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1 Introduction
We study the Ginzburg-Landau equation which was proposed as amodel in the theory of
superconductivity ([8]). In the last decade many mathematical works appeared and the
existence of solutions expressing the characteristic features of the superconductivity were
studied. For instance see [1], [3], [4], $[7],[18,19,20]$ for nucleation of surface supercon-
ductivity, [10], [15], $[16, 17]$ , [23] for permanent current and [24] [25] for vortices. Such
phenomena can be observed in different values of an applied magnetic field. For instance
the permanent current is atypical phenomenon in the absence of applied magnetic fields
while the other ones take place in appropriate regimes of strength of the field.

In this paper we deal with the Ginzburg-Landau equation and the associate energy
functional with no applied magnetic fields. Our aim is to show the existence of stable
solutions expressing permanent currents. Here the permanent current can be realized
by astable nonconstant solution to the equation. By physical intuition it seems natural
to study this problem in anon-simply connected domain such as adonuts-like domain
or amultiply connected domain. Actually the existence of stable nonconstant solutions
in anon-simply connected domain were shown in [9], [16], [23]. Among other things
JimbO-Zhai [16] proved that any non-simply connected 3-dimensional domain allows sta-
ble solutions with complicated topological structure associated with the topology of the
domain by taking Alarge. On the other hand the existence of nonconstant stable solutions
were proved in [13], [16] under no constraint of the topological condition. They instead
used some domain perturbation arguments. The former one showed it in a3-dimensi0nal
thin domain while in the latter one they proved it by filling the holes of a3-dimensi0nal
non-simply connected domain with thin pancake-like domains.

The purpose of the present study is to develop the domain perturbation argument used
in [13] to prove the existence of stable nontrivial solutions in more variety of domains than
proved in [13]. Here we assume that the thin domain whose thickness is controlled by a
small positive parameter $\epsilon$ ,

$\Omega(\epsilon):=\{(x’, x_{3}):=(x_{1}, x_{2}, x_{3})\in \mathrm{R}^{3} : 0<x_{3}<\epsilon a(x’), x’\in D\}$, (1.1)
where $D$ is a 2-dimensional domain with smooth boundary $\partial D$ and $a(x’)$ is asmooth
positive function describing the variable thickness of $\Omega(\epsilon)$ . We consider the Ginzburg-
Landau energy given by

$\mathcal{G}_{\epsilon}(\Psi, A)$ $:= \int_{\Omega(\epsilon)}\{\frac{1}{2}|(\nabla-iA)\Psi|^{2}+\frac{\lambda}{4}(1-|\Psi|^{2})^{2}\}dx+\frac{1}{2}\int_{\mathrm{n}^{\mathrm{s}}}|\mathrm{c}\mathrm{u}\mathrm{r}1A|^{2}dx$ . (1.2)
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where $\Psi$ is complex-valued, A is amagnetic potential and Ais apositive parameter $(\sqrt{\lambda}$

is the Ginzburg-Landau parameter). Then the Ginzburg-Landau equation is obtained by
the Euler-Lagrange equation of the above energy functional,

$\{$

$(\nabla-iA)^{2}\Psi+\lambda(1-|\Psi|^{2})\Psi=0$ in $\Omega(\epsilon)$ ,

$\frac{\partial\Psi}{\partial\nu}=i(A\cdot\nu)\Psi$ on $\partial\Omega(\epsilon)$ ,

$\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}A=\{0J\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{R}^{3}\backslash \Omega(\epsilon)\Omega(\epsilon)$

(1.3)

where
$J:= \frac{1}{2i}(\Psi^{\mathrm{r}}\nabla\Psi-\Psi\nabla\Psi^{*})-|\Psi|^{2}A$, (1.4)

$\nu$ denotes the outer normal vector on $\partial\Omega(\epsilon)$ and $\Psi^{*}$ is the complex conjugate of $\Psi$ .
Since the equation is invariant under the gauge transformation

$elf\mapsto\Psi e^{\rho}.\cdot$ , $A\mapsto A+\nabla\rho$

($\rho$:asmooth scalar function), we can choose agauge so that

divA $=0$ in $\mathbb{R}^{3}$ (1.3)

holds. Then curlcurlA $=-\Delta A$ .
We easily see that (1.3) has aconstant solution $($?, $A)=(e^{\dot{l}\mathrm{C}}, 0)$ ($c$:any real number)

which is a(global) minimizer of (1.2). Thus our interest is to seek anontrivial stable
solution, that is, a(nontrivial) local minimizer of the energy functional.

