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Abstract, This paper is devoted to some existence, stability results, and qualitative
properties of global solutions of some semilinear elliptic or parabolic equations in the
whole space $R^{N}$ with conical conditions at infinity. Related free boundary problems are
also studied. Applications to models in combustion theory and populations dynamics are
given.

1Conical-shaped fronts in acombustion model
This section is concerned with conical-shape travelling fronts for reaction-diffusion
equations which arise in some combustion models. One especially gives amathemat-
ical analysis of the shape of the premixed Bunsen flames. After ashort introduction
on the mathematical modelling, one gives some existence, uniqueness and stability
results for entire solutions of some semilinear elliptic or parabolic equations in the
whole space. One also deals with asingular limit leading to some free boundary
problems.

Bunsen flames can be divided into two parts :adiffision flame and apremixed
flame (see Figure 1, and [21], [22], [38], [42], [43], [58], [59], [66]). Here we have
chosen to deal with premixed flames, which are themselves divided into two zones:
afresh mixture (fuel and oxidant) and, above, ahot zone made of the burnt gases.
For the sake of simplicity, we assume that asingle global chemical reaction $\mathrm{f}\mathrm{i}_{\mathrm{J}}\mathrm{e}l+$

oxidant $arrow p\mathrm{r}odu\mathrm{c}ts$ takes place in the mixture.
The level sets of the temperature have aconical shape with acurved tip and,

fix from its axis of symmetry, the flame is asymptotically almost planar. Let us
assume that the flame is stabilized and stationary in an upward flow with auniform
intensity $c$. This uniformity assumption is reasonable at least fix from the burner
rim. In the classical framework of the thermodiffusive model ([6], [21], [46]) with
unit Lewis number, the adimensionalized temperature field $u(x, y)$ , which can be
assumed to be defined in the whole space $R^{N}=\{z =(x, y)\in R^{N-1}\mathrm{x}R\}$ because
of the invariance of the shape of the flame with respect to the size of the Bunsen
burner satisfies the following reaction-diffusion equation :

Au $-c \frac{\partial u}{\partial y}+f(u)=0$ , $0\leq u\leq 1$ in $R^{N}$ . (1.1)
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Figure 1: Bunsen flames, premixed flame

Let $\alpha>0$ be the angle of the flame (see Figure 1). Asymptotic conical conditions
like

$\lim_{y0arrow-\infty}\sup_{\nu\leq w-|x|\cot\alpha}u(x, y)=0$
, $u’ arrow.+\infty \mathrm{h}\mathrm{m}\inf_{v\geq w-|x|\infty \mathrm{t}a}u(x,y)=1$ (1.2)

are imposed at infinity (other asymptotic conditions have also been considered in
[12] and [32] $)$ . The normalized temperature $u$ typically ranges in $[0, 1]$ , the region
where $u$ is close to 0corresponds to the fresh mixture and the region where $u$ is
close to 1corresponds to the burnt gases. In practice, the speed $c$ of the flow at
the exit of the Bunsen burner is given and it determines the angle $\alpha$ of the flame.
We assume here that the angle $\alpha$ is given and the speed $c$ is unknown. We shall see
that these two formulations are equivalent. The nonlinear reaction term $f(u)$ is of
the “ignition temperatur\"e’’ type, namely $f$ is assumed to be Lipschitz-continuous in
$[0, 1]$ and

$\{$

$\exists\theta\in(0,1)$ such that $f\equiv 0$ on $[0,$ $\ ]$ \cup {1},
$f>0$ on $(\theta, 1)$ and $\mathrm{f}(\mathrm{u})<0$ . (1.3)

Such aprofile can be derived from the Arrhenius kinetics and the law of mass action.
The real $\theta$ is called an ignition temperature, below which no reaction happens. For
mathematical convenience, $f$ is assumed to be extended by 0outside the interval
$[0, 1]$ ,

One points out that the solutions $u(x, y)$ of (1.1) can also be viewed as traveling
fronts of the type $v(t, x, y)=u(x, y+\mathrm{c}t)$ moving downwards with speed $c$ in a
quiescent medium. The function $v$ solves the parabolic reaction-diffusion equation
$\partial_{t}v=\Delta v+f(v)$ .

In dimension 1, problem (1.1-1.2) reduces to the equation

$u’-\mathrm{c}u’+f(u)=0$ , $u(-\infty)=0$ , $u(+\infty)=1$ . (1.4)

This problem is known to have aunique solution $(\mathrm{q}, u_{0})$ , the function $u_{0}$ is increas-
ing and unique up to translation, and the speed $c_{0}$ is positive ([2], [5], [9], [39]).
These results can be obtained by ashooting method or astudy in the phase plane.
The above existence, uniqueness and monotonicity results have been generalized by
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Berestycki, Larrouturou, Lions [7] and Berestycki, Nirenberg [11] in the multidimen-
sional case of astraight infinite cylinder $\Sigma=\omega$ $\cross It$ $=$ {z $=(x,$y), x $\in\omega,$y $\in R\}$ ,
for equations of the type

$\{$

$\Delta u-(c+\beta(x))\partial_{y}u+f(u)$ $=0$ in $1=\omega$ $\mathrm{x}$ ff
$\partial_{\nu}u=0$ on $\partial\Sigma$

$u(\cdot, -\infty)=0$ , $u(\cdot, +\infty)$ $=$ $1$ ,
(1.5)

where $\beta$ is agiven continuous function defined on the bounded and smooth section
$\overline{\omega}$ of the cylinder, and dvu denotes the partial derivative of $u$ with respect to the
outward unit normal $\nu$ on C71. Under the above conditions, there exists aunique
solution $(c, u)$ of (1.5), and the function $u=u(x,y)$ is increasing in $y$ and unique
up to translation in $y$ . Variational formulas for the unique speed exist in the one-
dimensional case [29] and in the multidimensional case [30], [37].

