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Abstract
一般化された双曲四面体とは、三次元双曲空間内の (コンパクトで無くて

も良い) 有限体積の多面体で、 (頂点が双曲空間の「外」に「少し」出ている
かもしれない) 双曲四面体に対し、 その様な頂点では polar plane によりそ
の周りを切り落とす事で得られるものの事です。 通常の意味での双曲四面体
に対しては、村上順氏と 野正和氏が量子 $6j$-symbol を用いて体積の公
式を構成しました。 この公式が、 一般化された双曲四面体に対しても使える
事を紹介します。
証明に際 $\text{し}$ての要点は、一般化された双曲四面体も、通常のものと同じく

面角でその形が定まる事です。 この考察から、 与えられた数の組に対し、 そ

れらを面角とする一般化された双曲四面体が存在するかどうかの必要充分条
件も得られました。 この事も紹介します。

1Introduction
Obtaining volume formulae for basic polyhedra is one of the basic and impor-
tant problems in geometry. In hyperbolic space this problem has been attacked
from its birth. An orthoscheme is asimplex of ageneralization (with respect to
dimensions) of aright triangle. Since any hyperbolic polyhedra can be decom-
posed into finite number of orthoschemes, the first step of solving the problem
is to obtain avolume formula for orthoschemes. In three-dimensional case,
N. I. Lobachevsky [Lo] found in 1839 avolume formula for orthoschemes. Thus
the next step is to find aformula for ordinary tetrahedra.

Although the lengths of six edges of tetrahedra determine their sizes and
shapes, in hyperbolic space it is known that the six dihedral angles also play
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the same role. Actually the valuables of the Lobachevsky’s formula mentioned
above are dihedral angles, and following this way we can obtain avolume formula
for generalized hyperbolic tetrahedra in terms of the six dihedral angles (the
meaning of the term “generalized” will be explained later). Here we note that,
by the fact mentioned previous paragraph, we can construct such aformula from
that of orthoschemes. But in this case we have to calculate the dihedral angles of
orthoschemes ffom those of tetrahedra. It is emphasized that the formula can be
calculated directly from the dihedral angles of agiven generalized tetrahedron.

The first answer to this problem was (at least the author is aware) given by
W.-Y. Hsiang in 1988. In [Hs] the formula was presented through an integral
expression. On the other hand, many volume formulae for hyperbolic polyhe-
dra is presented via Lobachevsky function or the dilogarithm function (see, for
example, [Ve] $)$ . The first such presentation was given by Y. Cho and H. Kim
in 1999 (see [CK]). Their formula was derived from that of ideal tetrahedra,
and has the folowing particular property: due to the way of the proof it is not
symmetric with respect to the dihedral angles. Thus the next problem is to
obtain its essentially symmetrical expression. Such aformula was obtained by
J. Murakami and M. Yano in about 2001. In [MY] they derived it ffom the
quantum $6j$-symbol, but the proof is to reduce it to ChO-Kim’s one.

In hyperbolic space it is possible to consider that vertices of apolyhedron
lie “outside the space and its sphere at infinity.” For each such vertex there is
acanonical way to cut off the vertex with its neighborhood. This operation is
called atruncation at the vertex, which will be defined more precisely in Sec-
tion 3and we thus obtain convex polyhedron (possibly non-compact) with finite
volume. Such apolyhedron appears, for example, as fundamental polyhedra for
hyperbolic Coxeter groups or building blocks of three-dimensional hyperbolic
manifolds with totally geodesic boundary. Since the volume of hyperbolic man-
ifolds are topological invariants, it is meaningful, also for 3-manifold theory, to
obtain avolume for mula for such polyhedra.

R. Kellerhals presented in 1989 that the formula for orthoschemes can be
applied, without ally modification, to “mildly” truncated ones at principal ver-
tices (see [Ke] for detail). This result inspires that Murakami-Yano’s formula

.also may be applied to generalized hyperbolic tetrahedra, tetrahedra of each ver-
tices being finite, ideal or truncated (see Definition 3.2 for precise definition),
and this is the main result of this report (see Theorem 1.1). Here we note that,
although the lengths of the edges emanating ffom a vertex at infinity are infin-
ity, the dihedral angles may be finite. This is another reason why we take not
the edge lengths but the dihedral angles as the valuables of our volume formula.

