,H,-j =7 iff ¢ =j}
Then the following two conditions are equivalent:

(1) There exists a generalized hyperbolic simplexr in H™ with dihedral angle
between i-th facet and j-th facet is 6; ;.

(2) The real symmetric matriz G := (—cos;;) of order n + 1 satisfies the
following two conditions:

(a) sgnG = (n,1),
(b) cij >0 for any 4,5 € I withi # j. O

We call the matrix G appeared in the previous theorem the Gram matriz
of an n-dimensional generalized simplex o. Here it should be noted that this
definition is slight different from the ordinary one (see, for example, [Vi]), since
we do not deal with the normal vectors of the faces obtained by truncation.

The proof of Theorem 3.3 follows that of THEOREM in [Lu], where it is
proved a necessary and sufficient condition for a given set of positive real num-
bers to be the dihedral angles of a hyperbolic simplex in the ordinary sense.

Moreover such conditions for spherical and Euclidean simplices are also pre-

sented in [Lu].
The proof also tells us the way to calculate the edge lengths from a given
set of dihedral angles. The method is as follows:

1. Prepare the Gram matrix, say G, with respect to the dihedral angles.

2. Calculate the cofactor matrix (¢;4);;_, = (detG) G of G. Here each
diagonal element c;; represents the type of the vertex v;, namely if ¢;; > 0
(resp. ¢i; = 0,¢;; < 0), then v; is finite (resp. ideal, ultraideal).

3. Let I;; be the length of the edge joining v; and v;.

(a) When one of them is ideal vertex, then /;; = oo.
(b) When both of them are finite vertices or ultraideal vertices, then
li; = arccosh —mesdeer by formulae (2.1) and (2.3).

Vieiic; ;|

(c) When one vertex is finite vertex and the other is ultraideal vertices,

then l; ; = arcsinh — G by the formula (2.4).
Vleiicis)

Tracing the way conversely, we also obtain the method of calculating the
dihedral angles from a. given edge lengths. Here we note that, if some vertices
are ideal, then we need to give horospheres at each ideal vertices for the deter-
mination of the dihedral angle. Since we do not deal with horospheres in this
report, we do not deal with the case. Thus, for a given set of edge lengths with
types of vertices, the following is a way to determine the dihedral angles.
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1. Prepare the Gram matrix G = (g; J):‘ =1 with respect to the edge lengths.
Here each element g; ; is determined as follows:

(a) The element g;; = —1 (resp. g;; = 1) when the vertex v; is finite
(resp. ultraideal).

(b) When both v; and v; are finite or ultraideal, then g;; = —coshl;;.

(c) When one vertex is finite vertex and the other is ultraideal vertices,
then Gi; = — sinhl,:j.

2. Calculate the cofactor matrix (¢; ;)] j=1 of G.

3. Then the dihedral angle ;; = arccos Cij

Ve
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