Recently, generalizations of the above results have been obtained for pulsating
fronts in periodic domains and media with periodic coefficients by Berestycki and
Hamel [4] and Xin [63], [64].

Let us now come back to problem (1.1) with conical conditions (1.2). Note that,
although the underlying flow is here uniform, the solutions are nevertheless non-
planar, because of the conical conditions (1.2) at infinity. Formal analyses had been
done, especially using asymptotic expansions in some singular limits. We here want
to establish some existence or uniqueness results for this problem (1.1-1.2) by using
PDE methods. We especially want to show the relationship between the speed $c$

of the outgoing flow and the angle $\alpha$ of the flame. In this perspective, the results
stated below are the first rigorous analysis of the conical shape of premixed Bunsen
flames.

The mathematical difficulties come on the one hand from the fact that the prob-
lem is set in the whole space $R^{N}$ and on the other hand from the non-standard
conical conditions at infinity. These conditions are rather weak and do not impose
anything as far as the behavior of the function $u$ in the directions making an angle $\alpha$

with respect to the unit $\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}-e_{N}=(0, \cdots, 0, -1)$ is concerned. Note that these
conditions are very different from the uniform conditions $u(z)arrow 0$ as $|z|$ $arrow\infty$

which have often been considered for such nonlinear elliptic equations.
In the next subsections, the main results on problem (1.1-1.2) and on related

free boundary problems are stated. These results are detailed in some papers by
Bonnet, Hamel, Monneau and Roquejoffre in [12], [32], [33] and [34].

1.1 Existence, uniqueness and qualitative properties
In the sequel, $e_{N}=$ $(0, \cdots, 0,1)$ is the upward unit vector and, for any vector
$e$ and any angle $\varphi\in(0, \pi)$ , $\mathrm{C}(e, \varphi)$ denotes the open half-cone directed by $e$ :
$C(e, \varphi)=\{k \in R^{N}, k\cdot e>||k||||e||\cos\varphi\}$ .

Let us first deal with the case $N=2$, which corresponds to Bunsen burners with
thin elongated rectangular outlet :
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Theorem 1.1 ([12], [32], [34]) For each $\alpha\in(0, \pi/2]$ , there exists a unique solution
(c, u) of (1.1-1.2).1 The function u is unique up to translation, and the speed c is
uniquely determined by c $=\mathrm{q}$) $/\sin\alpha$ , where $c_{0}$ is the unique planar speed for (1.4).

Therefore, $c\geq c_{0}$ and the bigger the speed $c$ is, the smaller the angle $\alpha$ is and
the sharper the flame is. The formula for $c$ is pertinent since it can be observed in
practice that an increase of the outgoing flow $c$ makes the curvature of the flame
tip increase (see [21], [42], [59]). The case $\alpha=\pi/2$ corresponds to the planar fronts
$u_{0}(y)$ (uP to translation) with speed $c_{0}$ .

Moreover, $0<u<1$ in $R^{2}$ , $u$ is decreasing in any direction of $C$ (-e2, $\alpha$ ) and, up
to translation, $u$ is symmetric with respect to the variable$. Lastly, for any sequence
$x_{n}arrow\pm\infty$ , the functions $u_{n}(x,y)=u(x+x_{n},y-|x_{n}|\cot\alpha)$ locally converge to a
translate of the planar front $u_{0}(y\sin\alpha\pm x\cos\alpha)$ as $x_{n}arrow\pm\infty$ : in other words,
$u$ is asymptotically planar along the directions ($\pm\sin\alpha$ ,-coe $\alpha$ ) far away from the
origin. If the medium were quiescent, the flame front would move with speed $c$

downwards and with speed $c_{0}$ in the directions which are asymptotically orthogonal
to the level sets of the temperature (see Figure 1); the speed $c_{0}$ is then nothing else
than the projection of the speed $c$ on the directions $(\pm\cos\alpha, -\sin\alpha)$ .

The existence result in Theorem 1.1 can be proved by solving equivalent problems
in bounded rectangles such that the ratio between the $x$-length and the y-length
approaches $\tan\alpha$ as the size of the rectangles goes to infinity. One imposes Dirichlet
conditions 0and 1respectively on the lower and upper sides, and oblique Neumann
boundary conditions on the vertical sides. By proving some apriori estimates, one
passes to the limit in the whole plane $R^{2}$ . Furthermore, by using asliding method
similar to the one developped by Berestycki and Nirenberg [10], one can prove that
the solutions are decreasing in the directions of the cone $\mathrm{C}(-e_{2}, \alpha)$ . The difficulty
is to show the asymptotic conditions at infinity of the type (1.2) and to prove that
the level sets of the limit function $u$ are asymptotically planar far away from the
axis of symmetry $\{x=0\}$ . One especially makes several uses of the sliding method
in several orthogonal directions. One also uses some results on some free boundary
problems described below (see [34]).