The key tool for the proof is s0-called Schlafli’s differential formula, asimple
description for the volume differential of polyhedra as afunction of the dihedral
angles and the volume of the apices. Since the volume formula is afunction of
the dihedral angles, to apply Schlafli’s differential formula we have to translate
the dihedral angles of ageneralized tetrahedron to the lengths of its edges.
This requirement yields anecessary and sufficient condition of aset of positive
numbers to be the dihedral angles of ageneralized simplex (see Theorem 3.3)
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W. Fenchel asked in [Fe] anecessary and sufficient conditions for agiven set
of positive real numbers to be the dihedral angles of ahyperbolic n-simplex.
F. Luo answered in [Lu] this question. Theorem 3.3 in this report is ageneral-
ization of his result.

1.1 Volume formula for generalized hyperbolic tetrahedra
Let $T=$ $T(A, B, C, D, E,F)$ be ageneralized tetrahedron in the three-
dimensional hyperbolic space $\mathbb{H}^{3}$ whose dihedral angles are $A$ , $B$ , $C$, $D$ , $E$ , $F$ .
Here the configuration of the dihedral angles are as follows (see also Figure 1);
three edges corresponding to $A$ , $B$ and $C$ arise from avertex, and the angle $D$

(resp. $E$ , $F$ ) is put on the edge opposite to that of $A$ (resp. $B$ , $C$). Let $G$ be
the Gram matrix of $T$ defined as follows:

$G:=(\begin{array}{llll}1 -\mathrm{c}\mathrm{o}\mathrm{s}A -\mathrm{c}\mathrm{o}\mathrm{s}B -\mathrm{c}\mathrm{o}\mathrm{s}F-\mathrm{c}\mathrm{o}\mathrm{s}A 1 -\mathrm{c}\mathrm{o}\mathrm{s}C -\mathrm{c}\mathrm{o}\mathrm{s}E-\mathrm{c}\mathrm{o}\mathrm{s}B -\mathrm{c}\mathrm{o}\mathrm{s}C 1 -\mathrm{c}\mathrm{o}\mathrm{s}D-.\mathrm{c}\mathrm{o}\mathrm{s}F -\mathrm{c}\mathrm{o}\mathrm{s}E -\mathrm{c}\mathrm{o}\mathrm{s}D 1\end{array})$ .

Figure 1: The dihedral angles of $T$

Let $a:=\exp\sqrt{-1}A$ , $b:=\exp\sqrt{-1}B$ , $\ldots$ , $f:=\exp\sqrt{-1}F$ , and let $U(z,T)$ be
the $\mathrm{c}\mathrm{o}\mathrm{m}$ plex valued function defined as follows:

$U(z, T)$ $:=$ $\frac{1}{1)}.\{\mathrm{L}\mathrm{i}_{2}(\approx)+Li2\{abdez)+\mathrm{L}i_{2}(adfz)$ $+\mathrm{L}\mathrm{i}_{2}(boefz)$

$-\mathrm{L}i_{\mathit{2}}$ (-abcz) -Li2 {$bcefz)$ -Li2 {acdfz) $-\mathrm{L}\mathrm{i}_{2}$ (-cdez) },

where $\mathrm{L}\mathrm{i}_{2}(z)$ is the dilogarithm function defined by the analytic continuation of
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the following integral:

$\mathrm{L}\mathrm{i}_{2}(x):=-\int_{0}^{x}\frac{\log(1-t)}{t}\mathrm{d}t$ for apositive real number $x$ .

We denote by $z_{1}$ and $z_{2}$ the two complex numbers defined as follows:

$z_{1}$ $:=$ $-2 \frac{\sin A\sin D+\sin B\sin E+\sin C_{\mathrm{S}1}^{\mathrm{l}}\mathrm{n}F-\sqrt{\det G}}{ad+be+cf+abf+ace+bcd+def+abcdef}$,

$z_{2}$ $:=$ $-2 \frac{\sin A\sin D+\sin B\sin E+\sin C_{\mathrm{S}1}^{\mathrm{l}}\mathrm{n}F+\sqrt{\det G}}{ad+be+cf+abf+ace+bcd+def+abcdef}$.