In [13] the existence of anontrivial stable solution of (1.3) (or alocal minimizer to
(1.3) $)$ is studied by considering the reduced equation as $\epsilonarrow 0$ ,

$\{$

$\frac{1}{a(x)},\mathrm{d}\mathrm{i}\mathrm{v}_{d}(a(x’)\nabla_{d}\psi)+\lambda(1-|\psi|^{2})\psi=0$ in $D$ ,

$\frac{\partial\psi}{\partial\nu_{d}}=0$ on $\partial D$

(1.6)

which is the Euler-Lagrange equation of

$G( \psi):=\int_{D}\{\frac{1}{2}|\nabla_{d}\psi|^{2}+\frac{\lambda}{4}(1-|\psi|^{2})^{2}\}a(x’)dx’$ . (1.7)

More precisely it is shown that if the reduced equation (1.6) has a‘nondegenerate’ stable
solution, then the original equation also has astable solution near the solution of the
reduced equation. As an application the existence of astable solution with zeros is
proved with the aid of the result of [12] when the domain $D$ is disk and $a(x’)$ satisfies an
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appropriate condition. Here the ‘nondegenerate’ stable solution to (1.6) implies astable
solution at which the linearized operator allows asimple zero eigenvalue and negative
ones. We note that since (1.6) is invariant under the transformation $\psi\mapsto\psi e^{i\xi}(\xi$:areal
number), the linearized operator always has azero eigenvalue.

Our aim is to establish the existence of anontrivial stable solution of (1.3) for amore
general or ageometrically complicated domain. In order to carry out it we improve the
argument used in [13]. We consider the domain $D$ containing afamily of disjoint domains
$\{D_{j}\}_{j=1..N}$ and show the existence of alocal minimizer of (1.2) for sufficiently small $\epsilon$ if
each domain $D_{j}$ allows astable nondegenerate solution $\psi_{j}$ to (1.6) and if the quantity of

$\alpha_{t}:=\int_{D\backslash \bigcup_{j\approx 1}^{N}D_{j}}a_{(}’x’)dx’$ (1.8)

is small enough. As applications we can consider the following two types of domains:

(i) each $D_{j}$ is adisk and the remaining subset $D \backslash \bigcup_{j=1}^{N}D_{j}$ consists of thin channels
connecting two of $\{D_{j}\}$ ;

(ii) $N=1$ and $D\backslash D_{1}$ consists of afamily of disjoint closed disks $\{\overline{B}_{\rho}(p_{j})\}_{j=1..m}$ , where
$B_{\rho}(p_{j}):=\{x’ : |x’-p_{j}|<\rho\}$.

In the first case (i) the volume of the channels must be controlled so that the quantity
$\alpha_{I}$ of (1.8) is small enough. We see from [12] that there are nondegenerate stable vortex
solution with degree 1or-l in each disk $D_{j}$ . Thus counting the constant solution in $D_{j}$ ,
we can obtain $3^{N}$ types local minimizers to (1.2) (including the minimizer) by applying
the main theorem presented in the following section.

On the other hand $\alpha_{I}$ could be small by an appropriate choice of $a(x’)$ in the second
case (ii). Since $D_{1}$ is not simply connected, by virtue of [14] we can construct anonde
generate stable solution in each homotopy class $C^{0}(\overline{D_{1\mathrm{i}}}S^{1})$ ;thus the existence of alocal
minimizer of (1.2) with the zero set localized in { $(x’, x_{3})$ : $0<x_{3}<\epsilon a(x’)$ , $x’\in D\backslash \urcorner D_{1}$

can be assured with the aid of the main theorem. This result shows apinning of vortices
by the inhomogeneity of the surface of the domain.

2Assumptions and main theorem
We identify acomplex-valued function $\Psi(x)=u_{1}(x)+iu_{2}(x)$ with avector-valued one
$u(x)=(u_{1}(x), u_{2}(x))^{T}$ . Thus

$L^{2}(\Omega(\epsilon);\mathbb{C})=L^{2}(\Omega(\epsilon);\mathrm{R}^{2})$ , $H^{1}(\Omega(\epsilon);\mathbb{C})=H^{1}(\Omega(\epsilon);\mathrm{R}^{2})$ , etc.