The following theorem is anon-existence result for angles $\alpha>\pi/2$ in any di-
mension $N\geq 2$ .
Theorem 1.2 ([31], [32]) In any dimension $N\geq 2$ , there is no solution $(c, u)$ of
(1.1-1.2) as soon as $\alpha>\pi/2$ .

Thus, despite its simplicity, the mathematical model which is used here to $\mathrm{d}\triangleright$

scribe premixed Bunsen flames is robust enough and physically meaningful:there
cannot be any flame whose tip points downwards if the flow is going upwards. Notice
that more general non-existence results with $\alpha>\pi/2$ hold under slightly weaker
conical conditions (see [32]).

But the drawback of the strong conditions (1.2) is that there is no solution of
(1.1-1.2) in dimension $N\geq 3$ , apart from the planar fronts $u_{0}(y)$ with $\alpha=\pi/2$ (see

$\mathrm{l}\mathrm{U}\mathrm{n}\mathrm{i}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{a}\mathrm{e}8$ was proved in [32]. Existence was proved in [12] with conditions which are slightly
weaker than (1.2), and in [34] with conditions (1.2)
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[32] $)$ . To circumvent this fact, new weaker conditions can be introduced and are
described below. Actually, instead of imposing the conditions (1.2), one can just
say that the level sets of the temperature have an asymptotic direction with angle $\alpha$

with respect $\mathrm{t}\mathrm{o}-e_{N}$ at infinity, and that the temperature is close to 0far below any
of its level sets and close to 1far above. More generally speaking, in any dimension
$N$ , one can replace conditions (1.2) with the following ones:

$\{$

$y0 arrow.-\infty\lim_{\mathrm{h}\mathrm{m}}\sup_{\Omega^{-(\nu 0)}}u=0\inf u=1$

$\inftyarrow+\infty\Omega+(y\mathrm{o})$

(1.6)

where, for any $y_{0}\in R$, $\Omega^{+}(y_{0})=\{y>y_{0}+\phi(x)\}$ , $\Omega^{-}(y_{0})=\{y<y_{0}+\phi(x)\}$ and
$\phi(x)$ is anon-specified, globally Lipschitz function, of class $C^{1}$ for large $|x|$ , and such
that

$\lim_{|x|arrow+\infty}(\nabla\phi(x)+\cot\alpha\frac{x}{|x|})=0$. (1.7)

Conditions (1.2) are aparticular case of (1.6) and correspond to the assumption
$\sup_{x\in R^{N-1}}|\phi(x)+|x|\cot\alpha|<+\infty$ . But in (1.6), the asymptotic behavior of the
graph of $\phi$ at infinity is not known (this graph represents azone where the tempera-
ture is neither very cold nor very hot). However, the following qualitative properties
still hold for (1.6) :

Theorem 1.3 ([31], [32]) In any dimension $N\geq 2$ , if $(c,u)$ solves (1.1) with can-
ditions (L6-L 7), then $\alpha\leq\pi/2$ , $c=c_{0}/\sin\alpha$ and $u$ is decreasing with respect to any
direction of the cone $C(-e_{N}, \alpha)$ . As a consequence, if $\alpha=\pi/2$ , then $u$ is planar, it
only depends on the variable $y$ and it is unique up to translation.

The proofs of Theorems 1.2 and 1.3 make an intensive use of sliding methods in
various directions, as well as some versions of the maximum principle in $R^{N}$ with
conical conditions at infinity.

One guesses that these conditions (1.6) are weak enough to guarantee the ex-
istence of solutions $(c,u)$ for angles $\alpha<\pi/2$ , in any dimension $N\geq 3$ . However,
this question of the existence is still open, even for axisymmetric functions $u(|x|, y)$ .
Other open problems concern some models of premixed Bunsen flames with non
unit Lewis number (see [58], [59]), with heat losses or with nonconstant density.

1.2 Related free boundary and Serrin type problems

The above subsections dealt with smooth solutions of semilinear elliptic equations
(1.1). This subsection is concerned with the s0-called limit of high activation en-
ergies. In this limit, the source term $f(u)$ vanishes as soon as the temperature is
below that of the burnt gases and the zone where the chemical reaction takes place
becomes infinitely thin. Below this flame, the gases are not warm enough and the
reaction cannot happen, and above the flame, the gases are burnt and the reaction
does not happen either because at least one of the reactants has azero concentration.

