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1. INTRODUCTION

A 3-dimensional handlebody H, is an orientable 3-manifold constructed from a 3-
ball by attaching g 1-handles. We denote the boundary of H, by %,, which is an
orientable closed surface of genus g. Let M, be the mapping class group of £, and
H, be the mapping class group of Hy, for short, we call this group the handlebody

group. For elements a, b and c of a group, we write ¢ = ¢!

,and a xb = aba .
Let P, be a planar surface constructed from a 2-disk by removing g copies of disjoint
2-disks. As indicated in Figure 1, we denote the boundary components of P, by
Yo, Y2, - - - Y29, and denote some properly embedded arcs of Py by 71,73, .., Y2¢+1,
Ba, B4y - - -, Pag—2 and B3, 04, ... , F2g_5. The 3-manifold Py x [—1,1] is homeomorphic
to H,. On 8(P, x [-1,1]) = £,, we define cp;—; = 8(y2i-1 X [-1,1]) 1 <i<g+1),
byj = 0(By; x [~1,1]), by; = 0(By; x [-1,1]) (2 < j < g—1), and e = 72 x {0}
(1 <k <g). InFigures 2 and 3, these circles are illustrated and oriented. For simple

close curve a on ¥,, we define the Dehn twist T, about a as indicated in Figure 4.

FIGURE 1
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FIGURE 3

FIGURE 4



For short, we denote T, by C;, and Tj,; by B,;. As elements of H,(%,,Z), we take
T1=—"C, Y1 = —C
T; = bgi, Yi = —Cpi, where2<i<g—1,

Tg = —C2q, Yg = —C2941-
Then, {z1,y1," -+ ,%q, Yy} is a basis of H1(Xy, Z), and satisfy (z;,y;) = 6, (zi,z;) =
(:,y;) = O for the intersection form (,) . Let E, be a identity g x g matrix, and

_( 0 E
1=(5, %)

We define Sp(2g) = {M € GL(2g9,Z) | MJM' = J}, where M’ means a transpose of
M. Let p be a point on ¥,. We can characterize the handlebody group H, by the
actions of each elements on the fundamental group m1(Xy,p). Let I; be an arc on X,
which begins from p and ends on ¢;, [; (2 < i < g—1) be an arc £, which begins from
p and ends on by;, and [, be an arc on ¥, which begins from p and ends on cy;. We
denote A the normal closure of {lic1ly ,lgbgly , ... ,lg-1bag-2lg—1 ,1gC20l, }, then H,
= {¢ € My | ¢(N) = N'}. We define a homological analogue of H,. Let N be the
Z-submodule of Hy(X,, Z) generated by {z1,... ,z,}, and HH,4 be a subgroup of M,
defined by HH, = {¢ € M, | ¢.(N) = N}. We call HH, the homological handlebody
group of genus g. For each element ¢ of Mg, we define a 2g x 2g matrix My by

(¢(zl)v ¢(:E2), Tty ¢($9)’ ¢(y1)a ¢(y2)1 Y ¢(yg)) = (x]»’ T2y, Tg,Y1,Y2, )yg)M¢'

Then, My is an element of Sp(2g), and the map u from M, to Sp(2g) defined by
mapping ¢ to My is a surjection. On the other hand, uly, is not a surjection. We

define a subgroup urSp(2g) of Sp(2g) by

urSp(2g) = {(3 g) € Sp(2g)},

where A, B, and D are g x g matrices, and 0 is a g X g zero matrix. We show the

following theorem

Theorem 1.1. pu(Hy) = urSp(2g).
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FIGURE 5
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FIGURE 6

By definition, HH, = u~!(urSp(2g)). Let [a] be the largest integer n which satisfies

n < a, and dj, d;, e, € are indicated in Figures 5 and 6. We show

Theorem 1.2. Ifg > 3, H?'[g 18 gene'rated by Cl, 0201202, 02010302, CziCQi_1Bg,;C2i,
C2iCoi41B2iCy; (2 < i < g—1), CyCg-1C29141Coy, Td,-Td; (1<j<[%%]) and TekaZ
(1< k<[2).

The author does not know whether H#H, is finitely generated or not. This note is

a survey of a paper [1].
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2. PROOF OF THEOREM 1.1

It is easy to see that pu(HH,) C urSp(2g). We show that urSp(2g) C u(HH,). Let

So be a g X g symmeric matrix, and Uy, Us, Us be g x g unimodular matrices given by

R N R
00 --- 0

So=1{. . . .|[U=: 1 -1,
T 00 00
000 \0 0 10
1100 /-1 0 00
01 .- 00 0 1 00

Up={: ¢ . ¢+ 1, Ug=| 1 ¢ -0t
00 --- 10 0 0 --- 10
00 .- 01 \0 0 01

By applying the argument by Hua and Reiner [2], we show

Lemma 2.1. The group urSp(2g) is generated by
E, S\ (Ui o o
{( 0 Eg) , (0 (U{)“l) , wherei =1, 2,3} .

Suzuki [5] introduced elements p (cyclic translation of handles), w; (twisting a

O

knob), p;2 (interchanging two knobs), and 6,2 (sliding) of #H,. In [5], their acions on

the fundamental group of ¥, were listed. With using this list, we show

uen = 2)ouo= (% wd-).

ot = (3 ) e = (3 ).
(2

The above observation shows that urSp(2g) C p(H,).

3. Proor orF THEOREM 1.2

We denote the kernel of 4 by Z, and call this the Torelli group. By Theorem 1.1,
we can show that HH, is generated by Hy U Z,;. For g > 3, we find finite subsets S
of Z, such that #, U S generates HH,. Johnson [3] showed that, when g is larger
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FIGURE 7
than or equal to 3, 7, is finitely generated. We review his result. We orient and
call simple closed curves as is indicated in Figure 2, and call (¢1,¢o,... ,Co+41) and
(cg,Csy--- ,C2g+1) @S chains. For oriented simple closed curves d and e which mutu-
ally intersect in one point, we construct an oriented simple closed curve d + e from
d U e as follows: choose a disk neighborhood of the intersection point and in it make
a replacement as indicated in Figure 7. For a consecutive subset {c;,cit1,... ,¢j}
of a chain, let ¢; + --- 4+ ¢; be the oriented simple closed curve constructed by re-
peated applications of the above operations. Let (iy,... ,%,+1) be a subsequence of
(1,2,...,29g + 1) (Resp. (8,5,...,29 +1)). We construct the union of circles C =
Ciy + -+ Cig-1 UGy ++- -+ iy U - Ug, + -+ +c¢i,,—1. If 7is odd, the regular
neighborhood of C is an oriented compact surface with 2 boundary components. Let
¢ be the element of M, defined as the composition of the positive Dehn twist along
the boundary curve to the left of C and the negative Dehn twist along the boundary
curve to the right of C. Then, ¢ is an element of Z,. We denote ¢ by [i1,... ,ir41],
and call this the odd subchain map of (ci,cz,... ,co9+1) (Resp. (cs,Cs,... ,C2941))-

Johnson [3] showed the following theorem:

Theorem 3.1. [3, Main Theorem| For g > 3, the odd subchain maps of the two

chains (cy,ca,. .. ,Ca941) and (ca,Cs,. .. ,C2g41) generate I,. [

By taking conjugations of odd subchain maps by elements of H, and applying the
following theorem by Takahashi [6], we show Theorem 1.2.
Theorem 3.2. [6] Hg 8 genemted by 01, CzC?Cz, 02010302, Og,‘Cg,;_lBgiCz,',
C2iC2i11BaiCoi (2 <1< g—1), CpgChy1C2911Cs9. O
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