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1. INTRODUCTION

A 3-dimensional handlebody $H_{\mathit{9}}$ is an orientable 3-manifold constructed from a3-
ball by attaching $g1$-handles. We denote the boundary of $H_{g}$ by $\Sigma_{g}$ , which is an
orientable closed surface of genus $g$ . Let $\mathcal{M}_{\mathit{9}}$ be the mapping class group of $\Sigma_{g}$ and
$\mathcal{H}_{g}$ be the mapping class group of $H_{g}$ , for short, we call this group the handlebody

$group_{:}$ For elements $a$ , $b$ and $c$ of agroup, we write $\overline{c}$ $=c^{-1}$ , and $a*b=aba$ .
Let $P_{g}$ be aplanar surface constructed from a2-disk by removing $g$ copies of disjoint

2-disks. As indicated in Figure 1, we denote the boundary components of $P_{g}$ by
$\gamma_{0}$ , $\gamma_{2}$ , $\ldots$ , $\gamma_{2g}$ , and denote some properly embedded arcs of $P_{g}$ by $\gamma_{1}$ , $\gamma_{3}$ , $\ldots$ , $\gamma_{2g+1}$ ,
$\beta_{2}$ , $\beta_{4}$ , $\ldots$ , $\beta_{2g-2}$ and $\beta_{2}’$ , $\beta_{4}’$ , $\ldots$ , $\beta_{2g-2}’$ . The 3-manifold $P_{g}\cross[-1,1]$ is homeomorphic

to $H_{g}$ . On $\partial(P_{g}\cross[-1,1])=\Sigma_{g}$ , we define $c_{2i-1}=\partial(\gamma_{2i-1}\cross[-1,1])(1\leq i\leq g+1)$ ,
$b_{2j}=\partial(\beta_{2j}\cross[-1,1])$ , $b_{2j}’=\partial(\beta_{2j}’\cross[-1,1])(2\leq j\leq g-1)$ , and $c_{2k}=\gamma_{2k}\cross\{0\}$

$(1\leq k\leq g)$ . In Figures 2and 3, these circles are illustrated and oriented. For simple

close curve $a$ on $\Sigma_{g}$ , we define the Dehn twist $T_{a}$ about $a$ as indicated in Figure 4.

FIGURE 1
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FIGURE 2

FIGURE 3
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FIGURE 4
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For short, we denote $T_{c_{i}}$ by $C_{\iota}$ , and $T_{b_{2}}.\cdot$ by $B_{2i}$ . As elements of $H_{1}(\Sigma_{g}, \mathbb{Z})$ , we take

$x_{1}=-c_{1}$ , $y_{1}=-c_{2}$

$x_{i}=b_{2i}$ , $y_{i}=-c_{2i}$ , where $2\leq i\leq g-1$ ,

$x_{g}=-c_{2g}$ , $y_{g}=-c_{2g+1}$ .

Then, $\{x_{1}, y_{1}, \cdots, x_{g}, y_{g}\}$ is a basis of $H_{1}(\Sigma_{g}, \mathbb{Z})$ , and satisfy $(x_{i}, y_{j})=\delta_{\dot{|}\mathrm{j}}$ , $(x_{i}, x_{j})=$

$(y_{i}, y_{j})=0$ for the intersection form $(, )$ . Let $E_{g}$ be aidentity $g\cross g$ matrix, and

$J=(\begin{array}{ll}0 E_{\mathit{9}}-E_{g} 0\end{array})$ .

We define Sp(2g) $=\{M\in GL(2g, \mathbb{Z})|MJM’=J\}$ , where $M’$ means atranspose of
$M$ . Let $p$ be apoint on $\Sigma_{g}$ . We can characterize the handlebody group $\mathcal{H}_{g}$ by the

actions of each elements on the fundamental group $\pi_{1}(\Sigma_{g},p)$ . Let $l_{1}$ be an arc on $\Sigma_{g}$

which begins from $p$ and ends on $c_{1}$ , $l_{i}(2\leq i\leq g-1)$ be an arc $\Sigma_{g}$ which begins from
$p$ and ends on $b_{2i}$ , and $l_{g}$ be an arc on I9 which begins from $p$ and ends on $c_{2g}$ . We

denote $N$ the normal closure of $\{l_{1}c_{1}\overline{l_{1}}, l_{2}b_{4}\overline{l_{2}}, \ldots, l_{g-1}b_{2g-2}\overline{l_{g-1}}, l_{g}c_{2g}\overline{l_{g}}\}$, then $\mathcal{H}_{g}$