More precisely, the following theorem holds :
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Theorem 1.4 ([33]) Let f satisfy (1.8). Let N $=2$ and let $\alpha\in(0, \pi/2]$ be given.
The solutions $(c_{\epsilon}, u_{\epsilon})$ of (1.1-1.2) with $f_{\epsilon}(s)=\epsilon^{-1}f(1-(1-s)/\epsilon)$ converge (locally
unifomly) to a sol ution (c,$u)=(c^{\alpha}, u^{\alpha})$ of

$\{$

$\Delta u-c\partial_{y}u=0$ in $\Omega=\{0<u<1\}\subset R^{2}$ , $u=1$ in $R^{2}\backslash \Omega$

$\partial_{\nu}u=c_{0}$ on $\Gamma:=\partial\Omega$ and $\mathrm{u}$ is continuous across $\Gamma$

$d(z, \Gamma).arrow+\infty \mathrm{h}\mathrm{m}\sup$

,
$z\in\Omega u(z)=0$

(1.8)

$very\mathrm{q}$ $=\sqrt{2\int_{0}^{1}f}>0$ , $c^{a}=c_{0}/\sin\alpha$ , $d(z, \Gamma)$ denotes the distance of a point
$z$ $\in R^{2}$ to $\Gamma$ , and $\partial_{\nu}u^{\alpha}$ denotes the normal derivative on $\Gamma$ of the restriction of the
function $u^{\alpha}$ to $\overline{\Omega}$ .

The curve $\Gamma$ represents the infinitely thin flame front, and it is an analytic conical
graph $\{y=\phi(x)\}$ such that $\phi(x)+|x|\cot\alphaarrow t^{\pm}\in R$ as $xarrow \mathrm{f}\circ 0$ . Furthermore,
$\Omega=\{y<\phi(x)\}$ , $u$ is globally Lipschitz-continuous in $R^{2}$ and its restriction to $\overline{\Omega}$

is analytic. The condition $\partial_{\nu}u^{\alpha}=\mathrm{c}_{\mathrm{g}}$ on $\Gamma$ is amemory of this reaction term and
simply means that the normal burning velocity is constant along the flame front
(see [3], [9], [15], [16], [17], [18], [19], [21], [22], [23], [65] for other occurences of this
type of jump condition in related problems).

This limiting process which consists in considering such functions $f_{e}$ comes back
to [67] in dimension $N=1$ , see also [3] for problems in infinite cylinders with
heterogeneous velocity fields.

Theorem 1.4 especially gives asolution to the flame tip problem, which has been
set by Buckmaster and Ludford [22]. Problem (1.8) had been studied in various
asymptotic formal limits :the case of very sharp flames $\alphaarrow 0^{+}$ with Lewis number
close to 1has been considered by Budcmaster and Ludford (this limit is reduced to a
parabolic free boundary problem after ablow-down in the direction $y[19]$ , [21], [22] $)$ .
Multiscale asymptotic expansions have been carried out by Sivashinsky, leading to
different shapes of the flame ffonts according to the position of the Lewis number
with respect to 1[59] (see also [42], [58] for the three dimensional case). Another
approach has been used by Michelson [47], in the case of aunit Lewis number;
namely, Michelson has used the fourth-0rder KuramotO-Sivashinsky equation ([14],
[28], [60], [61] $)$ for the description of the graph of the flame front and he has obtained
the existence and the uniqueness of such graphs for angles $\alpha$ close to 0(see also [48]
for th $\mathrm{e}$ dimensional results).

Conversely, problem (1.8) can be viewed as an overdetermined Serrin type prob-
lem, for which the domain itself $\Omega$ $=\{u<1\}$ is unknown. Problems of that type
have first been considered by Serrin [57] in bounded domains for equations of the
type $\Delta u+f(u)=0$ , which are invariant by rotation. For such problems it has been
proved that, under some conditions on $f$ and $u$ , the domain $\Omega$ is necessarily aball
(see also [1], [36], [51] for similar problems in other types of geometries).

For problem (1.8), one cannot expect any radial symmetry because of the first-
other term $c\partial_{y}u$ . However, under some smoothness assumptions for $\Gamma$ , one can prove
that, besides the trivial planar solutions, the solutions given in Theorem 1.4 are the
only solutions of (1.8) :
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Theorem 1.5 ([33]) Let $(c, u, \Omega)$ be a solution of (1.8) such that both $\Omega$ and $R^{2}\backslash \Omega$

are not empty, and $R^{2}\backslash \Omega$ has no bounded connected components. Assume that the
restriction of $u$ to $\overline{\Omega}$ is $C^{1}$ , and that the free boundar$ry\Gamma=\mathrm{a}$ is globally $C^{1,1}$ with
bounded curvature. Then, even if it means changing $(c, u, \Omega)$ into $(-c, u(-x, -y), -\Omega)_{l}$

one has $c\geq \mathrm{c}_{0}$ and, if $\alpha\in(0, \pi/2]$ denotes the only solution of $c=c_{0}/\sin\alpha$ , the
following two and only two cases occur up to translation and symmetry in $x$ : -

either $\Omega$ is the half-space $\{y<x\cot\alpha\}$ and $u(x, y)=U_{0}(y\sin\alpha-x\cos\alpha)$ , where
$U_{0}(s)=e^{c_{0^{S}}}$ for $s\leq 0$ and $U_{0}(s)=1$ for $s\geq 0$ , $-oru=u^{\alpha}$ is the conical solution
of (1.8) given in Theorem 1.4 above.