Theorem 1.1 (A volume formula for generalized tetrahedra) The vol-
$ume$ $\mathrm{V}\mathrm{o}\mathrm{l}(\mathrm{T}))$ of a generalized tetrahedron $T$ is given as follows:

$\mathrm{V}\mathrm{o}\mathrm{l}(T)=\frac{1}{2}\Im(U(z_{1},T)-U(z_{2}, T))$ , (1.1)

where $\Im$ means the imaginary part $\square$

1.2 Other known volume formulae for tetrahedra
In this subsection we recall some known formulae ancl results for tetrahedra
before Cho and Kim’s one. The notations are those in Figure 1, and the function
$\Lambda(x)$ means the Lobachevsky function defined as follows:

$\mathrm{A}(\mathrm{x}):=-\int_{0}^{x}\log|2\sin t|\mathrm{d}t$ .

The relationship between $\Lambda(x)$ and $\mathrm{L}\mathrm{i}_{2}(x)$ is as follows (see, for example, [Ki,
\S 1.1.4]):

$\Im \mathrm{L}\mathrm{i},.(\exp\sqrt{-1}x)=2\Lambda(\frac{x}{2})$ for any $x$ $\in \mathrm{R}$ .

1.2.1 Volume fo rmulae for orthoschemes

In three-dimensional case, an or thoscheme is atetrahedron with angles $B$ , $E$

.and $F$ are $\pi/2$ (i.e., the edge $v_{1}v_{2}$ is orthogonal to the face $\mathrm{V}2\mathrm{V}3\mathrm{V}4$ , and the
face $\mathrm{V}1\mathrm{V}2\mathrm{V}3$ is orthogonal to the edge $v_{3}v_{4}$ ).

It is known that in [Lo] N. I. Lobachevsky found avolume formula for or-
thoschemes. Later R. Kellerhals proved in [Ke] that his formula can be applied
to orthoschemes with truncations at vertices $v_{1}\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}v_{4}$ (and furthermore she
constructed aformula for Lambert cubes). The formula is as follows:

Theorem 1.2 (The volume formula for orthoschemes) The volume
$\mathrm{V}\mathrm{o}\mathrm{l}(T)$ of an (maybe partially truncated) orthoscheme $T$ is given as follows:

$\mathrm{V}\mathrm{o}\mathrm{l}(T)$ $=$ $\frac{1}{4}\{\Lambda(A+\theta)-\Lambda(A-\theta)+\Lambda(\frac{\pi}{2}+C-\theta)+\Lambda(\frac{\pi}{2}-C-\theta)$

$+ \Lambda(D+\theta)-\Lambda(D-\theta)+2\Lambda(\frac{\pi}{2}-\theta)\}$ ,
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where $\theta:=\arcsin\frac{\sqrt{\cos^{2}C-\sin^{2}A\sin^{2}D}}{\cos A\cos D}$ . $\square$

1.2.2 Volume formulae for ideal tetrahedra

An ideal tetrahedron is atetrahedron with all vertices lying at the sphere at
infinity. In this case the sum of the dihedral angles of edges emanating from an
ideal vertex is $\pi$ . This implies that the dihedral angles of edges opposite to each
other are equal, namely $A=D$, $B=E$ and $C=F$ . J. Milnor proved in [Mi]
the following volume formula for ideal tetrahedra:

Theore$\mathrm{m}1.3$ (The volume formula for ideal tetrahedra) The volume
$\mathrm{V}\mathrm{o}\mathrm{l}(\mathrm{T}))$ of an ideal tetrahedron $T$ is given as follows:

$\mathrm{V}\mathrm{o}\mathrm{l}(T)=\Lambda(A)+\Lambda(B)+\Lambda(C)$ . $\square$

1.2.3 Maximal volume tetrahedra

U. Haagerup and H. Munkholm proved in [HM] that, in hyperbolic space of
dimension greater than one, asimplex is of maximal volume if and only if it
is ideal and regular. Once we extend the class of tetrahedra to the generalized
ones in this report, the maximal volume generalized tetrahedron is the truncated
tetrahedron of all dihedral angles are 0, namely the ideal right-angled octahedron
(see Theorem 4.2 of [Us2]).

