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Abstract

We present abrief overview of applications of free boundary problem to reaction-diffusion systems
of activator-inhibitor type in the case when the inhibitor is long-ranged. We first discuss the physical
origin of the considered class of reaction-diffusion systems and give afew examples. We then introduce
the free boundary problem and its reduction that is relevant to the dynamics of interfacial patterns in
the systems under consideration. Using the reduced free boundary problem, several cases are treated:
self-replication of asingle domain undergoing amorphological instability, breathing motion of asingle
domain on adisk, and slowly modulated waves of domain oscillations. In the first case the inhibitor
is fast, and in the other two it is slow. In all cases, detailed information about the pattern dynamics
can be obtained.

1Introduction
In this PaPer, Iwill give short overview of some of the applications of free boundary problem to inter facial
patterns in reaction-diffusion systems. These systems play afundamental role in understanding avariety
of nonlinear phenomena observed in systems far from equilibrium [1, 6, 13, 18, 29, 34, 49]. Systems of
reaction-diffusion equations serve as ageneral class of models with applications in physics, chemistry,
and biology. Their pattern-forming capability was recognized half acentury ago, starting with the
pioneering work of Turing [62], and since then attracted an enormous amount of attention both in the
modeling and mathematical community (for reviews, see, for example, [29, 35,46,64]).

An important class of reaction-diffusion models consists of systems of reaction-diffusion equations of
activator-inhibitor type. This class of models in fact serves almost as aparadigm for pattern-forming
systems of different nature. On one hand, these models are not overly complicated, which is inevitable
for more realistic models of pattern-forming systems, and are therefore amenable to analysis. On the
other hand, in many cases they can be systematically derived from the underlying physics of real pattern-
forning systems and therefore be used for (at least) semi-quantitative explanations of patterns observed
in experiments (see, for example, [27-29]).

In the simplest case, reaction-diffusion systems of activator-inhibitor type take on the ollowing form:

$\alpha u_{l}$ $=$ $\epsilon^{2}\Delta u+f(u,v, A)$ , (1.1)

$v_{t}$ $=$ $\Delta v+g(u,v,A)$ . (1.2)

Here $u=u(x, t)$ and $v=v(x,t)$ are scalar functions of time $t$ and space $x\in\Omega$ , where $\Omega\subseteq \mathrm{N}^{1}$ is a
domain, both time and space are assumed to be suitably scaled; Ais the $n$-dimensional Laplacian; $f$ and
$g$ are nonlinear functions; $\epsilon$ is the ratio of the spatial scales and $\alpha$ is the ratio of the time scales of $u$ and
$v$ , respectively, and $A$ is acontrol parameter. If $\Omega$ is bounded, Eqs. (1.1) and (1.2) are also supplemented
by no flux boundary conditions. Note that in general nonlinearities can arise naturally in the diffusion
terms as well $[27, 29]$ . Here we will only consider the case of simple linear diffusion and concentrate on
the effect of the nonlinearities in the reaction terms.

Apair of reaction-diffusion equations above is an activator-inhibitor system, with $u$ and $v$ being the
activator and the inhibitor variables, respectively, if there exists apositive feedback with respect to $u$ and
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Figure 1: Two major types of the nullclnes: $\mathrm{N}$-systems(a) and A-systems (b).

anegative feedback between $u$ and $v$ . Mathematically, this can be expressed via the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\cdot \mathrm{g}$ inequalities
obeyed by the nonlinearities $f$ and $g[26,29]$ :

$f_{u}>0$ for some $u$ , $v$ , (1.3)
$g_{v}<0$ for all $u$ , $v$ , (1.4)

$f_{v}>0$ , $g_{u}<0$ or $f_{v}<0$ , $g_{u}>0$ for all $u,v$ . (1.3)
The inequality in Eq. (1.3) means that small homogeneous increase in $u$ may result in an increase in
the production of $u$ , the one in Eq. (1.4) implies that small homogeneous increase in $v$ will result in a
decrease in the production of $v$ , and the ones in Eq. (1.5) imply that small homogeneous increase in $u$

will result in such achange in the production of $v$ that $\mathrm{w}\mathrm{i}\mathrm{U}$ result in the decrease in the production of $u$ .
One can distinguish two major classes of nonlinearities $f$ and $g$ satisfying Eqs. (1.3) –(1.5). In the

first class, for agiven value of $v$ the condition in Eq. (1.3) is satisfied only on single bounded interval of
values of $u$ . In the second class, the condition in Eq. (1.3) is satisfied on a semi-infinite interval of the
values of $u$ . It is not difficult to see that this implies that the nullcline of Eq. (1.1) (that is, the solution of
equation $f(u, v, A)=0$ in the $u,v$-plane may be N- or $\mathrm{n}$-shaped, while in the second case this nullcline
may be V- or A-shaped (Fig. 1). Therefore, depending on the shape of the activator nullcline one can
classify reaction-diffusion systems of activator-inhibitor type into N- or A-systems (the fl- and V-systems
are equivalent to the former, up to achange of variables). This classification was introduced by Kerner
and Osipov in [25, 26, 28, 29]. It is not difficult to verify that the classical Brusselator model [48] is a
A-system, the Gierer-Meinhardt model [14] is a $\mathrm{V}$-systems, and the FitzHugh-Nagumo model $[12,47]$ is
an $\mathrm{H}$-system. It turns out that the properties of A-and $\mathrm{V}$-systems are fundamentally different from those
of N- and Pl- systems [29].

In the following we will be considering only $\mathrm{N}$-systems, since these are the systems that can generate
interfacial patterns [29,43,44]. Note that $\mathrm{N}$-systems correspond to the first case in Eq. (1.5). Furthermore,
we will restrict ourselves to monostable systems. In other words, we will assume that the homogeneous
state $u=u_{h}$ , $v=v_{h}$ , satisfying

$f(u_{h},v_{h}, A)=0$ , $/(w, v,A)=0$, (1.6)

is unique for each value of $A$ , and that furthermore the point $(u_{h}(A),v_{h}(A))$ in the $(u,v)$ plane traces
continuously the three monotonic branches of the activator nullcline. Physically, this means that the
control parameter $A$ measures the degree of nonequilibium in the system.