It follows from Theorems 1.4 and 1.5 that the free boundary problem (1.8),
together with the additional assumption that $\Gamma$ is conical-shaped, is well-posed, in
dimension $N=2$ , for any angle $\alpha\in(0,\pi/2]$ , whereas no solution exists whenever
$\alpha$ is larger than $\pi/2$ or whenever $c$ is smaller than $c_{0}$ , as for the case with asource
term $f(u)$ in Theorem 1.2.

Theorem 1.5 is proved in [33] in several steps. The first step consists in proving
that, up to achange of $(c, u, \Omega)$ into $(-c,u(-x, -\mathrm{y}), -\Omega)$ , the domain $\Omega$ is Lipschitz
sub graph. The second step is based on amethod of rotation of the domain up to a
critical angle, for which the function in the rotated frame is asymptotically planar
in avertical direction. One also uses various versions of the sliding method as well
as comparison principles and monotonicity results for solutions of elliptic equations
in sub- raphs.

1.3 Stability results
This subsection deals with the global stability of the solutions $u$ of problem (1.1-1.2)
in dimension $N=2$ , with angles $\alpha<\pi/2$ . The existence of such solutions is given in
Theorem 1.1. Another way of formulating this question of the stability is to ask the
question of the convergence to the travelling fronts $u(x, y+ct)$ , or to some translates
of them, for the solutions $v(t, x, y)$ of the Cauchy problem

$\{$

$v_{t}=\Delta v+f(v)$ , $t>0$ , $(x,y)\in R^{2}$ , (1.9)
$v(0,x,y)=v_{0}(x, y)$ given, $0\leq v_{0}\leq 1$

where $v_{0}$ is close, in some sense to be defined later, to atranslate $\tau_{a,b}u(x,y)=$

$u(x+a, y+b)$ of asolution $u$ of (1.1-1.2).
There are many papers dealing with the stability of the travelling fronts for one-

dimensional equations of the type (1.4) with various types of nonlinearities $f$ (see e.g.
[2], [13], [26], [39], [55], [56] $)$ , or for wrinkled travelling fronts of multidimensional
equations in infinite cylinders (see [8], [44], [52], [53], [54]), or lastly for planar fronts
in the whole space (see [41], [62]). However, nothing seems to be known about
the stability of the solutions of the tw0-dimensional problem (1.1) under conical
conditions of the type (1.2), for $\alpha<\pi/2$ . As already emphasized, the travelling
fronts $u(x, y+ct)$ are special time global solutions of (1.9) satisfying, at each time,
the conical conditions (1.2) in the frame moving downwards with speed $c=c_{0}/\sin\alpha$ .
Therefore, the question of the global stability of these travelling waves and the
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question of the asymptotic behaviour for large time of the solutions of the Cauchy
problem (1.9) starts from the study of the global attractor of equation (1.9) under
conical conditions of the type (1.2) in aframe moving downwards with speed $c$ .

The next theorem states that the travelling waves are the only time-global solu-
tions of (1.9) satisfying such conical conditions.

Theorem 1.6 ([34]) Let $f$ satisfy (1.3) and let $\alpha\in(0, \pi/2)$ . Let $0\leq v(t, x, y)\leq 1$

solve the equation

$v_{t}=\Delta v+f(v)$ for all $(x,y)\in R^{2}$ and $t\in R$ (1.10)

and assume that

$\{$

$\lim_{y0arrow-\infty t\in R},\sup_{\nu\leq\nu 0-|x|\cot a}v(t, x, y-ct)=0$

$\lim$ inf $v(t, x, y-ct)=1$ .
$warrow+\infty$ ten, $y\geq y\mathit{0}-|x|\infty \mathrm{t}\alpha$

(1.11)

Then there gists a solution $u$ of (Ll-1.2) such that $v(t, x, y)=u(x, y+ct)$ for
all $(t, x, y)\in R$ $\mathrm{x}R^{2}$ .

Since the solutions $u$ of (1.1-1.2) are such that $u(x, y)arrow \mathrm{O}$ (resp. $arrow 1$ ) uniformly
as $y+|x|\cot\alphaarrow-\infty$ (resp. $y+|x|\cot\alphaarrow+\infty$), it follows that, if $0\leq v(t, x, y)\leq 1$

is asolution of (1.10) such that $\tau_{a_{1},b_{1}}u(x, y+ct)\leq v(t, x, y)\leq\tau_{a_{2},b_{2}}u(x, y+d)$ for
all $(t, x, y)\in R^{3}$ , for some solution $u$ of (1.1-1.2) and for sme couples $(a_{1}, b_{1})$ and
(a2, $b_{2}$ ) $\in R^{2}$ , then the conclusion of Theorem 1.6 holds.

The idea for proving Theorem 1.6 is based on asliding method (see [10]) in
the variable $t$ and some versions of the maximum principle for parabolic equations
in unbounded domains. Similar methods were used in [54] and [4] to get some
monotonicity results for the solutions of some semilinear parabolic equations in
various domains.