The following graphs show the relationships between the dihedral angle and
the volume or the edge length of regular tetrahedra. The dihedral angle varies
from 0to $\arccos\frac{1}{3}\approx 1.230959$ . The angle 0corresponds to the regular ideal
octahedron mentioned as above, and the angle $\arccos\frac{1}{3}$ corresponds to the Eu-
clidean regular tetrahedron, corresponding to infinitesimally small hyperbolic
regular tetrahedra. The dihedral angle of the regular ideal tetrahedron is $\pi/3$ .

Acknowledgement
The author would like to give his thanks to Jun Murakami and Masakazu Yano
for useful discussion about their results.

2Preliminaries
In this section we review several well-known facts about hyperbolic geometry.
See, for example, [Us] for more precise explanation and the proofs of the prop0-

sitions.
The $n\mathit{1}$ $1$ -dimensional Lorentzian space $\mathrm{E}^{1,n}$ is the real vector space $\mathbb{R}^{n+1}$

of dimension $n+1$ with the Lorentzian inner product $(\mathrm{x},$ $y\rangle:=-x0y0+x_{1}y_{1}+$

$\ldots+x_{n}y_{n}$ , where $x$ $=$ $(x_{0},x_{1}, \ldots, x_{n})$ and $y=(y_{0},y_{1}, \ldots,y_{n})$ . Let $H_{T}:=$

$\{x \in \mathrm{E}^{1,n}|\langle \mathrm{a}x, ox\rangle =-1\}$ be tlie (standard) hyperboloid of two sheets, and let
$H_{T}^{+}:=$ { $x$ $\in \mathrm{E}^{1,n}|\langle x$ , $x\rangle$ $=-1$ and $x_{0}>0$ } be its upper sheet. The restriction
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$8 \Lambda(\frac{\pi}{4})\approx$

$3 \Lambda(\frac{\pi}{3})\approx$

Figure 2: Volume of aregular tetrahedron

of the quadratic form induced by $\langle\cdot$ , $\cdot$ $\rangle$ on $\mathrm{E}^{1,n}$ to the tangent space of $H_{T}^{+}$ is
positive definite and gives aRiemannian metric on $H_{T}^{+}$ . The space obtained
from $H_{T}^{+}$ equipped with the metric above is called the hyperboloid model of the
$n$-dimensional hyperbolic space, and we denote it by $\mathbb{H}^{n}$ . Under this metric the
hyperbolic distance, say $d$ , between two points $x$ and $y$ can be measured by the
folowing formula:

$\langle ox, y\rangle$ $=-\cosh d$ . (2.1)

Let $L:=\{ox \in \mathrm{E}^{1,n}|\langle ox, x\rangle =0\}$ be the (standard) cone and let $L^{+}:=$

{ $x\in \mathrm{E}^{1,n}|\langle ox$ , $x\rangle$ $=0$ and $x_{0}>0$ } be its upper half. Then aray in $L^{+}$ started
from the origin $\mathit{0}$ corresponds to apoint in the ideal boundary of $\mathbb{H}^{n}$ . The set
of such rays forms the sphere at infinity, and we denote it by $\mathrm{S}_{\infty}^{n-1}$ . Then each
ray in $L^{+}$ becomes apoint at infinity of $\mathbb{H}^{n}$ .

Let us denote by $P$ the radial projection ffom $\mathrm{E}^{1,n}-\{x \in \mathrm{E}^{1,n}|x_{0}=0\}$ to
an affine hyperplane $\mathrm{P}_{1}^{n}:=\{x \in \mathrm{E}^{1,n}|x_{0}=1\}$ along the ray ffom the origin $0$ .
The projection $\mathcal{P}$ is homeomorphism on $\mathbb{H}^{n}$ to the $n$-dimensional open unit ball
$\mathrm{B}^{n}$ in $\mathrm{P}_{1}^{n}$ centered at the origin (1, 0, 0, $\ldots$ , 0) of $\mathrm{P}_{1}^{n}$ , which gives the projective
model of $\mathbb{H}^{n}$ . The affine hyperplane $\mathrm{P}_{1}^{n}$ contains not only $\mathrm{B}^{n}$ and its set theoretic
boundary $\partial \mathrm{B}^{\mathrm{n}}$ in $\mathrm{P}_{1}^{n}$ , which is canonically identified with $\mathrm{S}_{\infty}^{n-1}$ , but also the
outside of the compactified projective model $\overline{\mathrm{B}^{n}}:=\mathrm{B}^{n}\mathrm{u}\partial \mathrm{B}^{n}\approx \mathbb{H}^{n}\mathrm{U}\mathrm{S}_{\infty}^{n-1}$ . So $P$