As in [13] and [16], define aBanach space

$\mathrm{Y}:=\{B\in L^{6}(\mathrm{R}^{3};\mathrm{R}^{3}) : \nabla B\in L^{2}(\mathrm{R}^{3};\mathrm{R}^{3\mathrm{x}3})\}$, (2.1)

with note
$||B||_{\mathrm{Y}}:=||\nabla B||_{L(\mathrm{R};\mathrm{R})}\mathrm{z}\mathrm{a}\mathrm{a}$ .
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If asolution of (1.3) is alocal minimizer of the functional $\mathcal{G}_{\epsilon}$ in the space $H^{1}(\Omega(\epsilon);\mathbb{C})\mathrm{x}Y$ ,
we call it astable solution.

Let $\{D_{j}\}_{j=1..N}$ be afamily of domains such that

$\overline{D_{j}}\cap\overline{D_{k}}=\emptyset$ (j $\neq k)$ , (2.2)

and the boundary of each domain $D_{j}$ is sufficiently smooth (at least $C^{3}$ ). We suppose
that the domain $D$ satisfies

$D \supset\bigcup_{j=1}^{N}D_{j}$ (2.3)

and that if $N=1$ , there are $y_{k}\in D$ , $\rho_{k}>0$ $(k =1, .., m)$ such as

$D \backslash D_{1}=\bigcup_{k=1}^{m}\overline{B_{\rho k}(y_{k})}$ , $\overline{B_{\rho \mathrm{k}}(y_{k})}\cup\overline{B_{\beta\ell}(y\ell)}=\emptyset(k\neq\ell)$ , (2.4)

where $B_{\rho \mathrm{k}}(y_{k}):=\{x’$: |d$-y_{k}|<\rho_{k}\}$ .
We let $a(x’)$ be asmooth positive function defined on D. Then we may assume

$\sup_{d\in D}\cdot a(x’)=1$
(2.5)

by normalization. We also write $a=a_{j}(x’)$ for $?\in D_{j}$ and define

$|| \psi||_{L_{a}^{2}(D_{\mathrm{J}})}:=(\int_{D_{\dot{\mathit{9}}}}|\psi(x’)|^{2}a_{j}(x’)dx’)^{1/2}$

and by $L_{a}^{2}(D_{j};\mathbb{C})$ the space of square integrable functions with the norm $||\psi||_{L_{a}^{2}(D_{\mathrm{j}})}$ . We
also define

$||\psi||_{H_{f}^{1}(D_{j})}=(||\psi||_{L_{a}^{2}(Dg)}^{2}+||\nabla_{d}\psi||_{L_{a}^{2}(D_{\mathrm{j}})}^{2})^{1/2}$

and $H_{a}^{1}(D_{j;}\mathbb{C})$ . Similarly we can define $||\psi||_{L_{a}^{2}(D)}$ , $||\psi||_{H_{a}^{1}(D)}$ , $L_{a}^{2}(D;\mathbb{C})$ and $H_{a}^{1}(D;\mathrm{C})$ re-
spectively.

Let $\psi_{j}(x’)$ be asolution to (1.6) for $a(x’)=a_{j}(x’)$ and $D=D_{j}$ . The linearized
operator around $\psi_{j}$ is given by

$\{$

$\hat{L}_{j}[\varphi]:=\frac{1}{a_{j}(x)},\mathrm{d}\mathrm{i}\mathrm{v}_{d}(a_{j}(d)\nabla_{d}\varphi)+\lambda(1-|\psi_{j}|^{2})\varphi-2\lambda{\rm Re}(\psi_{j}^{*}\varphi)\psi j$ ,

$\mathrm{D}\mathrm{o}\mathrm{m}(\hat{L}_{j}):=$ { $\varphi\in L_{a}^{2}(D_{j;}\mathbb{C})$ : $\varphi\in H^{2}(D_{j;}\mathrm{C})$ , $\partial\varphi/\partial\nu_{d}=0$ on $\partial Dj$ }

(2.6)

Note that

$\hat{L}_{j}[i\psi_{j}]=\frac{1}{a_{j}(x’)}\mathrm{d}\mathrm{i}\mathrm{v}_{x’}(a_{j}(x’)\nabla_{d}(i\psi_{j}))+\lambda(1-|\psi_{j}|^{2})(i\psi_{j})=0$,

thus $\varphi=i\psi_{\mathrm{j}}$ is an eigenfunction corresponding to zero eigenvalue of $\hat{L}_{\mathrm{j}}$ . One can also
check that $\hat{L}_{j}$ is aself-adjoint operator with respect to the inner product