We will give an example of aderivation of amodel of the considered type in arealistic physical context
in the next section. Now, however, consider the following canonical example [29, 44, 64]:

/ $(\mathrm{w},v, A)$ $=$ $u-u^{3}+v$ , (1.7)
$g(u, v, A)$ $=$ $A-u-v$. (1.8)

It is easy to see that in this case $f_{u}=1-3u^{2}>0$ for $|u|<7^{1}s$ and negative otherwise, $f_{v}=1$ , $g_{u}=-1$ ,
$g_{v}=-1$ , so all the above conditions are satisfied. Furthermore the parameter $A$ has the required property,
since

$u_{h}=A^{1/3}$ , $v_{h}=-A^{1/3}(1-A^{2/3})$ . (1.9)

This homogeneous state is stable for all values of $\alpha$ and $\epsilon$ when $|A|>\nabla\epsilon^{1}\epsilon^{=}$ .
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Figure 2: Combustion in acontinuous flow reactor.

2Example: system with uniformly generated combustion ma-
terial

As aprototypical reaction-diffusion systems of activator-inhibitor type, consider acontinuous flow reactor
with porous walls inside which an exothermic reaction (e.g., combustion) takes place (Fig. 2). The reactor
is placed between two porous walls of thickness $h$ and is maintained at the ambient temperature $T_{0}$ on
the outside. Gaseous fuel-0xidizer mixture is pumped with rate $k$ (with the dimension of speed) through
one of the walls into the reactor, and the products are removed from the other wall with the same rate.
The reaction releases heat which is then absorbed by the reactor walls.

If one neglects the hydrodynamic effects, one can write down asystem of reaction-diffusion equations
describing the reaction inside the reactor (in three-dimensions) with appropriate boundary conditions
on the reactor walls [65]. The situation may be simplified if the distance $H$ between the reactor walls
is small. In this case both the temperature and fuel concentration will vary little between the reactor
walls. Then this system of equations can be averaged over the reactor thickness to obtain an effective
tw0-dimensional reaction-diffusion system for the average concentration of fuel $n$ and temperature $T$ (in
energy units) across the reactor:

$\frac{\partial n}{\partial t}$ $=$ $D \Delta n+\frac{k}{H}(n_{0}-n)-\nu ne^{-E_{a}/T}$ , (2.1)

$c \rho\frac{\partial T}{\partial t}$ $=$ $\kappa\Delta T$ $+ \nu nEe^{-E_{a}/T}-\frac{2\kappa_{wall}}{hH}(T-T_{0})$ . (2.2)

Here, $D$ is the diffusion coefficient of the fuel, $\kappa$ is the thermal conductivity of the mixture and $\kappa_{wa}\iota\iota$ is
that of the walls (assumed to be small), $h$ is the wall thickness; $c$ is specific heat and $\rho$ is the density
of the mixture. The second term in the right-hand side of Eq. (2.1) is the supply and removal of the
fuel with the incoming fuel concentration $n_{0}$ , the last term in the right-hand side of this equation is the
rate at which the fuel is consumed, this rate is characterized by the rate constant $\nu$ (for simplicity taken
to be temperature-independent), the Arrhenius factor $e^{-E_{\alpha}/T}$ , where $E_{a}$ is the activation energy, and
we assumed afirst-0rder reaction. Similarly, the second term in the right-hand side of Eq. (2.2) is the
rate of heat release by the reaction, with $E$ being the heat released in asingle reaction, and the last
term is the cooling rate. We assumed that the oxidizer is in excess and neglected the dependence of the
transport coefficients on temperature. Note that this kind of model was introduced phenomenologically
in [24, 27, 29, 36].

Let us introduce the dimensionless variables $u=T/E_{a}$ and $v=n/n_{0}$ and scale time and length with
$H/k$ and $(DH/k)^{1/2}$ , respectively. Then, Eqs. (2.1) and (2.2) can be reduced to the form of Eqs. (1.1)

65



$v_{\min}$ $v_{0}$ $v_{\mathrm{m}*\mathrm{x}}$
$v$

Figure 3: The activator nullcline (closeup).

and (1.2) with

$f=Ave^{-1/u}+u_{0}-u$ , $g=1-v-\gamma ve^{-1/u}$ , (2.3)

$A= \frac{n_{0}\nu hHE}{2\kappa_{wall}E_{a}}$ , $\gamma=\frac{\nu H}{k}$ , $u_{0}= \frac{T_{0}}{E_{a}}$ , (2.4)

$\alpha=\frac{c\rho hk}{2\kappa_{wall}}$ , $\epsilon$
$=\sqrt{\frac{\kappa hk}{2\kappa_{wall}D}}$ . (2.5)

It is not difficult to verify that the obtained nonlinearities are those of an $\mathrm{N}$-system. The role of activator
is played by the scaled temperature, and the role of inhibitor by the scaled fuel density. This is easy to
understand: the therm0-activated character of the reaction results in the positive feedback with respect
to temperature, while the consumption of fuel by this reaction gives anegative feedback. Furthermore,
the parameter $A$ represents the degree of deviation of the system from equilibrium, since it is proportional
to the concentration $n_{0}$ of fuel being supplied; the more fuel is supplied the further away the system is
from equilibrium. Then, under aPpropriate conditions this system can sustain spatiotemporal patterns.
Physically, the simplest pattern in the form of ahot spot can be maintained by the balance of fuel
consumption and supply through diffusion from the regions away from the spot (Fig. 2).

3Free boundary problem
A free boundary problem arises in the analysis of Eqs. (1.1) and (1.2) in the asymptotic limits $\epsilonarrow 0$

$\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}\alphaarrow 0$ when the nullclne of Eq. (1.1) is $\mathrm{N}$-shaped. Let us illustrate this for the case when both
$\epsilonarrow 0$ and $\alphaarrow 0$ which we will concentrate upon in this paper. Clearly, in this limit the diffusion term in
Eq. (1.1) can be set to zero on the time scale $O(1)$ . Furthermore, for $\alphaarrow 0$ and smooth initial conditions
the value of $u$ at each point $x$ will immediately approach $h_{\pm}(v)$ , where $h_{+}(v)$ and $h_{-}(v)$ are the two
stable (in the sense of the ODE obtained from Eq. (1.1) with $\epsilon=0$) branches of the activator nullcline
(see Fig. 3). The choice between these two branches will be dictated by whether the initial condition
for $u$ at each point $x$ lies above or below the unstable branch $h_{0}(v)$ of the nullcline; those points that
lie below it will end up on $h_{-}(v)$ , while those above on $h_{+}(v)$ . Thus, the systems will instantly break
uP into regions $\Omega\pm \mathrm{i}\mathrm{n}$ which $u$ is close to the branch $h_{\pm}(v)$ , respectively, separated by the interface $\Gamma$ ,
possibly disconnected (hence, the characterization of the state of the system as ado main pattern). Let
us emphasize that on these time scales the location of $\Gamma$ will be fixed by the initial conditions.

