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ABSTRACT

We consider fractal sets which are defined by reflections on the complex projective space P!(C). In §3 we
give the defintion of fractal sets defined by reflections and we give the estimates of the contraction ratios of
reflections (Theorem I). In §4 we give classfications of the fractal sets and we choose two classes of the fractal
sets, which are called ”Cantor type” and ”Fricke-Klein type”. In §5 we give two theorems on the estimate
of the Hausdorff dimension of fractal sets of Cantor type and Fricke-Klein type respecting (Theorem II I1I).

In §6 we give some computer simulations of fractal sets defined by reflections.

1 Introduction

In 1982, B.Mandelbrot ([3]) has given a concept of fractal sets and tried to describe the
complexty of the objects. After introduction of a concept of fractal set, this concept has been
applied not only in mathematics, but also in physics, and geography and the complexity
can be described in mathematical terminology. One of the most important results is an
introduction of the Hausdorff dimension which describes the complexity of the fractal sets.
In the paper [2], Hutchinson has introdueed a concept of ”self similar fractal sets” and
developed a method of calculation of self similar fractal sets. In this case we have an
explicit formula of the Hausdorff dimension. In fact, we can give the Hausdorff dimension
in the following manner. We take a system of self similar mappings {o;|j = 1,2,---,N}
with the contraction ratios A;(0 < A; < 1) between a compact set Kp:

oj Ko — Ko (]= 1,2,"-,N).
Here we assume the following separation condition:
i(Kg) Naj(Kg) = ¢ (i #j).

Putting
N

K, = U UJ(K _1)(12 = 1,2’3,...)’

J=1
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we define a self similar fractal set by

Then we see that the Hausdorff dimension dimgy K (= D) can be given by solving the equa-
tion:

We can calculate the Hausdorff dimension of the Cantor set, the Serpinski gasket, and the
Koch curve. In the case of the Cantor set C, the formula tells us

dimy C =

The appearence of non interger dimension inspires many people to calculate the Hausdorff

dimension of other fractal sets. Although, we have still no effective method to calculate the
dimensions.
In this paper we are concerned with a fractal set which is defined by reflections on the
Riemann sphere C. In this case we can apply the theory of a complex variable and we can
discuss the fractal sets in an explicit manner. In a similar manner to that of self similar
contraction mappings we can define fractal sets(see §3). When we notice that the reflection
is not a self similar mapping, we see that we can not apply the formula to this case(see
§3). Hence we need to estimate of the Hausdorff dimension. This can be done by use of
geometric observations(Theorem I). Next we proceed to classification of fractal sets which
are defined by reflections and we can choose two classes of fractal sets and prove two results
(Theorem ILIIT). Finally we give some computer simulations of the fractal sets.

The auther would like to express his hearty thanks to Prof. M.Taniguchi for informing
the result of Theorem III.

2 Basic materials on reflections

In this section, we recall basic materials on reflections.

For a circle C : |z — a| = r, we define the reflection with respect to C by

2
R(z) = ;i& + a.

Then we have the following proposition:
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Proposition 2.1 ([4])
(1) A reflection maps a circle to a circle.
(2) R¥(z) = R(R(2)) = =

Next we define the anharmonic ratios:

Definition 2.2
For four different points 21,27, 23,24 on Riemann sphere C, we define the anharmonic

ratios:

Rl — 2329 — 24

(21,22,23‘,24) =
. 29— 2321 — 24

Then we have the following propositions:

Proposition 2.3 ([4])
We have the following formula for the reflection R(z) with respect to C and three different

points 2y, 22,23 on C:

(21,22, 23, R(2)) = (21, 22, 23, 2) ' (1)

Proof
At first we notice the following fact: For four different points 2, 25, z3, 24 on Riemann

az+b
o (a,b,¢c,d € C,ad — bc # 0), we have the

sphere C and a M&bius transform T'(z) =

following formula:

(T(21), T(22), T(23), T (z4)) = (21, 22, 23, 24)
This can be obtained by a direct calculation and its proof may be omitted.
By this, we see that the anharmonic ratio is invariant under the parallel displacement
2
S(z) = z+ b and the Mébius transform T'(z) = L. Here we take a reflection:
z

r2

R(z) =

+ a.