\langle $\psi$ , $\varphi)_{L_{a}^{2}(D_{j})}:={\rm Re}\int_{D_{\mathrm{j}}}\psi(x’)\varphi^{*}(x’)a_{j}(x’)dx’$ (2.7)
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(recall $\mathrm{c}$ is identified with $\mathbb{R}^{2}$), thus the spectrum of $\hat{L}_{j}$ consists of only real eigenvalues.
We call $\psi_{j}$ anondegenerate stable solution if the following holds;

(A) Zero is asimple eigenvalue of $\hat{L}_{j}$ and the remaining eigenvalues are negative.
We write by $\Psi_{0}$ a $(C^{0}(\overline{D};\mathbb{C})\cap H_{a}^{1}(D;\mathbb{C}))$ extension of $\psi_{j}(x’)$ , $x’\in D_{j}(j=1, .., N)$ ,

that is,

$\Psi_{0}\in \mathcal{O}(\overline{D};\mathbb{C})\cap H_{a}^{1}(D;\mathrm{c})$ , $\Psi_{0}(x’)=\psi_{j}(x’)$ in $D_{j}(j=1, ..N):$ . (2.8)

We denote by
$\tilde{\Psi}(x’, z)$ $:=\Psi(x’, \epsilon a(x’)z)$ $((x’, z)\in D\mathrm{x}(0,1))$

the transformed function of $\Psi(x)(x\in\Omega(\epsilon))$ and denote the norm by

$|| \tilde{\Psi}||_{L_{a}^{2}(D\mathrm{x}(0,1);\mathrm{C})}:=\{\int_{D}\int_{0}^{1}|\tilde{\Psi}(x’, z)|^{2}a(x’)dx’dz\}^{1/2}$

Now we state the main theorem of this paper.

Theorem 2.1 Consider (1.3) for (1.1) with $D$ satisfying (2.2) –(2.3) or (2.3) –(2.4).
For each $j$ , $1\leq j\leq N$ , suppose that $\psi_{j}$ is a solution to (1.6) with $a=a_{j}$ and $D=D_{j}$

and that it satisfies (A). Write by $\Psi_{0}$ the extension as in (2.8) and set

$\alpha_{0}:=\min_{d\in D\backslash \bigcup_{j=1}^{m}D_{j}}a(x’)$ .

Then there exist a number $M>0$ and a small number $\delta_{1}>0$ such that if $\delta\in(0, \delta_{1})$ and
$a(x’)$ satisfies

$\alpha_{t}=\int_{D\backslash \bigcup_{j=1}^{N}D_{\mathit{3}}}a(x’)dx’\leq M\delta^{2}$ ,

there is a small $\epsilon_{0}=\epsilon_{0}(\delta, \alpha_{0}, D)>0$ such that for each $\epsilon\in(0, \epsilon_{0})(1.2)$ has a local
minimizer $(\Psi_{\epsilon}, A_{\epsilon})$ (in $H^{1}(\Omega(\epsilon);\mathrm{C})$ $\mathrm{x}\mathrm{Y}$ ) satisfying

$||\tilde{\Psi}_{\epsilon}-\Psi_{0}e^{\dot{|}\hat{c}_{\mathrm{j}}}||_{H_{a}^{1}(D_{\mathrm{j}}\mathrm{x}(0,1);\mathrm{C})}<\delta$ , $j=1$ , $\cdots$ , $N$, (2.9)

there each $\hat{\mathrm{C}}j$ is the number given by

$|| \tilde{\Psi}_{\epsilon}-\Psi_{0}e^{\dot{\hat{u}}_{j}}||_{L_{a}^{2}(D_{j}\mathrm{x}(0,1)_{j}\mathrm{C})}=\inf_{0\leq \mathrm{c}\leq 2\pi}||\tilde{\Psi}_{\epsilon}-\Psi_{0}e^{\mathrm{c}}.\cdot||_{L_{a}^{2}(D_{\mathit{3}}\mathrm{x}(0,1)_{j}\mathrm{C})}$ (2.10)

For the proof of the above theorem see [21]
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