Motion of the interface will occur on the longer time scale following the interface formation after the
initial transient. In order to understand it, we need to zoom in on the interface. Suppose that at time $t_{0}$

we have $\Gamma$ passing through point $x_{0}$ . Introducing

$\tau=\frac{t-t_{0}}{\alpha}$ , $\xi=\frac{x-x_{0}}{\epsilon}$ , (3.1)
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in the limit $\epsilonarrow 0$ and $\alphaarrow 0$ we will get

$u_{\tau}=\Delta\epsilon u+f$ ($u,v$ ( $x_{0}$ , to), $A$), (3.2)

where $\Delta_{\xi}$ is the Laplacian in the stretched variables, and we assumed that $v$ does not significantly vary on
the scales of $\tau$ and $\xi$ . The problem becomes tricky, however, since the initial conditions for $u$ in Eq. (3.2)
dependent on $\alpha$ and $\epsilon$ . Indeed, these must be approaching $h_{\pm}(v(x_{0}, t_{0}))$ on the respective sides of $\Gamma$ and
have nearly flat level sets to be consistent with the discussion above. Now, it is known that at times $\tau>>1$

flat initial conditions of this type develop into traveling wave solutions $u(\xi,\tau)=\overline{u}(\hat{n}\cdot\xi-c\tau)$ moving with
speed $c$ in the direction of $\hat{n}$ (the unit normal vector to $\Gamma$ pointing in the direction of 0)[11]. Therefore,
during interfacial motion the profiles of $u$ in the neighborhood of $\Gamma$ should be close to the solutions of

$\overline{u}’-c\overline{u}’+f(\overline{u},v, A)=0$ , $\overline{u}(\pm\infty)=h\pm(v)$ , (3.3)

in which $v$ is treated as aconstant. Small curvature introduces acorrection to the propagation speed,
equal $\mathrm{t}\mathrm{o}-K$ , where $K$ is $(n-1)\mathrm{x}$ mean curvature of the interface, positive if $\Gamma$ is convex when looked
from $\Omega_{+}$ (see, for example, [10]).

The free boundary problem is obtained from all this via aself-consistency argument. That is, we
demand that at time $t$ each point $r$ on $\Gamma$ move along the normal $\hat{n}(r,t)$ to $\Gamma$ in the direction of $\Omega_{-}$ with
the shows mentioned speed, which is now afunction of the instantaneous value of the inhibitor $v(r, t)$ at
point $r$ on $\Gamma$ and its curvature $K(\mathrm{r})$ . The distribution of $v$ , in turn, satisfies Eq. (1.2) in which $u=h\pm(v)$

in $\Omega\pm$ , respectively. Going back to the original variables, we finally obtain

$r_{t}$ $=$ $\alpha^{-1}\epsilon\hat{n}(r)[c(v(r, t), A)-\epsilon K(r)]$ , (3.4)
$v_{t}$ $=$ $\Delta v+g(h_{\pm}(v), v, A)$ , $f(h\pm(v),v,A)=0$ . (3.3)

Note that this type of reduction of asystem of reaction-diffusion equations to afree boundary problem
goes back to Fife [9]. For reaction-diffusion systems of activator-inhibitor type in one dimension this
reduction was used by Nishiura and Mimura [51] and by Ohta, Ito, and Tetsuka [54] to study the onset
of oscillatory instabilities. Also, in higher dimensions this approach was first used by Ohta, Mimura, and
Kobayashi for the stability analysis of localized patterns in aparticular activator-inhibitor model [55].

Before concluding this section, let us mention that an important class of reaction-diffusion systems
with the considered nonlinearities is characterized by small value of $\alpha$ and $\epsilonarrow\infty$ . By asimple rescaling,
these s0-called excitable systems are described by Eqs. (1.1) and (1.2), with the diffusion term being
absent in the second equation. These systems are capable of supporting various types of wave patterns,
including solitary waves, wave trains, spiral waves, and more complex autowave patterns (see, for example,
[18, 35, 63, 64] $)$ . Free boundary methods have been successfully used for the analysis of anumber of
problems in these systems. In particular, in weakly excitable systems the free boundary problem reduces
to the analogue of asingle Eq. (3.4) (since $v$ is always close to $v_{h}$ in this situation); in this case a
nice characterization of motion of the interface in the plane was introduced by Brazhnik, Davydov,
and Mikhailov $[4, 35]$ . Using this approach, Brazhnik constructed exact solutions of the free boundary
problem for $\mathrm{V}$-shaped waves [3]. Also, Karma worked out the asymptotics of the spiral wave solutions
for $\mathrm{N}$-systems both in the weakly and strongly excitable case $[19,20]$ .

4Reduced free boundary problem
The free boundary problem in Eqs. (3.4) and (3.5) represents asignificant reduction of complexity by
decreasing the effective dimensionality of the problem. Nevertheless, it is still afundamentally nonlinear
problem. In addition to the basic nonlinearity associated with the coupling between the shape of $\Gamma$

and the inhibitor field $v$ , which determines the evolution of $\Gamma$ , two other sources of nonlinearity exist.
The first is the dependence $c(v, A)$ in Eq. (3.4). This dependence is obtained by solving the nonlinear
eigenvalue problem in Eq. (3.3). Phase plane analysis shows that this equation gives aunique value of
$c$ for each given $v\mathrm{m}\mathrm{i}\mathrm{n}<v<v_{\max}$ (see, for example, [11]). Furthermore, for smooth nonlnearities the
speed $c$ is bounded and changes continuously from anegative value for $v arrow v\min$ , since $f(u,v \min, A)\leq 0$

for all values of $u \geq h_{-}(v\min)$ (recall that in $\mathrm{N}$ systems $f_{v}>0$), to apositive value of $c$ for $varrow v_{\max}$ ,
since now $f(u, v_{\max},A)\geq 0$ for all $u\leq h_{+}(v_{\max})$ , see also Fig. 3. Moreover, there is aunique value of
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$v=v0(A)$ at which the speed $c$ is zero. The value of $v\mathit{0}$ can be found from the algebraic equation [9] (see
also [21, 22, 29, 37] $)$

$\int_{u-}^{u}+f(u, v_{0}, A)du=0$ , (4.1)

where $u_{\pm}=h_{\pm}(v_{0})$ . Uniqueness of $v_{0}$ follows from the monotonic dependence of the integral in Eq. (4.1)
on $v$ . For example, in the exactly solvable case of the nonlinearity in Eq. (1.7) the speed $c$ satisfies
implicitly $c- \frac{2}{9}c^{3}=7^{3}2v|$

. in this case $v_{0}=0$ , $u\pm=\pm 1$ , $v_{\mathrm{m}\mathrm{i}\mathfrak{n}}=- \frac{2}{3\sqrt{3}}$ and $v_{\max}= \frac{2}{3\sqrt{3}}[38]$ . The
corresponding front solution has the form of adomain wall connecting $u_{-}$ with $u_{+}[9, 21,22,29,37]$ .