Z—-a

Then we have

(21,20)23,2) = (21 — @, 20 — @, 23 — @, z — @)

N — 0,5 — 0,5 - @,Z— Q)

2 2

r r2 r2 o r
=( ) 3 12— by # —a = )
n—-—a'zz—a 73—« ' zZi—a

r
21 —Qy2 —Q,23 — Q, )

zZ—-a
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7.2
= (21,22,23, = p +01)
Z— O

= (Z]_, 22523, R(z))
which proves the assertion (1).

Proposition 2.4 ([1])
If there are four different points z;, 22, 23, 24 on one circle C, we see that (21, 22, 23, 24) is
real munber.

Proof
From

ar;

Z] — 23 29 — 23 (2)
21 — 24 2‘2—24’

arg(21, 22, 23, 24) = arg

we see that (2) is 0 or &= when 2z, 22, 23, 24 are on one circle.

3 Fractal sets defined by reflections

In this section, we consider fractal sets defined by reflections. At frist we give a definition

of reflection configuration.

Definition 3.1
A set of closed discs Dg,---, Dy is called "reflection configuration” if it satisfies the

following two conditions:
(I)DJ;EDO (.7=1:)N) (ll)D:’ﬂD;:qS (”"_Iéj)
We denote the configuration by (Dy, Dg,---, Dn; Do)

A reflection with respect to C; is denoted by R; (¢ = 1,---, N). From a given reflection
configuration, we can define a fractal set in the following manner:

Definition 3.2
Putting

N -
Ko=|J &S where K{)=D;
=1

and

N
K, = U K where EY = Ri(Kn1 \ K,(:ll),
i=1
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we define

o0
K=()Kn
n=0

which we call the fractal set defined by R;,---, Ry.

Here we notice the following fact: Every point z € K can be expressed as follows:

z= lim Rj, o---oR;(2)

Here we notice that contraction ratios of reflections are not constant:

Example 3.3
We take two circles:
Co:lzl=5 Ci:lz]=1.
We denote the reflection with respect to Cy; by R;. We see
1
Rl(Co) : IZI =z Ry (Cl) : IZI =1.

o

Hence we see that we can not apply the usual formula of Haursdorff dimension directly.

Here we can estimate them by use of the following theorem:

Theorem I (Approximation theorem for contraction ratios of reflection)

For points z,, 2, € Dy,---, Dy, we consider R;, o---o R (2,),Rjy -0 R;j (2). Then

we have following estimate:

Mo |Rjy_, 0+ 0 R, (2a) = Riy_, 0 -0 Rjy ()]
< IRJ'NO"'Ole(zG)_RJ'NO"'Ole(zb)|

< A |Rjy_ 0 - -0R;; (2a)— Rjy_, 0 - -0R;y ()]

2

AN = "o
(IajN—r"jla - anN' + rJ'N—r"ng (lajN-l"’jlb - O!Ole + er—l"'jlb)
/\gy) — Tojw

(lajN_l-".'ila - anNl - er—l“'jla)(|ajN—1"'jlb - aOJ'N{ - 'er—l'“jlb)
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For the proof of theorem, we prepare the following a lemma:

Lemma A
Let
o

R1 (Z) =

—— t o
F AN 4]
and Dy = {|z — &3] < 3}, D3 = {|z — ag| < r3}.
Then for two points z; € Dy, 23 € D3, we have the following estimate:

AP|zs = 25| < |Ry(22) — Ru(zs)| < APz — 2

,\5111) — T‘f .
(log — a1] + rz)glas —oy|+r3)
,\(1) _ L
0=

(laz -ay| - 7‘2)(|C¥3 - 011{ - 7‘3)

We put 23, 23 as in the figure. We take two points 2z, € Iy, 23 € D3. We put

12 — ol = b, |22 — 0a| = b2 — | = ", |25 — o] = €12 — 2} = 0%, |22 — 2| = a.
Then we have

N | r
lor — Ry (25)] = 7 lag — By(23)| = et |ay — Ry(22)| = 3 loy — Ry(23)] =

.