can be naturally extended to the mapping from $\mathrm{E}^{1,n}-\{0\}$ to the n-dimensional
real projective space $\mathrm{P}^{n}:=\mathrm{P}_{1}^{\mathfrak{n}}\mathrm{U}$ $\mathrm{P}_{\infty}^{n}$ , where $\mathrm{P}_{\infty}^{n}$ is the set of lines in the affine
hyperplane $\{x \in \mathrm{E}^{1,n}|x_{0}=0\}$ through $0$ . We denote by $\mathrm{E}\mathrm{x}\mathrm{t}\overline{\mathrm{B}^{n}}$ the exterior
of $\overline{\mathrm{B}^{n}}$ in $\mathrm{P}^{n}$ .

The (standard) hyperbolOid of one sheet $Hs$ is defined to be $Hs$ $:=$

$\{x \in \mathrm{E}^{1,n}|\langle x, x\rangle =1\}$ . For an arbitrary point $u$ in $Hs$ , we define ahalf-spac$\mathrm{e}$
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edge length

Figure 3: Edge length of aregular tetrahedron

$R_{\mathrm{u}}$ and a hyperplane $P_{\mathrm{u}}$ in $\mathrm{E}^{1,n}$ as follows:

$R_{\mathrm{u}}$ $:=$ {oe$\in \mathrm{E}^{1,n}|\langle ox,$u\rangle$\leq 0\}$ ,

$P_{\mathrm{u}}$ $:=$ {ae $\in \mathrm{E}^{1,n}|\langle ox,$ $u\rangle$ $=0$ } $=\partial R_{\mathrm{u}}$ .

We denote by $\Gamma_{\mathrm{u}}$ (resp. $\Pi_{\mathrm{u}}$ ) the intersection of $R_{u}$ (resp. $P_{\mathrm{u}}$) and $\mathrm{B}^{n}$ . Then
$\Pi_{\mathrm{u}}$ is ageodesic hyperplane in $\mathbb{H}^{n}$ , and the correspondence between the points
in $Hs$ and the half-spaces $\Gamma_{\mathrm{u}}$ in $\mathbb{H}^{n}$ is bijective. We call $u$ anormal vector to
$P_{u}$ (or $\Pi_{\mathrm{u}}$). The following two propositions are on relationships between the
Lorentzian inner product and geometric objects.

Proposition 2.1 Let $x$ and $y$ be arbitrary two non-parallel points in Hs- Then
one of the followings hold:

(1) Two geodesic hyperplanes $\Pi_{oe}$ and $\Pi_{y}$ intersect if and only if $|\langle x, y\rangle|<1$ .
In this case the (hyperbolic) angle, say $\theta$ , between them measured in $\Gamma_{\Phi}$

and $\Gamma_{y}$ is calculated by the following formula:
$\langle x, y\rangle=-\cos\theta$ . (2.2)

(2) Two geodesic hyperplanes $\Pi_{\varpi}$ and $\Pi_{y}$ never intersect in $\overline{\mathrm{B}^{n}}$ , $i.e.$ , they in-
tersect in $\mathrm{E}\mathrm{x}\mathrm{t}\overline{\mathrm{B}^{n}}$, if and only if $|\langle ox, y\rangle|>1$ . In this case the (hyperbolic)
distance, say $d$ , between them. is calculated by

$|\langle ox, y\rangle|=\cosh d$ . (2.3)

and then $\Pi_{\Phi}$ and $\Pi_{y}$ are said to be ultraparallel.
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(3) Two geodesic hyperplanes $\Pi_{oe}$ and $\Pi_{y}$ intersect not in $\mathrm{B}^{n}$ but in $\partial \mathrm{B}^{n}$ if
and only if $|\langle x, y\rangle|=1$ . In this case the angle and the distance between
them is 0, and then $\Pi_{oe}$ and $\Pi_{y}$ are said to be parallel. $\square$