The second source of nonlinearity mentioned above is the functions $h_{\pm}(v)$ . Note that these functions
are only defined for $v\geq v_{\min}$ and $v\leq v_{\max}$ , respectively. Therefore, if during the evolution of $\Gamma$ the value
of $v$ reaches these critical values, ajump of the value of $u$ from one branch of the nullcline to the other
must occur. This phenomenon was termed local breakd own by Kerner and Osipov [23, 28, 29] and in the
language of the free boundary problem amounts to the creation of new interface.

The two nonlinear aspects mentioned above can be eliminated if $v(x, t)$ deviates little from $v_{0}$ for all
$x$ . Clearly, this should be the case for $v(r, t)$ in astationary pattern, see Eq. (3.4). In fact, this is a
generic situation for stable stationary patterns in dimensions $n\geq 2[39-44,53]$ . Introducing

$\tilde{v}=v-v_{0}$ , (4.2)

we can linearize both the dependence $c(v, A)$ and $h_{\pm}(v)$ around $v_{0}$ , if $|\tilde{v}|<<1$ . As aresult, to the leading
order we obtain $[38,40]$ :

c $=b\tilde{v}$ , (4.3)

where

$b= \frac{\int_{u-}^{u}+f_{v}(u,v_{0},A)du}{\int_{u-}^{u_{+}}\sqrt{-2U(u,v_{0},A)}du}$ , $U(u, v_{0}, A)= \int_{u-}^{u}f(s,v_{0}, A)ds$ . (4.4)

Note that for $\mathrm{N}$-systems we have $b>0$ . Similarly, Eq. (3.5) simplifies to $[38,40]$

$\tilde{v}t$ $=$ $\Delta\tilde{v}-(c_{+}\chi_{+}+c_{-}\chi_{-})\tilde{v}+\mathrm{g}(\mathrm{u}_{-}, v_{0}, A)-a\chi_{+}$ (4.5)

where $\chi\pm \mathrm{a}\mathrm{r}\mathrm{e}$ the characteristic functions of $\Omega_{\pm}$ , and

$a$ $=$ $g(u_{-}, v_{0}, A)-g(u_{+},v_{0}, A)$ , (4.6)

$c_{\pm}$ $=$ $-g_{v}(u_{\pm},v_{0}, A)+ \frac{g_{u}(u_{\pm},v_{0},A)f_{v}(u_{\pm},v_{0},A)}{f_{u}(u_{\pm},v_{0},A)}$ , (4.7)

Observe that by Eqs. (1.3) $-(1.5)$ , and the fact that $f_{u}(u_{\pm}, v_{0}, A)<0$ (recall that $u\pm 1\mathrm{i}\mathrm{e}$ on the stable
branches of the nullcline) for $\mathrm{N}$-systems we have $a>0$ and $c_{\pm}>0$ . For example, in the case of the
nonlinearities in Eqs. (1.7) and (1.8) it is not difficult to check that $a=2$, $b= \frac{3}{\sqrt{2}}$ , $c_{\pm}= \frac{3}{2}$ .

Thus, the reduced free boundary problem is obtained from Eq. (3.4) together with Eqs. (4.3) and (4.5).
To proceed, we need to specify the relationship between the parameters $\epsilon$ , $\alpha$ , and $A$ , as well as the tyPe
of pattern. Before we consider several particular cases, let us investigate the balance of different terms in
this free boundary problem. The crucial feature of reaction-diffusion systems of activator-inhibitor type
is that they are capable to support autosolitons –self-sustained inhomogeneous localized patterns [29].
In N-systems in dimensions $n\geq 2$ , an autosoliton is asingle radially-symmetric domain $\Omega_{+}$ (or $\Omega_{-}$ )
embedded into the whole of $\mathrm{R}^{n}$ . If $R$ is the radius of $\Omega_{+}$ and $T$ is the time scale of its variation, we
obtain that different terms in Eqs. (3.4) and (4.5) together with Eq. (4.3) balance each other if

$\frac{R}{T}\sim\frac{\epsilon\overline{v}}{\alpha}\sim\frac{\epsilon^{2}}{\alpha R}$ , $\frac{\overline{v}}{T}\sim\frac{\overline{v}}{R^{2}}\sim 1$ . (4.8)

where here and below $”\sim$”denotes an order of magnitude, and we took into account that $|\tilde{v}|<<1$ . Note
that this requires that $g(u_{-}, v_{0}, A)$ be small, which implies that $u_{-}$ and $v_{0}$ are close to the homogeneous
state $uh$ , $v_{h}$ . Let us define the values of $A_{b}^{\pm}$ to be the solutions of

$g(u_{\pm}(A_{b}^{\pm}),v_{0}(A_{b}^{\pm})$ , $A_{b}^{\pm})=0$ , (4.9)
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where we recalled that $v_{0}$ and $u_{\pm}$ are in general all functions of $A$ . We will assume that $A_{b}^{\pm}$ exist and
are also unique. The values of $A_{b}^{\pm}$ have the meaning of the critical values of $A$ at which the formation of
localized $\Omega_{\pm}$ patterns is possible [29]. Therefore, by continuity the value of $A$ must be close to the value

’

One can see that the relations in Eq. (4.8) can be satisfied only if
$R\sim\epsilon^{1/3}$ , $T\sim\alpha\epsilon^{-4/3}$ , $\alpha\sim\epsilon^{2}$ . (4.10)

The consistency of these arguments is verified by checking that indeed $\tilde{v}\sim R^{2}\sim\epsilon^{2/3}\ll 1$ . The estimate
in Eq. (4.10), although rather crude, allows to make anumber of conclusions about the ffee boundary
problem in Eqs. (3.4), (4.3), and (4.5). First, it identifies the precise scaling for the length scale of the
domain patterns. In fact, this scaling was first obtained from the stability considerations of the localized
patterns in $\mathrm{N}$-systems in dimensions $n\geq 2[43,44]$ , and from the energetic considerations in the case of
extended domain patterns $[39,42]$ . Second, it gives the scaling for $\alpha$ at which the delay in the response of
the inhibitor becomes significant; this scaling has also been obtained from the stability considerations for
the localized pattern [43], however, the situation is more complicated for extended patterns (see below).
Also note that the situation is qualitatively different in one dimension, in which generically $R\sim 1$ and
$\alpha\sim\epsilon$ for the effect of delay to appear [24,29,30, 50, 51,56].