Theorem 1.6 especially implies the following

Theorem 1.7 ([34]) Let $u$ be a solution of (1.1-1.2). Let $v(t,x, y)$ be a solution of
the Cauchy problem (J. $g$) such that

$\{$
$v_{0}.\leq u\mathrm{h}\mathrm{m}$

in
$R^{2}\mathrm{i}\mathrm{n}\mathrm{f}$

$v_{0}(x, y)>\theta$ .
$\inftyarrow+\infty u\geq w-[x|\infty \mathrm{t}\alpha$

(1.12)

Then, for every sequence $t_{n}arrow+\infty$ , there exist a subsequence $t_{n’}arrow+\infty$ and
$(a, b)\in R^{2}$ such that

$v(t_{n’}+t, x,y-ct_{n’}-ct)arrow u(x+a, y+b)$ as $n’arrow+\infty$

locally unifomly in $(t, x, y)\in R^{3}$ .
Aconsequence of this result is that, if $v_{0}$ satisfies (1.12) and if $\omega(v_{0})$ is the $\mathrm{a}$;-limit

set of $v_{0}$ for the $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}rightarrow \mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}$ $S(t)$ given by (1.9), then $\mathrm{u}(\mathrm{v}\mathrm{o})$ is made up of travelling
waves. Condition (1.12) is especially satisfied when $v_{0}$ lies between two translates
of asolution $u$ of (1.1-1.2). But, even under condition (1.12), the $\omega$-limit set $\omega(v_{0})$

of $v_{0}$ may well be acontinuum, and one may ask for sufficient conditions for $\omega(v_{0})$

to be asingleton. This is the goal of Theorem 1.8 below
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Theorem 1.8 ([34]) Choose ce $\in(0, \pi/2)$ and let $f$ satisfy (1.3). Let $v(t, x, y)$ be
a solution of Cauchy problem (1.9) with initial datum $v_{0}$ unifomly continuous and
such that $0\leq v_{0}\leq 1$ . Assume the eistence of $\rho_{0}$ , $C_{0}>0$ and of a solution $u$

of ($L$ l-L2) such that $|v_{0}(x, y)-u(x, y)|\leq C_{0}e^{-\rho 0\sqrt{x^{2}+y^{2}}}$ in $R^{2}$ . Also assume that
there exists $(a, b)\in R^{2}$ such that $v_{0}\leq\tau_{a,b}u$ in $R^{2}$ .

Then $v(t, x, y-ct)$ converges to $u$ uniformly in $(x, y)$ and exponentially in $t$ , as
$tarrow+\infty$ .

Notice that Theorem 1.8 holds especially if $v_{0}$ is uniformly continuous and such
that $0\leq v_{0}\leq 1$ and if there exists asolution $u$ of (1.1-1.2) such that $v_{0}-u$ has
compact support.

Furthermore, Theorem 1.8 admits the following extension :

Theorem 1.9 ([34]) Let $\alpha\in(0,\pi/2)$ , and $f$ satisfy (1.3). Let $0\leq v(t,x, y)\leq 1$ be
a solution of the Cauchy problem $($1. $g)$ with $v_{0}$ bounded in $C^{1}(R^{2})$ and $0\leq v0\leq 1$ .
Assume that $\lim_{v\mathrm{o}arrow+\infty}\inf_{y\geq y0-|x|\cot\alpha}v_{0}>\theta$ and that there exists a solution $u$ of
(1.1-1.2) such that $v_{0}\leq u$ in $R^{2}$ . Also assume that for some $\beta 0>0$

$|\partial_{\mathrm{e}_{a}}v_{0}(x,y)|\leq Ce^{n(y\sin\alpha-x\mathrm{c}\mathrm{o}\mathrm{e}\alpha)}$ , $|\partial_{e_{\acute{\alpha}}}v_{0}(x,y)|\leq Ce^{\rho \mathrm{o}(y\epsilon \mathrm{i}\mathrm{n}\alpha+oe\varpi\alpha)}$

for all $(x, y)\in R^{2}$ , where $e_{\alpha}=(\sin\alpha, -\cos\alpha)$ and $e_{a}’=(-\sin\alpha, -\cos\alpha)$ .
Then the function $v(t, \cdot, \cdot-ct)$ converges $unifo\mathit{7}mly$ in $R^{2}$ , as $tarrow+\infty$ , to $a$

solution $u’$ of (1.1-1.2).

Remark 1.10 The convergence phenomenon is really governed by the behaviour of
the initial datum when the space variable becomes infinite along the directions $e_{\alpha}$

and $e_{\alpha}’$ . In that sense, the situation is similar to the KPP situation ;see [44]. It may
well happen that, if the initial datum $v_{0}$ has no limit in the $e_{\alpha}$ and $e_{\alpha}’$ directions, its
$\omega$-limit is made up of acontinuum of waves.

Let us mention here that similar stability results were obtained by Ninomiya
and Taniguchi [50] for curved fronts in singular limits for Allen-Cahn bistable $\Re \mathrm{u}\mathrm{a}-$

tions. Existence of smooth solutions of problem (1.1-1.2) with bistable nonlinearity
$f$ was obtained by Fife [25] for angles $\alpha<\pi/2$ close to $\pi/2$ . The approach in [50]
complements the one used in this paper because the fronts $\{y=\varphi(x)\}$ are viewed
as an interface in acurvature flow ;the function $\varphi(x)$ solves aspecific differential
equation and is proved to be stable with respect to perturbations. Other stability
results were also obtained by Michelson [49] for Bunsen fronts solving the Kuramotx
Sivashinsky equation, in some asymptotic regimes. Formal stability results in the
nearly equidiffusional case were also given in [45].