Proposition 2.2 Let $oe$ be a point in $\mathrm{B}^{n}$ and let $\Pi_{y}$ be a geodesic hyperplane
whose normal vector is $y\in Hs$ with $\langle oe, y\rangle<0$ . Then the distance $d$ between $x$

and $\Pi_{y}$ is obtained by the following $fo$ rmula:

$\langle x, y\rangle=-\sinh d$ . $\square$ (2.4)

Let $v$ be apoint in $\mathrm{E}\mathrm{x}\mathrm{t}\overline{\mathrm{E}^{\overline{n}}}$. Then $P^{-1}(v)\cap Hs$ consists of two points
and, independent of the choice of $\tilde{v}\in P^{-1}(v)\cap Hs$ , we can define the same
hyperplane $\Pi_{\tilde{v}}$ . We call $\Pi_{\tilde{v}}$ the polar geodesic hyperplane to $v$ and $v$ the pole
of $\Pi_{\tilde{v}}$ . Then the following proposition holds;

Proposition 2.3 Let $v$ be a point in $\mathrm{E}\mathrm{x}\mathrm{t}\mathrm{B}^{n}$ .

(1) Any hyperplane through $v$ with intersecting $\mathrm{B}^{n}$ is perpendicular to $\Pi_{\tilde{2l}}$ in
$\mathbb{H}^{n}$ .

(2) Let $u$ be a limit point of $\Pi_{\tilde{v}}$ , $i.e.$ , $\mathrm{u}\in P_{v}\cap\partial \mathrm{B}^{n}$ . Then the line through
$\square u$

and $v$ is tangent to $\partial \mathrm{B}^{n}$ .

3Acharacterization theorem for the dihedral
angles of generalized hyperbolic simplices

Unlike spherical or Euclidean one, in hyperbolic geometry we can consider not
only points at infinity but also points “beyond infinity.” This situation can be
easily seen in the projective ball model, and it extends the concept of polyhedra.
Such polyhedra is called the generalized polyhedra. We start this section with
their precise definition.

In this section we assume $n\geq 3$ . We also note that any polyhedron in $\mathrm{P}_{1}^{n}$

intersecting $\mathrm{B}^{n}$ can be moved to the one containing the origin of 7by the
action of orientation-preserving is omorphisms of $\mathbb{H}^{n}$ .

Definition 3.1 Let $\triangle$ be apolyhedron in $\mathrm{P}_{1}^{n}$ containing the origin of $\mathrm{P}_{1}^{n}$ . Sup-
pose each of the interior of its ridge (i.e., $(n-2)$-dimensional face) intersects

$\overline{\mathrm{B}^{n}}$ .

1. Let $v$ be avertex of $\triangle$ in $\mathrm{E}\mathrm{x}\mathrm{t}\mathrm{B}^{n}$ . The (polar) truncation of $\triangle$ at $v$ is an
operation of omitting the pyramid of apex $v$ with base polyhedron $\overline{|11}_{\tilde{v}}\cap\triangle$,
and then capping the open end by $\Pi_{\tilde{v}}\cap\triangle$ (see Figure 4).

2. The truncated polyhedron $\triangle’$ obtained ffom $\triangle$ is apolyhedron in $\overline{\mathrm{B}^{n}}$ by
the truncation at all vertices in $\mathrm{E}\mathrm{x}\mathrm{t}_{1}\overline{\mathrm{B}^{n}}$ . $\square$
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Figure 4: The truncation of $\triangle$ at $v$

It should be noted that we regard vertices of $\triangle$ as those of IS’, namely we do
not call vertices (in the ordinary sense) arose by the truncation “vertices of
$\triangle’$ .” Avertex $v$ of $\triangle’$ is called finite (resp. ideal, ultraideal) when $v\in \mathrm{B}^{n}$ (resp.
$\partial \mathrm{B}^{n},\mathrm{E}\mathrm{x}\mathrm{t}\overline{\mathrm{B}^{\mathrm{n}}})$ .
Definition 3.2 Ageneralized polyhedron in $\mathbb{H}^{n}$ is either an ordinary polyhedron
or atruncated polyhedron described above. $\square$

We note that, by definition, the generalized polyhedra are of finite volume in
$\mathbb{H}^{n}$ .