5Applications
We are now going to consider afew applications of the reduced free boundary problem which allow to
get major insights into the nonlinear dynamics of interfacial patterns in reaction-diffusion systems of
activator-inhibitor type. For simplicity, we will restrict ourselves to tw0-dimensional patterns, the results
remain qualitatively the same for all $n>2$ . Throughout the entire discussion below, we assume that
$\epsilon\ll 1$ .

5.1 Self-replication
We first consider the situation in which $A$ is close to $A_{b}^{-}$ and the inhibitor is fast, that is $\alpha\gg\epsilon^{2}$ (compare
with Eq. (4.10) $)$ . This means that during interfacial motion the inhibitor win quickly equilbrate to reach a
quasi steady-state, so to the leading order the time derivative in Eq. (4.5) can be neglected. Furthermore,
if the size of $\Omega_{+}$ is small, we can neglect the term $c_{+}\chi+\mathrm{i}\mathrm{n}$ this equation as well. Then Eq. (4.5) can be
easily solved with the help of Green’s function:

$\tilde{v}(x)=\frac{g(u_{-},v_{0},A)}{c_{-}}-\frac{a}{2\pi}\int_{\Omega}+K_{0}(\sqrt{c_{-}}|x-x’|)dx’$ , (5.1)

where $K_{0}(x)$ is the modified Bessel function of the second kind, and we assumed that $\Omega=\mathrm{R}^{2}$ . This
integral can be further reduced to aline integral over $\Gamma$ . In the present context this reduction was
first performed by Goldstein, Muraki, and Petrich in the case of areaction-diffusion system with weak
activator-inhibitor coupling (which are necessarily bistable) $[15, 57]$ . Asimple calculation shows that if $r$

is apoint on $\Gamma$ , we have

$\tilde{v}(r)=\frac{g(u_{-},v_{0},A)}{c_{-}}+\frac{a}{2\pi\sqrt{c_{-}}}\oint_{\Gamma}(K_{1}(\sqrt{c_{-}}|r-r’|)-\frac{1}{\sqrt{c_{-}}|r-r’|})\frac{(r’-r)\mathrm{x}dr’}{|r’-r|}$, (5.2)

where $K_{1}(x)$ is the modified Bessel function of the second kind, $u\mathrm{x}$ ”denotes the cross product, and $\Gamma$ is
assumed to be oriented counterdodcwise with respect to $\Omega_{+}$ . Now, rescalng length and time according
to Eq. (4.10):

$x arrow\frac{\epsilon^{1/3}}{a^{1/3}b^{1/3}}x$ , $t arrow\frac{\alpha}{\epsilon^{4/3}a^{2/3}b^{2/8}}t$, (5.3)

and expanding the Bessel function in $\epsilon^{1/3}$ , to the leading order Eq. (3.4) becomes [38]

$r_{t}$ $=$ $\hat{n}(\mathrm{r})$ $(-K(r)$ $+\delta$ $+ \frac{1}{4\pi}\oint_{\Gamma}(-\Lambda+\ln|r-r’|)(r’-r)\mathrm{x}d\mathrm{r}’)$ , (5.4)
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$\delta$ $= \frac{b^{2/3}g(u_{-},v_{0},A)}{\epsilon^{2/3}a^{1/3}c_{-}}$ , $\Lambda=\frac{1}{3}\ln\epsilon^{-1}+\frac{1}{3}\ln ab-\frac{1}{2}\ln c_{-}+\ln 2-\mathrm{I}+\frac{1}{2}$ , (5.5)

and $7\simeq 0.5772$ is the Euler constant; Ais alarge logarithm. Note that related free boundary formulation
was discussed by Nishiura and Onishi [52].

To understand the significance of different terms in Eq. (5.4), let us consider an ideally round domain
$\Omega_{+}$ first. Then, Eq. (5.4) reduces to asingle ODE for the domain radius $\rho[41]$

$\frac{d\rho}{dt}=-\frac{1}{\rho}+\delta+\frac{1}{4}\rho^{2}(-2\Lambda+2\ln\rho+1)$ . (5.6)

This formula is vald when $\rho$ is not very large, when Ais the dominant term in the right-hand side of
Eq. (5.6). The analysis of this equation then shows that if the value of $\delta$ is negative in this range of $\rho$

all radially-symmetric domains will shrink to zero in finite time. On the other hand, when $\delta$ becomes
sufficiently large positive, two equilibria with radii $\rho_{u}<\rho_{0}$ appear, with $\rho_{u}$ being unstable and Astable
(see also [42]). Furthermore, the radius $\rho 0$ is uniquely determined by $\delta$ and is $O(1)$ for $\delta=O(\Lambda)$ . Note
that this is precisely the solution in the form of an autosoliton.

Afundamental feature of reaction-diffusion systems of activator-inhibitor tyPe in dimensions $n\geq 2$

is that patterns can undergo morphological instabilities resulting in shape changes [15,29,43-45,55, 58].
This can readily be seen, if one perturbs Eq. (5.4) around aradially stable disk-shaped domain of radius
$\rho 0$ . Introducing polar coordinates $(\rho, \varphi)$ for $\Gamma$ and substituting $\rho(\varphi, t)=\rho_{0}+\rho_{m}e^{tm\varphi-\gamma_{m}t}$ into Eq. (5.4),
we then take alimit of $\rho_{m}arrow 0$ to obtain [41-43]

$\gamma_{m}=\frac{m^{2}-1}{\rho_{0}^{2}}-\frac{\rho_{0}}{2}(1-\frac{1}{m})$ , (5.7)

which is valid for $m>0$ . From this equation follows that the radially-symmetric pattern undergoes the
distortion instability corresponding to $m=2$ when $\rho_{0}>\rho_{\mathrm{c}2}=(12)^{1/3}$ .