] I-:,w

Putting

|R1(23) — Ra(23)| = z*,|R1(22) — Ra(23)| =z,
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and using the formula a? = b? + ¢? ~ 2bc cos 8, we have

= () 4 () o (e ®
From formula (4)

In a similmer manner, we have

From the condition
b* > b,c* >ec.
Hence

|R(3) - R |R(z2) = R(zs)]

|z3 — 23] = |22 — z3

(5)

In a similar manner, we have the following estimate:

|R(z2) - R(zs)| _ |R(z5") — R(z3%)| (6)

|22 — 23] - |23* — 23

We can prove the assertion of Theorem I by successive uses of Lemma A for R;, o---oR;,.

4 Classfication of reflection configuration

In this section we give a classfication of relection configurations following the numbers of
connected components of the complements of {D;} in Dy. We make the definition:

Definition 4.1
(1) For a configuration (Dy,---.Dy; Do), we put

N
n(Dl""’DN)=#(é\UDJ')7 : (7)

i=1

we call the configuration of n-type.

(2) We denote each connected component in (7) by Ej (k=1,2,---, M). Then we have

R N M
c\Ubni= E
i=1 k=1
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Then we call E; sea when oo € E; and E}, lake when co ¢ Ej.

3) We call corner the interesction point of of two cicrles. We call Ek n-corner lake (sea ’
p
when Ek has n-corners.

Then we can prove the folowing proposition:

Proposition 4.2
For a given N, we have

n(Dy,--+,DN) =1,2,---,2N =4 (N > 3).

Moveover, the maximum is attained in case where each lake is 3-corner lake.

Proof

We prove the assertion by induction of N. In the case N = 3, the assertion is trival. We
assume that the assertion is true in the case of N —1. Then we attain the maximum by
putting a new disc on 3-corner lake so that it has touch with each arc of the 3-corner lake.
Hence we have proved the assertion.

Next we introduce two classes of fractal sets:

Type I (Cantor type)
A reflection configuration (Dy,---,Dn;Dp) is called of “Cantor type” if it satisfies the
following two conditions:

(i)DinDj=¢ (i#35)  (i)D; G Do (j=1,---,N). (8)

Next we consider the reflection R; with respect to C;, where C; = dD; (1=0,1,2,---,N).

Type II (Fricke-Klein type)
A reflection configuration (D, - -, Dn; Do) is called of “Fricke-Klein type”, if finite closed
discs {D; }j‘;l in C satisfy the following conditions:
(1) D?OND§=¢ (i # 9),

(i) C\ U D; has just two connected components,
J=1

(iii) Each circle has just two points of contact with two of the other circles.



5 Two theorems on D}

In this section we prove two theorems on fractal sets defined by reflections.
At first we prove the following theorem for a fractal set of Cantor type:

Theorem II
Let K be a fractal set of Cantor type (n(D;, D, D3) = 1) and assume N = 3. Then we
have dimgK < 1.