Let $\sigma^{n}$ be an $n$-dimensional generalized simplex in the projective model
with vertices $\{v_{i}\}_{i\in I}$ , where $I:=\{1,2, \ldots, n+1\}$ . Then we regard the lift of
its vertices to $\mathrm{E}^{1,n}$ as follows: if avertex $v$ is finite, then the lift is uniquely
determined by $P^{-1}(v)\cap H_{T}^{+}$ . If avertex is ultraideal, there are two choice of
the lift, and we choose the one defining the half-space containing $\sigma^{n}$ . If avertex
is ideal, we do not need at this point to determine the exact lift in $L^{+}$ . The i-th
facet of $\sigma^{n}$ is the $(?l-1)$-dimensional face of $\sigma^{n}$ opposite to Vi.

Let $G$ be amatrix of order $r|.+1$ . We prepare several notations on matrices
which will be used later.

1. We denote by $Gtj$ the submatrix of order $n$ obtained ffom $G$ by removing
the $i\mathrm{t}\mathrm{h}$ row and $j\mathrm{t}\mathrm{h}$ column.

2. We denote acofactor of $G$ by $cij:=(-1)^{:+j}\det G_{ij}$ .
3. Suppose $G$ is areal $\mathrm{s}\mathrm{y}$ mmetric matrix. Then we denote by $\mathrm{s}\mathrm{g}\mathrm{n}G$ the

signature of $G$ , i.e., if $\mathrm{s}\mathrm{g}\mathrm{n}\mathrm{G}=(a, b)$ then $G$ has $a$ positive and $b$ negative
eigenvalues.

The following theorem tells us anecessary and sufficient condition of aset of
positive numbers to be the dihedral angles of ageneralized simplex. For the
proof, see [Us2]
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Theorem 3.3 Suppose the following set of positive numbers is given:

{ $\theta_{ij}\in[0,$ $\pi]|i,j\in I$ , $\theta_{ij}=\theta_{ji}$ , $\theta_{ij}=\pi$ iff $i=j$ }.

Then the following two $c’onditions$ are equivalent:

(1) TAere ez&ts a generalized hyperbolic simplex in $\mathbb{H}^{n}$ with dihedral angle
between $i$ -th facet and $j$ -th facet is $\theta_{ij}$ .

(2) The real symmetric matrix $G:=(-\cos\theta_{ij})$ of order $n+1$ satisfies the
following two conditions:

(a) $\mathrm{s}\mathrm{g}\mathrm{n}G=(n, 1)$ ,
(b) $\mathrm{G}.j$ $>0$ for any $i,j\in I$ with $i\neq j$ . $\square$

We call the matrix $G$ appeared in the previous theorem the Gram matrix
of an $n$-dimensional generalized simplex $\sigma$ . Here it should be noted that this
definition is slight different from the ordinary one (see, for example, [Vi]), since
we do not deal with the normal vectors of the faces obtained by truncation.

The proof of Theorem 3.3 follows that of THEOREM in [Lu], where it is
proved anecessary and sufficient condition for agiven set of positive real num-
bers to be the dihedral angles of ahyperbolic si nplex in the ordinary sense.
Moreover such conditions for spherical and Euclidean simplices are also pre-
sented in [Lu].

The proof also tells us the way to calculate the edge lengths from agiven
set of dihedral angles. The method is as follows:

1. Prepare the Gram matrix, say $G$, with respect to the dihedral angles.

2. Calculate the cofactor matrix $(c_{tj})_{i,j=1}^{n}=(\det G)G^{-1}$ of $G$ . Here each
diagonal element $c_{ii}$ represents the type of the vertex $v_{i}$ , namely if $c_{ii}>0$

(resp. $c_{ii}=0$ , $c_{ii}<0$), then $v_{i}$ is finite (resp. ideal, ultraideal).

3. Let $l_{ij}$ be the length of $\mathrm{t}\mathrm{l}\mathrm{l}\mathrm{e}$ edge joining $v$:and $v_{j}$ .
(a) When one of them is ideal vertex, then $l_{ij}=\infty$ .
(b) When both of them are finite vertices or ultraideal vertices, then

$l_{ij}=\mathrm{a}\mathrm{r}\mathrm{c}\cosh$
$\frac{\mathrm{c}_{ij}}{\sqrt{|c_{ii}c_{jj}|}}$ by formulae (2.1) and (2.3).

