Behavior of solutions for a supercritical semilinear heat equation

Eiji Yanagida

Mathematical Institute, Tohoku University Sendai 980-8578, Japan yanagida@math.tohoku.ac.jp

This article is based on joint papers [3, 4] with P. Poláčik (University of Minnesota).

Consider the Cauchy problem

(E)
$$\begin{cases} u_t = \Delta u + |u|^{p-1}u, & x \in \mathbf{R}^N, \ t > 0, \\ u(x,0) = u_0(x), & x \in \mathbf{R}^N, \end{cases}$$

where p > 1. It is known that for the Sobolev exponent

$$p_{\mathcal{S}} = \left\{ egin{array}{ll} rac{N+2}{N-2} & ext{if } N > 2, \ & & & & ext{if } N \leq 2, \end{array}
ight.$$

(E) has a one-parameter family of positive radial steady states, i.e., solutions of

$$\Delta \varphi + \varphi^p = 0$$
 on \mathbf{R}^N ,

if and only if $p \ge p_S$. We denote the solution by φ_{α} , $\alpha > 0$, where $\varphi_{\alpha}(0) = \alpha$. Then φ_{α} is strictly decreasing in |x| and satisfies $\varphi(|x|) \to 0$ as $|x| \to \infty$. We extend the family by setting

$$\varphi_{\alpha} = -\varphi_{-\alpha}$$
 for $\alpha < 0$ and $\varphi_0 \equiv 0$.

In this article, the following critical value of p is important:

$$p_c = \left\{ egin{array}{ll} rac{(N-2)^2 - 4N + 8\sqrt{N-1}}{(N-2)(N-10)} & ext{if } N > 10, \\ \infty & ext{if } N \leq 10. \end{array}
ight.$$

Gui, Ni and Wang [1, 2] have exposed $p=p_c$ as the exponent where a change in stability properties of the positive steady states occurs. While for $p < p_c$ all positive φ_{α} are unstable in "any reasonable sense", for $p \geq p_c$ they are stable under perturbations in some weighted L^{∞} spaces. These stability properties essentially come from the fact that φ_{α} is strictly increasing in α for each x. Furthermore, for each x one has

$$\lim_{lpha o 0}arphi_lpha(x)=0, \qquad \lim_{lpha o \infty}arphi_lpha(x)=arphi_\infty(x),$$

where

$$arphi_\infty(x)=L|x|^{-2/(p-1)} \quad ext{ with } L=\left\{rac{2}{p-1}\left(N-2-rac{2}{p-1}
ight)
ight\}^{1/(p-1)}.$$

In the present study, we investigate solutions of (E) from a global point of view, focusing exclusively on the case $p \geq p_c$ (thus assuming $N \geq 11$). Building on the results of Gui-Ni-Wang, we first extend their local stability results to global attractivity properties of steady states. Let φ_{α} be a steady state and consider an initial function u_0 given by

$$u_0 = \varphi_{\alpha} + v_0.$$

Here v_0 is a (not necessarily small or radial) perturbation that we assume to be continuous. Then for a positive constant

$$\lambda_0 = \lambda_0(N,p) := rac{N-2-\sqrt{(N-2-2m)^2-8(N-2-m)}}{2}, \quad m = rac{2}{p-1},$$

the following theorem holds.

Theorem 1 ([3]) Let $p \ge p_c$. Assume v_0 satisfies

$$-\varphi_{\infty} \le \varphi_{\alpha} + v_0 \le \varphi_{\infty}$$

and

$$\lim_{|x|\to\infty}|x|^{\lambda_0}|v_0(x)|=0.$$

Then the solution u of (E) exists globally in time and satisfies

$$||u(\cdot,t)-\varphi_{\alpha}||_{L^{\infty}(\mathbf{R}^{N})}\to 0 \text{ as } t\to\infty.$$

This result can be extended to more general time-dependent (not necessarily positive) solutions that are between $-\varphi_{\infty}$ and φ_{∞} .