$=\{\phi\in \mathcal{M}_{g}|\phi(N)=N\}$ . We define ahomological analogue of $\mathcal{H}_{g}$ . Let $N$ be the
$\mathbb{Z}$-submodule of $H_{1}(\Sigma_{g}, \mathbb{Z})$ generated by $\{x_{1}, \ldots, x_{g}\}$ , and $\mathcal{H}\mathcal{H}_{g}$ be asubgroup of $\mathcal{M}_{g}$

defined by $?t\mathcal{H}_{\mathit{9}}=\{\phi\in \mathcal{M}_{g}|\phi_{*}(N)=N\}$ . We call $\mathcal{H}\mathcal{H}_{g}$ the homological handlebody

group of genus $g$ . For each element $\phi$ of $\mathcal{M}_{g}$ , we define a $2g\cross 2g$ matrix $M_{\phi}$ by

$(\phi(x_{1}), \phi(x_{2})$ , $\cdots$ , $\phi(x_{g})$ , $\phi(y_{1})$ , $\phi(y_{2})$ , $\cdots$ , $\phi(y_{g}))=(x_{1}, x_{2}, \cdots, x_{g}, y_{1}, y_{2}, \cdots, y_{g})M_{\phi}$.

Then, $M_{\phi}$ is an element of Sp(2p), and the map $\mu$ from $\mathcal{M}_{g}$ to Sp(2g) defined by

mapping $\phi$ to $M_{\phi}$ is asurjection. On the other hand, $\mu|_{\mathcal{H}_{g}}$ is not asurjection. We
define asubgroup urSp(2g) of Sp(2g) by

urSp(2g)= $\{$ $(\begin{array}{ll}A B0 D\end{array})\in \mathrm{S}\mathrm{p}(2g)\}$ ,

where $A$ , $B$ , and $D$ are $g\cross g$ matrices, and 0is a $g\cross g$ zero matrix. We show the

following theorem

Theorem 1.1. $\mu(\mathcal{H}_{g})=urSp(2g)$ .
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FIGURE 5
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FIGURE 6

By definition, $\prime H\mathcal{H}_{g}=\mu^{-1}$ (urSp $(2g)$ ). Let $[a]$ be the largest integer $n$ which satisfies
$n\leq a$ , and $d_{j}$ , $d_{j}’$ , $e_{k}$ , $e_{k}’$ are indicated in Figures 5and 6. We show

Theorem 1.2. If $g\geq 3_{f}\mathcal{H}\mathcal{H}_{g}$ is generated by $C_{1}$ , $C_{2}C_{1}^{2}C_{2}$ , $C_{2}C_{1}C_{3}C_{2}$ , $C_{2i}C_{2\dot{\iota}-1}B_{2i}C_{2:}$ ,
$C_{2\dot{l}}C_{2\dot{l}+1}B_{2i}C_{2i}(2\leq i\leq g-1)$ , $C_{2g}C_{2g-1}C_{2g+1}C_{2g}$ , $T_{d_{j}}\overline{T_{d_{\acute{j}}}}(1\leq j\leq[_{\overline{2}}^{g-\underline{1}}])$ , and $T_{e_{\mathrm{k}}}\overline{T_{d_{k}}}$

$(1\leq k\leq[_{2}^{\mathrm{L}^{-\underline{2}}}])$ .

The author does not know whether $\mathcal{H}\mathcal{H}_{2}$ is finitely generated or not. This note is
asurvey of apaper [1].
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2. $\mathrm{p}_{\mathrm{R}\mathrm{O}\mathrm{O}\mathrm{F}}$ OF THEOREM 1.1

It is easy to see that $\mu(\mathcal{H}7t_{g})\subset ur\mathrm{S}\mathrm{p}(2g)$ . We show that $ur\mathrm{S}\mathrm{p}(2g)\subset\mu(\mathcal{H}\mathcal{H}_{g})$ . Let
$S_{0}$ be a $g\cross g$ symmeric matrix, and $U_{1}$ , $U_{2_{7}}U_{3}$ be $g\cross g$ unimodular matrices given by

$S_{0}=(\begin{array}{llll}1 0 00 0 0\vdots \vdots \ddots \vdots 0 0 0\end{array})$ , $U_{1}=(\begin{array}{lllll}0 0 0 \mathrm{l}\mathrm{l} 0 0 0\vdots \vdots \ddots \vdots \vdots 0 0 0 00 0 1 0\end{array})$ ,

$U_{2}=(\begin{array}{lllll}\mathrm{l} 1 0 00 1 0 0\vdots \vdots \ddots \vdots \vdots 0 0 1 00 0 0 1\end{array})$ , $U_{3}=(\begin{array}{lllll}-1 0 0 00 1 0 0\vdots \vdots \ddots \vdots \vdots 0 0 1 00 0 0 \mathrm{l}\end{array})$ .

By applying the argument by Hua and Reiner [2], we show

Lemma 2.1. The group urSP(2g) is generated by

$\{$ $(\begin{array}{ll}E_{g} S_{0}0 E_{g}\end{array})$ , $(\begin{array}{ll}U_{i} 00 (U_{j},)^{-1}\end{array})$

$J$ $were$ $i=1,2,3\}$ .