2Curved fronts for the Fisher-KPP equation

The previous section was concerned with conical-shaped fronts in reaction-diffusion
equations with combustion-type nonlinearities $f$ . We emphasized that conical fronts
also exist for bistable type nonlinearities, at least for angles $\alpha$ close to $\pi/2$ .
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This section deals with another class of nonlinearities f, s0-called of Fisher or
Kolmogorov-Petrovsky-Piskunov type ([27], [40]). Namely, one assumes that f is of
class $C^{2}([0,1])$ and satisfies :

$f(\mathrm{O})=f(1)=0$ , $f’(0)>0$ , $f’(1)<0$ , (2.1)$f(s)>0$ for any $0<s<1$ , $f$ is concave.

An example of such afunction $f$ is the quadratic nonlinearity $f(s)=s(1-s)$ . Such
profiles arise in models in population dynamics (see [2]).

It is well-known that the equation $v_{t}=\Delta v+f(v)$ has, in dimension $N\geq 2$ ,
an $N+1$-dimensional manifold of planar travelling waves, namely $v_{\nu,\mathrm{q}h}(x, t)=$

$\varphi_{\mathrm{c}}(x\cdot\nu +ct+h)$ where $\nu$ varies in the unit sphere $S^{N-1}$ of $R^{N}$ , $h$ varies in $R$ and
$c$ varies in [$c^{*},$ $+\infty$ [ with c’ $=2\sqrt{f’(0)}>0$ . In space dimension $N=1$ , there are
two 2-dimensional manifolds of travelling waves solutions: $v_{\mathrm{c},h}^{+}(x, t)=\varphi_{\mathrm{c}}(x+ct+h)$

and $v_{\mathrm{c},h}^{-}(x, t)=\varphi_{\mathrm{c}}(-x+d +h)([2], [13], [24], [29])$ . For any $c\geq c^{*}$ , the function
$\varphi_{c}$ satisfies

$\varphi_{\mathrm{c}}’-c\varphi_{\mathrm{c}}’+f(\varphi_{\mathrm{c}})=0$ in $R$ , $\varphi_{\mathrm{c}}(-\infty)=0$ and $\varphi_{\mathrm{c}}(+\infty)=1$ . (2.2)

The function $\varphi_{\mathrm{c}}$ is increasing and unique up to translation.
Many works have been devoted to the question of the behavior for large time

and the convergence to travelling waves for the solutions of the Cauchy problem for
$v_{t}=\Delta v+f(v)$ , especially in dimension 1, under awide class of initial conditions
(see e.g. Bramson [13]).

However, the question of the existence of non planar ffonts had been open since
recently. Theorem 1.1 above was about conical-shaped travelling ffonts for equation
(1.1) with combustion-type nonlinearities $f$ satisfying (1.3). Theorem 2.1 below
answers the same question, in dimension $N=2$ , with KPP type nonlinearities $f$ :

Theorem 2.1 ([35]) Let $f$ satisfy (2.1) and $N=2$ . Let $c>c^{*}$ , let $0<\alpha_{1}$ , $\alpha_{2}\leq$

$\pi/2$ , $c_{1}=c\sin\alpha_{1},$ $c_{2}=c\sin$ a2, and $\nu_{1}=(-\cos\alpha_{1},\sin\alpha_{1})$ , $\nu_{2}=(\cos\alpha_{2}, \sin\alpha_{2})$ .
Assume that ci, $c_{2}\geq c$

’ and that $\alpha_{1}$ and $\alpha_{2}$ are not both equal to $\pi/2$ . Let $\varphi_{1}$ and $\varphi_{2}$

be two solutions of (2.2) with speeds $c_{1}$ and $\mathrm{c}_{2}$ . Then there exists a travelling front
solution $u(x, y)$ of (1.1) such that

$\{$

$\mathrm{u}(r\cos\beta,r\sin\beta)arrow 0$ for all $-\pi/2-\alpha_{1}<\beta<-\pi/2+\alpha_{2}$

$u(r\cos\beta, r\sin\beta)arrow 1$ for all $-\pi/2+\alpha_{2}<\beta<3\pi/2-\alpha_{1}$

$u(x-r\sin\alpha_{1}, y-r\cos\alpha_{1})arrow\varphi_{1}(-x\cos\alpha_{1}+y\sin\alpha_{1})$

$u(x+r\sin\alpha_{2}, y-r\cos\alpha_{2})arrow\varphi_{1}(x\cos\alpha_{2}+y\sin\alpha_{2})$

(2.3)

as $rarrow+\infty$ . The last two limits in (2.3) hold locally in $(x, y)$ .