The next result gives a sharp condition on solutions to decay to 0 as $t \to \infty$.

Theorem 2 ([3]) Assume
$$u_0 \in C_0(\mathbf{R}^N)$$
 satisfies
$$-\varphi_\infty(x) \le u_0(x) \le +\varphi_\infty(x) \quad \text{in } R^N, \\ \lim_{|x| \to \infty} |x|^{\lambda} \left\{ \varphi_\infty(x) - u_0(x) \right\} = \infty, \\ \lim_{|x| \to \infty} |x|^{\lambda} \left\{ \varphi_\infty(x) + u_0(x) \right\} = \infty.$$

Then

$$||u(\cdot,t,u_0)||_{L^{\infty}(\mathbf{R}^N)} \to 0 \quad as \ t \to \infty.$$

By using Theorem 1 and the continuity of solutions with respect to initial data, we can show the existence of global solutions that behaves in a rather complicated way.

Theorem 3 ([4]) Let $p \geq p_c$. For any (finite or infinite) sequence $\{(\alpha_i, \xi_i, \varepsilon_i)\}$, where $\alpha_i \in \mathbb{R}$, $\xi_i \in \mathbb{R}^N$ and $\varepsilon_i > 0$, there exist initial data u_0 such that the solution of (E) satisfies the following properties:

- (i) u(x,t) exists globally in time and satisfies $u \to 0$ as $x \to \infty$ for each t > 0.
- (ii) There exists a sequence of positive numbers $\{t_i\}$ such that

$$||u(\cdot,t_i)-\varphi_{\alpha_i}(\cdot-\xi_i)||_{L^{\infty}(\mathbf{R}^N)}<\varepsilon_i.$$

(iii) There exists a sequence of positive numbers $\{\hat{t}_i\}$ with $\hat{t}_i \in (t_i, t_{i+1})$ such that

$$||u(\cdot,\hat{t}_i)||_{L^{\infty}(\mathbf{R}^N)} < \varepsilon_i.$$

The solutions in the above theorems have at most one bumps at each time. In the next theorem, we show the existence of solutions with multiple bumps.

Theorem 4 ([4]) Let $p \ge p_c$. For any (finite or infinite) sequence $\{\{\alpha_i^{(j)}\}_{j=1}^{n_i}\}$, and $\{\varepsilon_i\}$, where n_i is an arbitrary natural number, $\alpha_i^{(j)} \in \mathbf{R}$, and $\varepsilon_i > 0$, there exist initial data u_0 such that the solution of (E) satisfies the following properties:

- (i) u(x,t) exists globally in time and satisfies $u \to 0$ as $x \to \infty$ for each t > 0.
- (ii) There exists a sequence $\{\{\xi_i^{(j)}\}_{j=1}^{n_i}\}\in\mathbf{R}^N$ and a sequence of positive numbers $\{t_i\}$ such that

$$\left\|u(\cdot,t_i)-\sum_{j=1}^{n_i}\varphi_{\alpha_i^{(j)}}(\cdot-\xi_i^{(j)})\right\|_{L^{\infty}(\mathbb{R}^N)}<\varepsilon_i.$$

(iii) There exists a sequence of positive numbers $\{\hat{t}_i\}$ with $\hat{t}_i \in (t_i, t_{i+1})$ such that

$$||u(\cdot,\hat{t}_i)||_{L^{\infty}(\mathbb{R}^N)} < \varepsilon_i.$$

References

- C. Gui, W.-M. Ni, and X. Wang. On the stability and instability of positive steady states of a semilinear heat equation in Rⁿ. Comm. Pure Appl. Math., 45:1153-1181, 1992.
- [2] C. Gui, W.-M. Ni, and X. Wang. Further study on a nonlinear heat equation. J. Differential Equations, 169:588-613, 2001.
- [3] P. Poláčik and E. Yanagida On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Annal, to appear.
- [4] P. Poláčik and E. Yanagida, in preparation.