(c) When one vertex is finite vertex and the other is ultraideal vertices,

then $l_{i\dot{g}}= \mathrm{a}\mathrm{r}\mathrm{c}\sinh\frac{\mathrm{q}_{j}}{\sqrt{|c_{ii}c_{jj}|}}$
.by the formula (2.4).

Tracing the way conversely, we also obtain the method of calculating the
dihedral angles from agiven edge lengths. Here we note that, if some vertices
are ideal, then we need to give horospheres at each ideal vertices for the deter-
mination of the dihedral angle. Since we do not deal with horospheres in this
report, we do not deal with the case. Thus, for agiven set of edge lengths with
types of vertices, the following is away to determine the dihedral angles.
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1. Prepare the Gram matrix $G=(g_{ij})_{i,j=1}^{n}$ with respect to the edge lengths.
Here each element $gij$ is determined as follows:

(a) The element $g_{ii}=-1$ (resp. $g_{ii}=1$ ) when the vertex $v_{i}$ is finite
(resp. ultraideal).

(b) When both $v_{i}$ and $v_{j}$ are finite or ultraideal, then $g_{ij}=-\cosh l_{ij}$ .
(c) When one vertex is finite vertex and the other is ultraideal vertices,

then $g_{ij}=$ -siffi $l_{ij}$ .

2. Calculate the cofactor matrix $(c_{ij})_{\dot{l}j=1}^{n}$,of $G$ .

3. Then the dihedral angle $\theta_{ij}=\arccos\frac{c_{\dot{\iota}j}}{\sqrt{|c_{ii}c_{jj}|}}$ .

References
[CK] Yunhi Cho and Hyuk Kim, On the Volume Fo rmula for Hyperbolic Tetra-

hedra, Discrete&Computational Geometry 22 (1999), 347-366.

[e] Werner Fenchel, Elementary Geometry in Hyperbolic Space, Walter de
Gruyter, Berlin . New York, 1989.

[HM] Uffe Haagerup and Hans J. Munkholm, Simplices of maximal volume in
hyperbolic $n$-space, Acta Mathematica 147 (1981), 1-11.

[Hs] Wu-Yi Hsiang, On infinitesimal symmetrization and volume formula for
spherical or hyperbolic tetrahedrvns, The Quarterly Journal of Mathemat-
ics, Oxford, Second Series 39 (1988), 463-468.

[Ka] R. M. Kashaev, The Hyperbolic Volume of Knots from the Quantum Dilog-
arithm, Letters in Mathematical Physics 39 (1997), 269-275.

[Ke] Ruth Kellerhals, On the volume of hyperbolic polyhedra, Mathematische
Annalen 285 (1989), 541-569.

[Ki] Anatol N. Kirillov, Dilogarithm identities, Progress ofTheoretical Physics.
Supplement 118 (1995), 61-142.

[Lo] N. I. Lobatschefekij, Imagindre Geometric und ihre Anwendung auf einige
Integrqle, translated into German by H. Liebmann (Leipzig, 1904).

[Lu] Feng Luo, On a Problem of Fenchel, Geometriae Dedicata 64 (1997),
277-282.

[Mi] John Milnor, Hyperbolic geometry: the first 150 years, Bulletin (New Se-
ries) of the American Mathematical Society 6(1982), 9-24.

[MY] Jun Murakami and Masakazu Yano, On the volume of a hyperbolic tetra-
hedron, available at
http://www.f.waseda.jp/murakami/papers/tetrahedronrev3.pdf.

149



[Us] Akira Ushijima, The Tilt Formula for Generalized Simplices in Hyperbolic
Space, Discrete&Computational Geometry 28 (2002), 19-27.

[Us2] Akira Ushijima, A volume formula for generalized hyperbolic tetrahedra,
preprint.

[Ve] Andrei Vesnin, On Volumes of Some Hyperbolic 3-manifolds, Lecture
Notes Series 30, Seoul National University, 1996.

[Vi] E. B. Vinberg (Ed.), Geometry $II$ , Encyclopaedia of Mathematical Sci-
ences 29, Springer-Verlag, 1993

150


