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1 Introduction

Let X and S be independent random variables where X has p-variate normal distribution
N,(6,02I,) and S/0? has chi square distribution x2 with n degrees of freedom. We deal with
the problem of estimating the unknown variance o2 by an estimator J relative to the quadratic
loss function La(8, 02) = (6/02 — 1)2.

Stein (1964) showed that the best affine equivariant minimax estimator is d = S/(n +2) and
it can be improved by considering a class of scale equivariant estimators

g = —5 (L= 9(W))S, 1

for W = || X||2/S. Explicitly, he found an improved estimator 6° = min{S/(n + 2), (| X % +
S)/(p+n+2)} = (n+2)7}(1 - ¢5(W))S, where ¢°(w) = max{0, (p — (n +2)w)/(p+ n +2)}.
Brewster and Zidek (1974) derived an improved generalized Bayes estimator 68Z = (n+2)"1(1—
#BZ(W))S, where

—-n/2— 1 -1
$5% (w) = 2(1n++w3 — : ( /0 t”/2‘1{1—wt/(w+1)}"/2+1dt) : 2)

They also gave the general sufficient condition for minimaxity, which we denote by the BZ-
condition in this paper. They showed that d,4 is minimax if

(BZ1) ¢(w) is nonincreasing,

(BZ2) 0 < ¢(w) < ¢7%(w).
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Clearly both ¢5(w) and ¢B%(w) satisfy the BZ-condition.
On the other hand, Strawderman (1974) derived another sufficient condition for minimaxity,
which we denote by the ST-condition in this paper. He showed that 04 is minimax if

(ST1) (1+ w)*¢(w) is nonincreasing,
(8T2) 0 < ¢(w) < Ba(p,n,¢).

The upper bound By(p, n, €) will be discussed detail in Section 2. Strawderman (1974) claimed
that 657 satisfies the ST-condition. But his claim is incorrect as pointed out in Ghosh (1994)
and Pal et al. (1998). Ghosh (1994) proposed a generalized Bayes estimator §¢ = (n+2)~1(1 —
¢%(W))S where

21+ w)~"/2-1

1 -1
¢%(w) = R ) ( /0 #2901 — wt/(w + 1)}"/2+1dt) (3)

and showed that ¢C(w) for —p/2 — 1 < a < —1 satisfies the BZ-condition for minimaxity. Pal
et al. (1998) pointed out that ¢&(w) for some a(< —1) also satisfies the ST-condition. As far
as we know, however, generalized Bayes estimators which satisfy the ST-condition but do not
satisfy the BZ-condition have not been found to date.

In this paper, we propose such estimators. We consider a generalized Bayes estimator §CB =
(n+2)"1(1 — ¢5B(W))S where

2(w +1)=1 [y 721 — )b-1{1 _ it /(w + 1)}™/2~bdt
p+n+2a+2) fol tP/2+a(1 — £)b{1 — wt/(w + 1)}n/2-b+14¢

¢%B(w) = (4)
which, for b > 0 does not satisfy the BZ-condition. We show that ¢%Z(w) for some a and b > 0
satisfies the ST-condition. We make two main contributions. The first is to enrich the class
of minimax generalized Bayes estimators under Ly. The second is to find within our class, a
subclass of estimators of a particularly simple form (n + 2)~1(1 + a/(W +1))~1S. This second
contribution is interesting since most known generalized Bayes minimax procedures such as (2)
or (3) seem quite complicated while the empirical Bayes estimator 6° is quite simple. Hence we
produce generalized Bayes estimators with a form as simple as 6°.

2 Strawderman’s type sufficient condition for minimaxity

First we review Strawderman (1974)’s sufficient condition for minimaxity. Under Ly, Straw-
derman (1974) proposed as a upper bound of ¢

(2 .T(p/2+n/2+2+2)T(n/2+e+1) pe )
ST _
By (p’”’e)_mm(ue’ T(/2+n/2+e+2(n/2+2+2)p+n+2)’

(5)

He claimed that B < 2/(1 + €) is required to guarantee that the function g(u)u¢t!, where
9(u) = 2u — Bust! — 2(n + 2)/(p + n + 2), changes sign only once from negative to positive on
€ [0,1]. Pal et al. (1998) pointed out that g(1) > 0, that is, B < 2p/(p + n + 2), should be
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also required and hence proposed min(B57,2p/(p +n + 2)) as the upper bound. Here noting
that the equation g(u) = 0 has at most two solutions on [0, 00}, g(0) < 0 and g(u) is negative for
sufficiently large u, we see that g(u) changes sign only once from negative to positive on [0, 1] if
and only if g(1) > 0. Therefore we propose the modified version of the ST-condition.