Proof
At first we notice that

2 ri
p — + Qg | — — — + Qg
2] — Oy 29 — Qg

r3(22 — z1)
(51— )(5 — o)

R2 (Zl) - R2 (22)

Here we put
21— 22| =2r1 , |Ra(z1) — R(z2)] = 2r}

o r2
r1 (2r1 4+ b2+ 12) (b2 +72)
< r o
(2r1 +r2)rs 2r1 412

Putting
ri = |R1(Ra(21)) — R1(Rz(22))]
We have
r{ _ r2 <__n
ri (2ri+bip+ra)(Bp+r2) T 2ra+ 7
Hence

ry T2 r1
rr 2ri4r2 2ro4 1

Next we show

Because

6 > 2ri+1r2 2ra 41
(2ry + r2)(2ra + 1) > 61172
IN2 15

2t2_t+2=2(t—z) +§>0 (bytzi_;)
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We consinder the process
Ky — K,

K, = Ugiogj(UKo)
7
The Haursdorff dimension can be estimated by

D<Dy , Y M=

From 1
A < 5
we see that
Dy < 1.
Hence
dimgD < 1.

Next we prove the following theorem for a fractal set of Fricke-Klein type:

Theorem III
Let K be a fractal set of Flicke-Klein type (n(D1, D;, D3) = 2) and assume N = 3. Then
we have dimg K = 1.

Proof
Let 2;,22,23 be points of contact of circle C;,C; and Cs. We assume 21,22 € C; and
23 € Cy. Then we have R;(21) = 21, Ri1(22) = 22 and

(21, 22, 23, R1(23)) = (21,22, 23,23) (by Proposition 2.3)

21 —23 22 — 23

29 —23 21 — 23

=1e¢R

Hence we see four different points 21, 22, z3, R1{z3) are on the same circle by Prop 2.4.
Next we show K = C (21, 22, 23).

We prepare the following propositions:

Proposition B



Let z€ D; ={lz —ay| <}, we Dj ={|z— aj] <rj} (3,7 =1,2,3), then

ri
ri+ 2r;

d(R(2), R(w)) < pd(z,w), p= max ( ) G#3)

Proof is easy and may be omitted.

Proposition C
For z4 € C(21,22,23) (24 # 21, 22, 23), We have Ry(zs) € C(2y, 2, 23).

Proof
We take z4 € C(21, 29, 23) With z4 # 21,2, 23. Then we have

(21,22, 23, R1(24)) = (21,22, 23,24)  (by Proposition 2.3)

= (21,22, 23,24) € R (by Proposition 2.4)

Hence (21, 22, 23, R1(24)) € R and we see four different points zy, 22, 23, Ry (24) are on the

same circle by Prop 2.4.

With these propositions we prove Theorem III.
K = C(z1,29,23) <= K C C(21, 23, 23) and K D C(z1, 22, 23)
At first we notice that K D C'(21, 22, 23) is clear. Next we show K C C(zy, 23, 23).

K C C(z1,22, 23)

z €K=>Z€C(Zl,22,23)

—

z= lim (R;, 0---0 R;(20)),20 € K = z € C(21,22,23) (see formula (3))

n—oo

From

d(z,C(z1,22,23)) = nango d(R;, o---o R;,(20),C(21, 22, 23))

< lim d(R;, o--- o R;, (20), Rj, 0 -+ 0 R;, (wo))

n—oQ

84




(by Rj, o---0 Rj,(wo) € C(21,22,23), see Proposition C)

< l_i_)m p"d(20,wo) =0 ( p is choosen in Proposition B)

We see that d(z,C(z1, 22, 2z3)) = 0. Therefore z € C(z1, 22, 23)-
From dimg S'= 1, we can conclude that dimg K =1

6 Some computer simulations of fractal sets

In this section we propose two problems on the topics and give some computer simulations
of fractal sets defined by reflections.

At first we propose two problems.

(1) Can we calculate the Hausdorff dimensions of fractal sets of ” Cantor type” and ”Fricke-
Klein type”?

(2) Can we prove the following proposition?: (see §4)

M
UEi=1=dimg K >1
k=1

Next we give some computer simulations of fractal sets defined by reflections.
(I) Cantor type

5 5
Cl!lZI:Z, CZ:IZ_3I=

4

crfe- (3+ 55

5
27 2 4
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