Qualitatively, one can understand this morphological instability as follows. When $\rho\sim 1$ , both $\delta$ and
Ain Eq. (5.4) are large. Then, since Amultiplies the integral which gives the area of $\Omega_{+}$ , the effect of
these two terms is basically to preserve the pattern’s overall area. In contrast, morphological instabilities
preserve the area and are therefore driven by the $\ln|\mathrm{r}$ $-r’|$ term in Eq. (5.4). Observe that this term
can be positive if $|r-r’|$ is large and negative when $|r-r’|$ is small. Therefore, its effect will be to
pull apart distant pieces of the interface. If the size of the pattern is large, then the stabilizing effect of
curvature would not be able to compensate this tendency, and apattern with complex morphology will
develop [38, 43, 44].

The next question here is whether the pattern growing as aresult of this instability will preserve
its topology, namely, whether it will remain connected during the course of its evolution. Numerical
simulations of reaction-diffusion systems with weak activator-inhibitor coupling [16], as well as simulations
of the free boundary problem for these systems [8, 15, 57] showed that aconnected labyrinthine pattern
formed as aresult of the morphological instability of the disk-shaped domain.

To test this question in the systems under consideration, we performed anumerical solution of
Eq. (5.4). The interface was discretized as apiecewise-linear curve, integration in space was done using
midpoint rule, curvature at agiven point was obtained by drawing acircle through that point and its two
neighbors to obtain an approximation for the curvature radius. The number of discretization points was
controled adaptively to maintain the distance between the neighboring points within afactor of two. In
our numerical method, we also allowed $\Gamma$ to reconnect when the interfaces came sufficiently close together.
The result of atypical simulation is shown in Fig. 4. The initial condition is taken as aslightly perturbed
disk-shaped domain of radius $\rho_{0}>\beta \mathrm{e}2$ . One can see that the domain undergoing instability pinches off
and divides, the daughter domains keep undergoing divisions. Thus, in $\mathrm{N}$-systems with fast inhibitor
self-replication can be observed as aresult of the morphological instability. This is also confirmed in the
numerical simulations of the original reaction-diffusion equations with sufficiently small $\epsilon[41,42]$ . Let us
point out that the numerical solution of the free boundary problem could run only until acertain time,
after which the domains started to blow up, so only afew acts of self-replication could be observed. We
attribute this to the fact that the replicating domains go so far apart that the expansion used to obtain
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Figure 4: Self-replication of aspot. Result of the numerical solution of Eq. (5.4). The box is 50 $\mathrm{x}50$ .
Other parameters are: $\mathrm{A}=4$ , $\delta=18.3$ , based on the model in Eq. (1.7) an (1.8) with $\epsilon=10^{-4}$ ,
$A-A_{b}^{-}=0.0455$ .

Eq. (5.4) from Eq. (5.2) breaks down. When the domains become separated by distances of order 1(in
the original variables), one needs to keep the full Bessel function (which decays exponentially at large
distances) in the integral in Eq. (5.4). Note that both the phenomenon of self-replication and formation
of labyrinthine patterns were observed experimentally in $[31, 32]$ .

5.2 Breathing spot
We now turn to the study of the effect of the delay in the inhibitor response to the motion of the interface.
To do that consider the following simple setup. Let $\Omega$ be adisk of diameter $L\ll 1$ (but, of course, $L\gg\epsilon$)
and consider aradially-symmetric pattern $\Omega_{+}$ with radius $\mathrm{p}(\mathrm{t})$ in $\Omega$ . Since $\Omega$ is small, the spatial variation
of $v$ will be small across 0. Therefore, for astationary pattern we will once again have $|\tilde{v}|<<1$ , so the
reduced free boundary problem of Sec. 4should work.

Equation (3.4) in the considered case becomes (we are badc to the unsealed variables)

$\frac{d\rho}{dt}=-\frac{\epsilon^{2}}{\alpha\rho}+\frac{\epsilon b\overline{v}(\rho,t)}{\alpha}$ . (5.8)

To proceed, let us break up $\tilde{v}$ as follows

$\tilde{v}=\overline{v}+\hat{v}$ , (5.9)

where $\overline{v}$ is the value of $\tilde{v}$ averaged over $\Omega$ . It turns out that for $\alpha\gg\epsilon^{2}$ the dynamics of $\overline{v}$ and $\tilde{v}$ are
qualitatively different. Averaging Eq. (4.5) over $x$ , we obtain

$\frac{d\overline{v}}{dt}=-(\frac{(L^{2}-4\rho^{2})c_{-}}{L^{2}}+\frac{4\rho^{2}c_{+}}{L^{2}})\overline{v}-\frac{4a(\rho^{2}-\rho_{0}^{2})}{L^{2}}$, (5.10)

where

$\rho_{0}=\frac{L^{2}g(u_{-},v_{0},A)}{4a}$ . (5.11)

In writing Eq. (5.10), we neglected the term coming from $\hat{v}$ , which is going to be small compared to the
last term in the right-hand side of this equation in the considered regime (see below).

To close this system of equations, we need to find $\mathrm{v}(\mathrm{p}, t)$ . The equation for $\hat{v}$ is obtained by subtracting
Eq. (5.10) from Eq. (4.5). If we also assume that $\alpha\gg\epsilon^{2}$ , by the argument similar to the one in Eq. (4.10)
we will see that the time derivative of $\hat{v}$ is small and can be dropped from this equation. Similarly, the
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value of $\hat{v}$ should come out to be of order $L^{2}$ and therefore will be small compared to the last term in
Eq. (4.5). With all these reductions, to the leading order the equation for $\hat{v}$ becomes

$\frac{d^{2}\hat{v}}{dr^{2}}+\frac{1}{\mathrm{r}}\frac{d\hat{v}}{dr}-a(\chi_{+}-\langle\chi_{+}\rangle)=0$ , ( $\hat{v}\rangle=0,$ (5.12)

where $r$ is the radial coordinate and $\langle.\rangle$ denotes spatial average. This equation can be trivially solved to
obtain

$\hat{v}(\rho)=a(\frac{3\rho^{2}}{8}-\frac{3\rho^{4}}{2L^{2}}+\frac{\rho^{2}}{2}\ln\frac{2\rho}{L})$ . (5.13)

Let us introduce the following quantities

$\overline{\rho}=\frac{\rho}{L}$ , $\omega_{0}=\sqrt{\frac{4\epsilon ab}{\alpha L}}$, $\tau=\frac{\alpha}{\epsilon abL}$ , $\overline{\epsilon}=\frac{\epsilon}{abL^{3}}$ . (5.14)