Theorem 2.1. Estimators of the form (1) are minimaz under Lo provided € > 0, (1 + w)¢¢(w)
s nonincreasing and 0 < ¢ < By(p,n,€) where

. 2p T'(p/2+n/2+2+2)T(n/2+€+1) pe
Bz(p’n’e)—mm(p+n+2’ r(p/z+n/2+e+2)r(n/2+2e+2)p+n+2)' (6)

3 Minimax generalized Bayes estimators

In this section, we derive minimax generalized Bayes estimators satisfying the sufficient condi-
tion proposed in Theorem 2.1 for the loss L;. We consider a class of generalized Bayes estimators
with respect to the following prior distribution. For n = 0~2, let the conditional distribution
of @ given A and 7, for 0 < A < 1, be normal with mean vector 0 and covariance matrix
A~1(1 — A)n~'I, and let the density functions of A and 5 be proportional to A%(1 — )\)bI(g,l)(/\)
and 7°I(g,oc)(7), respectively. Then the joint distribution g(n, z, s) of 1, X, S is given by

o2, [#/3exp (~Da—o12) (12)" exp (-225Zere)
-1°A%(1 — A)°n™2 exp(—ns/2)dOdA

p/2 — (1 2 2)
2 (M _ o= =XNaz|® _ nllzll ) .
O(./"p <1-,\) exp( T2 - 2
-n°A%(1 — A2 exp(—ns /2)dOdA

1 2,\
x n(P+‘n)/2+C./0 /\P/2+a(1 _ )‘)b exp (_7’”1:” > + 8) d.

As the generalized Bayes estimator under Ly loss is written as E(n | X,S)/E(n? | X,S) =
[ ng(n,z,s)dn/ [ ng(n, =, s)dn, we have the estimator

2
B JEAP/24a(1 = MYb [ 5p+m)/24eH] gy (_nMﬁ#) dndX

GB
677 = JE ap/2+a(1 — AP [ pip+n)/2+et2 exp (_nﬂ_{ﬂ;'\_*-ﬁ) dndA
B 1 fol AP/2+a(1 — \P(1 + AW)~(n+p)/2=c=24),
T p+tn+2(c+2) fol AP/2+a(1 — \)b(1 + AW)—(n+p)/2—c=34)
1 fol /201 — )01 — tW/(W + 1)}*/2-a-b+egy 1

= p+n+ 2(c + 2) fol tp/2+a(1 - t)b{l - tW/(W + 1)}n/2—a—b+c+1dt
= ¢ (W)S, (say)



which is well-defined if a > —p/2—1 and b > —1. In the following, as we have lim,,_,o, B (w) =
1/{n + 2+ 2(c — a)} from (7), we only consider the case a = ¢, that is,

6B () = 1 Jo 72401 — )1 = tW/(W + 1)}/2~bay )
P+n+2(a+2) [1p/24a(1 — £)o{1 — tW/(W + 1)}n/2-b+1gt
In particular, we have a simple form
GB p+2a+2\7"
= 4T T2
o) = (n+24 LLEED) ©

by letting b = n/2 in (8). This is unexpected because generalized Bayes minimax shrinkage
estimators such as (2) and (3) typically have a complicated form. The estimator (9) has a form
which is comparable to Stein’s estimator 6° in its simplicity. We will show, in Proposition 3.5
below, that ¢y “B(W)S given by (9) is minimax for certain a.

Some basic properties of behavior of ¢®B given by (9) are given in the following result.

Lemma 3.1. 1. ¢%B(w) is increasing in w for b > 0.
2. %8 is decreasing in a for fied b > 0 and w.

Since 6¢2 for @ = —1 and b = 0 corresponds to §8% , the BZ-condition together with Lemma
3.1 implies that 6°B for —p/2 ~1 < a < —1 and b = 0, which is equal to Ghosh’s (1994)
estimator, is minimax.