Therefore, equation (1.1) with anonlinearity $f$ satisfying (2.1) gives rise to more
solutions than the same equation with combustion-type nonlinearities (1.3), as for
the one dimensional case. In particular, the solutions $u$ in Theorem 2.1 are not
symmetric, up to shift, with respect to any direction, provided $c_{1}\neq c_{2}$ . The existence
of alarger class of solutions of (1.1) with nonlinearities (2.1) is aconsequence of the
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fact that the speeds $c$ of (2.2) are not unique anymore. Furthermore, given ci, $c_{2}$ ,
$\alpha_{1}$ , $\alpha_{2}$ as in Theorem 2.1, one can prove that there exists an infinity of solutions tz

of (1.1) fulfilling (2.3), namely having the same asymptotic profile at infinity.
Let us also mention that more general existence results of conical-shaped trav-

elling fronts for (1.1) with nonlinearities $f$ of the type (2.1), as well as fronts with
more general shapes, in any dimension $N\geq 2$ , have also been obtained in [35].
Namely, given $N\geq 2$ , $c>c^{*}$ , given any nonnegative and nonzero Radon measure
$\mu$ supported in $S_{\mathrm{c},e_{N}}=\{(\nu,\gamma)\in S^{N-1}\mathrm{x}(c^{*}, +\infty), c\nu\cdot e_{N}=\gamma\}$ , one can prove the
existence of asolution $u_{\mu}$ of (1.1) (we denote by $S^{N-1}$ the unit euclidean sphere of
$R^{N}$ , the set $S_{\mathrm{c},e_{N}}$ is asubset of the sphere with diameter $oe_{N}$). Furthermore, the
map $\mu\mapsto u_{\mu}$ is onet0-0ne and continuous (see [35] for details). Therefore, there
exists an infinity imensional manifold of solutions of (1.1). The proof of this result,
given in [35], generalizes that of Theorem 2.1, which is done below, but is much
more technical.

The more general question of the description of the set of all time global $\mathrm{s}$ in
than $v(t,x_{1}, \cdots \mathrm{x}\mathrm{N})$ of $v_{t}=\Delta v+f(v)$ is also dealt with in [35] (travelling fronts
are particular solutions of this problem). There exists an iffinite-dimensional mani-
fold of solutions of this problem, given as nonlinear interactions of planar travelling
fronts. Furthermore, apartial-uniqueness result is also proved in [35].

Proof of Theorem 2.1. The proof of Theorem 2.1 is actually much easier than
the proof of Theorem 1.1, which was concerned with the case of anonlinearity $f$ of
type (1.3).

Under the assumptions of Theorem 2.1, it is straightforward to check that both
functions $u_{1}(x, y)=\varphi_{1}(-x\cos\alpha_{1}+y\sin\alpha_{1})$ and $u_{2}(x,y)=\varphi_{2}$ ($x$ coe $\alpha_{2}+y\sin$ a2)
solve (1.1). Let now $v(x, t)$ denote the solution of the Cauchy problem

$\{$

$v_{t}$ $=\Delta v-c\partial_{y}v+f(v)$ , $t>0$ , $(x, y)\in R^{2}$

$v(0, x, y)$ $= \mathrm{u}\mathrm{i}(\mathrm{x},\mathrm{y}):=\max(\varphi_{1}(-x\cos\alpha_{1}+y\sin\alpha_{1}), \varphi_{2}(x\cos\alpha_{2}+y\sin \alpha_{2}))$ .

Since $v_{0}(x,y)$ is asubsolution for (1.1), it follows that $v(t, x,y)\geq \mathrm{v}\mathrm{o}\{\mathrm{x},$ $y$) for all
$t\geq 0$ and $(x, y)\in R^{2}$ , and that $v$ is nondecreasing in $t$ . On the other hand, the
maximum principle yields that $v\leq 1$ . Standard parabolic estimates then imply that
$v(t,x, y)arrow u(x, y)$ as $tarrow+\infty$ , where $u$ is aclassical solution of (1.1) such that
$v_{0}(x,y)\leq u(x,y)\leq 1$ in $R^{2}$ .

Let us now extend $f$ by 0outside the interval $[0, 1]$ . From the concavity of $f$ on
$[0, 1]$ , it follows that the function $\overline{u}(x, y):=\varphi_{1}(-x\cos\alpha_{1}+y\sin\alpha_{1})+\varphi_{2}(x\mathrm{c}\mathrm{o}\mathrm{e}\alpha_{2}+$

$y\sin\alpha_{2})$ is asupersolution for (1.1). Furthermore, $v_{0}\leq\overline{u}$ since both $\varphi_{1}$ and $\varphi_{2}$ are
positive. Therefore, $u\leq\overline{u}$ .

As aconclusion, one has

$\max(\varphi_{1}(-x\cos\alpha_{1}+y\sin\alpha_{1}), \varphi_{2}(x\cos\alpha_{2}+y\sin\alpha_{2}))$

$\leq u(x, y)\leq\min(\varphi_{1}(-x\cos\alpha_{1}+y\sin\alpha_{1})+\varphi_{2}(x\cos\alpha_{2}+y\sin\alpha_{2}), 1)$

for all $(x, y)\in R^{2}$ . It is then easy to check that property (2.3) holds. That completes
the proof of Theorem 2.1. $\square$
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