Assuming that $\omega_{0}\gg 1$ , while $\tau\sim 1$ , we can further reduce Eqs. (5.8), (5.10), and (5.13) by eliminating
$\overline{v}$ to [40]

$\frac{d^{2}\overline{\rho}}{dt^{2}}+\beta(\overline{\rho})\frac{d\overline{\rho}}{dt}+\omega_{0}^{2}(\overline{\rho}^{2}-\overline{\rho}_{0}^{2})=0$ , (5.15)

where

$\beta(\overline{\rho})=c_{-}+4(c_{+}-c_{-})\overline{\rho}^{2}-\tau^{-1}(\frac{\overline{\epsilon}}{p}+\frac{5\overline{\rho}}{4}-6\rho^{4}+\overline{\rho}\ln 2\overline{\rho})$ . (5.16)

We now demand that $\tilde{\epsilon}$ and $\overline{\rho}0$ are $O(1)$ quantities, which implies that

$L\sim\epsilon^{1/3}$ , $\alpha\sim\epsilon^{4/3}$ . (5.17)

Equation (5.16) then describes an equation for aweakly damped nonlinear oscillator with nonlinear
friction coefficient $\beta(\overline{\rho})$ . Acomplete study of this dynamical system is possible (for adetailed analysis,
see [40] $)$ . Importantly, in awide range of po (implying arange of values of $A$ between $A_{b}^{-}$ and $A_{b}^{+}$ ) aHopf
bifurcation of the stationary solution with $\overline{\rho}=\mathrm{p}\mathrm{o}$ is realized at $\tau=\tau_{c}$ , where to the leading order [40]

$\tau_{c}=\frac{4\overline{\epsilon}+5\overline{\rho}_{0}^{3}-24\overline{\rho}_{0}^{5}+4\overline{\rho}_{0}^{3}1\mathrm{n}2\overline{\rho}_{0}}{4\overline{\rho}_{0}^{2}(c_{-}+4(c_{+}-c_{-})\overline{\rho}_{0}^{2})}$, (5.18)

which is obtained by simply equating $\beta(\overline{\rho}_{0})$ to zero (recall that $\omega_{0}\sim\epsilon^{-1/3}\gg 1$). We emphasize that
these results are completely independent of the original nonlinearities $f$ and $g$ . Let us also point out that
this behavior was experimentally observed in [17].

5.3 Phase waves
Lastly, we will discuss the problem of describing the interaction of different domains in amultidomain
pattern. This is afundamental problem in the theory of reaction-diffusion equations of activator-inhibitor
tyPe, since typically the patterns that form in these systems are extended [41,42,44]. The main obstacle
in doing this is the fact that generally the patterns forming under these conditions are highly disordered
$[41,42]$ . Another problem is that different domains interact with each other on different length scales: the
local arrangement of domains in astable stationary pattern is due to the short-range interaction between
nearest neighbors, while the long-range interactions at distances \sim 1are responsible for the screening
effects (see, for example, Eqs. (3.4) and (5.2)).

This problem can be simplified if one looks at perturbations (not necessarily small) of stationary
periodic patterns. In the following we will consider apattern in the form of (nearly-) circular domains
arranged in ahexagonal lattice of period $\mathcal{L}_{\mathrm{p}}$ as an example. Unless $A$ is close to $A_{b}^{\pm}$ , these patterns
are stable only when $\mathcal{L}_{p}\sim\epsilon^{1/3}[39,41,42]$ . Numerical simulations show that for smaU enough $\alpha$ these
patterns can support phase waves of oscillations of the domain radii (Fig. 5). It is observed that these
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Figure 5: Propagation of the wave of coUective oscillations of the domain radii obtained from numerical
solution of Eqs. (1.1) and (1.2) with the nonlinearities given by Eq. (1.7) and (1.8) and $\epsilon=0.05$ , $\alpha=0.02$ ,
and $A=-0.4$ . The domain is 20 $\mathrm{x}4$. The boundary conditions are periodic.

waves represent slow modulations in space of the periodic breathing motion of individual domains [40].
Note that these patterns are also realized in experiments [7].

Once again, since in aperiodic pattern of small period the deviation of $v$ from $v_{0}$ is small, the reduced
free boundary problem of Sec. 4can be applied. Moreover, for not very large domain radii compared to
$\mathcal{L}_{p}/2$ (in practice, for virtually all radii) the deviations of the domain shape from that of an ideal disk
can be neglected. Then, to obtain effective equations that describe the slowly varying modulations of
the domain radii, we introduce the function $\mathrm{p}(\mathrm{x}, t)$ , which is the coarse-grained (smoothed) version of the
radius of an individual domain in agiven hexagonal cell. We then separate $\tilde{v}$ as in Eq. (5.9), where now
$\overline{v}$ is defined as the coarse grained version of $\overline{v}$ , that is, we take $\overline{v}$ to be the average of $\overline{v}$ over an area of
the size which is much greater than $\mathcal{L}_{p}$ but smaller than the length scale of variation of $\rho$ . To the leading
order the equation for $\overline{v}$ , now also slowly varying in space, becomes

$\frac{\partial\overline{v}}{\partial t}=\Delta\overline{v}-(\frac{(L^{2}-4\rho^{2})c_{-}}{L^{2}}+\frac{4\rho^{2}c+}{L^{2}})\overline{v}-\frac{4a(\rho^{2}-\rho_{0}^{2})}{L^{2}}$, (5.19).

where $\rho_{0}$ is as in Eq. (5.11) and

$L=3^{1/4}2^{1/2}\pi^{-1/2}\mathcal{L}_{\mathrm{p}}$ , (5.20)

so that $\pi L^{2}/4$ is equal to the area of asingle hexagonal cell. Now, since $\hat{v}$ should be small, slow variations
of $\hat{v}$ between different cells $\mathrm{w}\mathrm{i}\mathrm{U}$ be higher-0rder correction and can be neglected. Therefore, to the leading
order we can solve the problem for $\hat{v}$ in each hexagonal cell with no flux boundary conditions. Assuming
that $\alpha\gg\epsilon^{2}$ and following the argument of the section above, we obtain the following problem for $\hat{v}$ in
the hexagonal cell $\Omega_{0}$ for each $\rho$ :