$\square$

Suzuki [5] introduced elements $\rho$ (cyclic translation of handles), $\omega_{1}$ (twisting a
knob), P12 (interchanging two knobs), and $\theta_{12}$ (sliding) of $7t_{g}$ . In [5], their acions on

the fundamental group of $\Sigma_{g}$ were listed. With using this list, we show

$\mu(C_{1})=(\begin{array}{ll}E_{g} S_{0}0 E_{g}\end{array})$ , $\mu(\rho)=(\begin{array}{ll}U_{1} 00 (U_{1}’)^{-1}\end{array})$ ,

$\mu(\rho_{12}\theta_{12}\rho_{12}^{-1})=(\begin{array}{ll}U_{2} 00 (U_{2}’)^{-1}\end{array})$ , $\mu(\omega_{1})=(\begin{array}{ll}U_{3} 00 (U_{3}’)^{-1}\end{array})$ .

The above observation shows that $ur\mathrm{S}\mathrm{p}(2g)\subset\mu(\mathcal{H}_{g})$ .

3. $\mathrm{p}_{\mathrm{R}\mathrm{O}\mathrm{O}\mathrm{F}}$ OF THEOREM 1.2

We denote the kernel of $\mu$ by $\mathrm{I}_{g}$ and call this the Torelli group. By Theorem 1.1,

we can show that $\mathcal{H}\mathcal{H}_{g}$ is generated by $\mathcal{H}_{g}\cup \mathrm{I}_{g}$ . For $g\geq 3$ , we find finite subsets $S$

of I9 such that $\mathcal{H}_{g}\cup S$ generates $\mathcal{H}\mathcal{H}_{g}$ . Johnson [3] showed that, when $g$ is large
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FIGURE 7
than or equal to 3, $\mathrm{I}_{g}$ is finitely generated. We review his result. We orient and

call simple closed curves as is indicated in Figure 2, and call $(c_{1}, c_{2}, \ldots, c_{2g+1})$ and
$(\mathrm{C}\beta, C\mathit{5}, \ldots, c_{2g+1})$ as chains. For oriented simple closed curves $d$ and $e$ which mutu-

ally intersect in one point, we construct an oriented simple closed curve $d+e$ from
$d\cup e$ as follows: choose adisk neighborhood of the intersection point and in it make

areplacement as indicated in Figure 7. For aconsecutive subset $\{\mathrm{q}., c_{i+1}, \ldots, cj\}$

of achain, let $c_{i}+\cdots+\mathrm{C}j$ be the oriented simple closed curve constructed by re-
peated applications of the above operations. Let $(i_{1}, \ldots, i_{\mathrm{r}+1})$ be asubsequence of
$(1, 2, \ldots, 2g+1)$ (Resp. ( $\beta$ , 5, $\ldots$ , $2g+1$)). We construct the union of circles $\mathrm{C}$ $=$

$c_{\dot{*}1}+\cdots+c_{i_{2}-1}\cup c_{\dot{1}2}+\cdots+c_{i_{3}-1}\cup\cdots\cup c_{i_{r}}+\cdots+C_{\mathrm{r}+1},-1$. If $r$ is odd, the regular

neighborhood of $\mathrm{C}$ is an oriented compact surface with 2boundary components. Let
$\phi$ be the element of $\mathcal{M}_{g}$ defined as the composition of the positive Dehn twist along

the boundary curve to the left of $\mathrm{C}$ and the negative Dehn twist along the boundary

curve to the right of C. Then, $\phi$ is an element of $\mathrm{I}_{g}$ . We denote $\phi$ by $[i_{1}, \ldots, i_{f+1}]$ ,

and call this the odd subchain map of $(c_{1}, c_{2}, \ldots, c_{2g+1})$ (Resp. ( $\mathrm{C}\beta$ , $c_{5}$ , $\ldots$ , $c_{2g+1}$ )).

Johnson [3] showed the following theorem:

Theorem 3.1. [3, Main Theorem] For $g\geq 3$ , the odd subchain maps of the two

chains $(c_{1}, c_{2}, \ldots , c_{2g+1})$ and $(C\beta, C\mathit{5}, \ldots, c_{2g+1})$ generate $\mathrm{I}_{g}$ . $\square$

By taking conjugations of odd subchain maps by elements of $\mathcal{H}_{g}$ and apPlying the

following theorem by Takahashi [6], we show Theorem 1.2.

Theorem 3.2. [6] $\mathcal{H}_{g}$ is generated by $C_{1_{f}}C_{2}C_{1}^{2}C_{2}$ , $C_{2}C_{1}C_{3}C_{2}$ , $C_{2}|.C_{2:-1}B_{2\dot{l}}C_{2:}$ ,

$C_{2:}C_{2:+1}B_{2:}C_{2i}(2\leq i\leq g-1)$ , $C_{2g}C_{2g-1}C_{2g+1}C_{2g}$ . $\square$
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