$\Delta\hat{v}-a(\chi_{+}-(\chi_{+}))=0$, $\langle\hat{v})=0$ , $\frac{\partial\hat{v}}{\partial n}|_{\partial\Omega_{0}}=0$ , (5.21)

where now $($ . $)$ denotes averaging over $\Omega_{0}$ . To finally close this system of equations, we use the average
value of $\hat{v}$ over the domain’s interface in Eq. (5.8):

$\frac{\partial\rho}{\partial t}=-\frac{\epsilon^{2}}{\alpha\rho}+\frac{\epsilon b}{\alpha}(\overline{v}+\frac{1}{2\pi}\int_{0}^{2\pi}\hat{v}(\rho, \varphi)d\varphi)$ , (5.22)
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where the variations of $\overline{v}$ across Q
$0$ were neglected and $\hat{v}$ on $\Gamma$ was written in terms of the polar coordinates

$(\rho, \varphi)$ of the interface. Note that it should also be possible to obtain these equations using homogenization
techniques. Also note that the deviations from the ideal disk $\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{p}\mathrm{e}\infty$ for each domain can be taken into

account by writing the position of the interface as $r( \varphi, t)=\rho(t)+\sum_{m=1}\rho_{6m}(t)\cos(6m\varphi)$ in polar coordinates

and modifying Eq. (5.22) accordingly, together with obtaining equations for each $\rho 6m$ .
The main difficulty in analyzing the equations above must be the solution of Eq. (5.21), which has

to be done in the hexagonal geometry. This problem, however, can be handled approximately by the
Wigner-Seitz method from solid state physics (see, for example, [66]). Namely, instead of solving Eq (5.21)
in $\Omega_{0}$ , we will solve it on adisk of the same area. This immediately allows us to use the results of the
previous section. Once again, introducing the constants from Eq. (5.14) and following the same steps,
we now arrive at the following effective PDE for $\overline{\rho}(x, t)[40]^{1}$

$\frac{\partial^{2}\overline{\rho}}{\partial t^{2}}+\omega_{0}^{2}(\overline{\rho}^{2}-\overline{\rho}_{0}^{2})=-(\beta(\overline{\rho})-\Delta)\frac{\partial\overline{\rho}}{\partial t}$ , (5.23)

where $\beta(\rho)$ is still given by Eq. (5.16). Note that the spatially-independent solutions of this equation
(which correspond to in-phase oscillations of all domains) are equivalent to the oscillations of asingle
domain considered in the previous section. Therefore, this means that hexagonal patterns also undergo a
Hopf bifurcation leading to the onset of synchronous breathing motion [40]. One can further investigate
the dynamic coupling between different domains. One striking observation here is that while locally the
domain oscillations synchronize, globally they can exhibit chaotic behavior [40]. Let us also point out that
similar treatment of this tyPe of patterns is possible for avariety of geometries, including one dimension,
where arather complete study of the pattern’s dynamics is possible [40].

6Conclusion
To summarize, we have presented an overview of recent results on the applications of free boundary
problem to reaction-diffusion equations of activator-inhibitor type. This overview was concentrated on
the case of long-ranged and slow inhibitor ($\epsilon\ll 1$ and $\epsilon^{2}\ll\alpha\ll 1$). The techniques we used for
obtaining the free boundary reduction of the original reaction-diffusion equations were based on formal
asymptotics and heuristic arguments. Let us point out that most of the results obtained in Sec. 5can
be systematically derived via formal asymptotic expansions of the original reaction-diffusion problem by
assuming the aPPropriate scaling relationships between $\epsilon$ , $\alpha$ , and $A$ , in the limit $\epsilonarrow 0$ . However, we
chose to use amore intuitive approach, since it provides insights into the origins of these scaling relations.
We also chose to present the cases which lead to interesting phenomenology; other regimes can be studied
using similar methods.

To the best of our knowledge, rigorous work on the problems discussed above is quite recent. We first
would like to mention the work of Soravia and Souganidis who obtained free boundary reductions for a
subset of reaction-diffusion systems of activator-inhibitor type in $\mathbb{R}^{n}$ that are valid globally in time [61].
See also this work for the list of references on existence of solutions to the interfacial problem. More
recently, Bonami, Hilhorst, and Logak analyzed adifferent scaling regime for aparticular model $[2, 33]$ .
Their free boundary problem is essentially abounded $\Omega$ version of the problem considered in Sec. 5.1
(except for the Dirichlet boundary conditions for $\tilde{v}$). Adifferent scaling regime was investigated by
Sakamoto, with the results along the lines of the discussion at the beginning of Sec. 3[60].

Let us also point out that in the case of fast inhibitor the reduced free boundary problem possesses
an energy functional $[41,42]$ . This allows to make anumber of further conclusions about the dynamics
of the interfaces and, in particular, about the stable stationary patterns, which are now local minimizers
of the energy. For acertain scaling, these local minimizers were studied by Ren and Wei in the context
of T-convergence [59]. Also, Choksi obtained precise scaling for the global energy minimizers [5]. Let
us point out that these authors essentially consider bounded domains whose size shrinks to zero in the
limit $\epsilonarrow 0$ . This is different from the situation of $\Omega$ $=\mathrm{R}^{n}$ considered in Sec. 5, where two length scales:
one of single domain size, $O(\epsilon^{1/3})$ , and the other of screening effects, $O(1)$ , exist (naturally, the third

lThis equation improves slightly the result of [40], where $L$ was chosen to be simply equal to $\mathcal{L}_{p}$ in reducing Eq. (5.21)
to the radial problem.
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length scale $O(\epsilon)$ which corresponds to the interfacial thickness, present in the full system of PDEs, does
not enter the free boundary problem). This must lead to homogenization-type problems and is currently
open. In particular, one problem of interest here is the dynamics of patterns with slowly modulated
morphologies.

The case of slow inhibitor obeying the scaling from Eq. (5.17) and similar cases has not been analyzed
rigorously yet. Here the cases of breathing patterns and perturbations of periodic patterns considered in
Sees. 5.2 and 5.3 seem promising. More generally, afundamental problem in this context is to understand
similar phenomena of collective oscillations for disordered domain patterns. In this case it is not even
clear what the starting point for the analysis of such patterns of large numbers of interacting domains
should be. One step in that direction was made in [40], where ashadow limit of the reduced free boundary
problem with the initial conditions in the form of apolydisperse mixture of radial droplets was considered;
the dynamics of the pattern on acertain time scale could then be analyzed via astatistical description
involving the distribution of the droplets’ radii.

The author would like to acknowledge valuable discussions with V. V. Osipov and S. Y. Shvartsman.
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