Proof. By the change of variables in (8), we have

OB () = 1 Jo P/ (v — t)b(1 — t)™/2bqy
© p+n+2(a+2) [ te/2Ha(y — t)b(1 — t)n/2-bHgy’

where v = w/(w + 1). For v; > vy and b > 0,
Jo /2 (vy — t)B(1 — t)/2-dt S Jo R — ) (1 — )"/ bdt
f(;’l tp/2+a(v1 — t)b(l — t)n/2—b+1dt = fovz tp/2+a(v1 - t)b(l - t)n/2—b+1dt

S _Jo /(v - 1)°(1 — t)~/2"bat
= fovz tp/2+a(1,2 - t)b(l - t)n/2—b+1dt'

The first inequality follows from the fact that the ratio of integrands of the numerator and
the denominator is increasing, the second inequality from the fact that {(v; — t)/(vy — t)}® is
increasing. This completes the proof of (i).

By the change of variables (u = s, t = u)), in the first equality in (7) we have

OB (w) = J W2 exp(~u/2)h (u)du
Jo? un/?+l exp(—u/2) hyy (u)du’

where hy,(u,a) = [3' t#/2+8(1 — t/u)® exp(—wt/2)dt. Hence, to prove (ii), it is sufficient to show.
that hy(u,a1)/hy(u,az) is increasing in u for @) > az. As in the proof of (i), we see that for
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up >ugand b>0

Jor 1P/ e (uy — t)P exp(—wt/2)dt S Jo2 tP/2401 (g — t)b exp(~wt/2)dt
Jot tP/2az(uy — t)b exp(—wt/2)dt [ tP/2+o2(ug — t)b exp(—wt/2)dt
Jo2 tP/2F1 (uy — ¢)® exp(—wt/2)dt

— Jo tP/Fe2 (ug — t)b exp(—wt/2)dt’

which completes the proof of (ii). a

Note: Since the derivative of {(1 —vt)/t}"/?t! is (—n/2 — 1){(1 — vt)/t}™2¢t~2, an integration
by parts in (8) gives p®B(w) = (n+ 2)"1(1 — ¢GB(w)) where

2b(1 — v) fol p/2+a+1(1 _ £)b=1(1 — yt)n/2-bgy
p +n+ 2((1 -+ 2) f(;l tp/2+a(1 - t)b(l - 'Ut)n/2—b+1dt

2(1 — v)"/2+1 1
= 1 for b =0.
P+n+2(a+2) [Fip/2+e(] — ut)n/2+1dt

¢%B(w) = for b>0

Since v = w/(1 + w) and all integrals above approach constant values, we have

495 (w) = O{(w+1)""%"1} for b=0
O{(w+1)"1} for 5> 0.

Since ¢8% (w) is ¢OB(w) for a = ~1 and b= 0, ¢BZ(w) = O{(w + 1)~™/2-1}. This implies that
¢%B(w) for b > 0 is greater than ¢BZ(w) for sufficiently large w. Thus we have the following
result.

Theorem 3.2. ¢SB(w) for b > 0 does not satisfy (BZ2) of the BZ-condition.

Next we investigate the properties of ¢©F in order to apply the ST-condition proposed in
Theorem 2.1.

Theorem 3.3. 1. ¢CB(w) < (p+2a+2)/(p +n+2a+4).
2. (1+ w)*¢®B(w) is monotone nonincreasing if
(a) b=0anda< —p/2—-2+(n/2+1)/€ or

(b)) 0<b<n/2+1,e<landa<-p/2—b—2+(n/2+1)/e.
(c)b>n/2+1anda< -p/2—b—-2+b(b—-n/2)/(e+b—n/2-1).
Proof. By Theorem 3.1 ¢SB(w) is decreasing in w and hence ¢SB(w) < ¢%B(0) = (p + 2a +

2)/(p + n + 2a + 4), which completes the proof of (i).
For b = 0, The derivative of (1 + w)*¢(w) with respect to v = w/(w + 1) is written as

j‘ol p/2+a+1 (1- 'ut)"/zdt]

- 10
fol tp/2+a(1 — t)n/2+1dt (10)

(1-v)"1p(w)[-n/2—1+€e+(n/2+1)(1 —v)
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Using the relation
1 1
/ t*(1—t)P(1 —vt)dt = (1 - v)5+7+1/ A1 —1)2(1 — vt) > B-124 (11)
0 0

for a > —1 and § > —1, the term in bracket in (10) is written as
fol(l _ t)p/2+a+l(1 _ ,vt)-—p/Z—n/2—a.—3dt
fol(l — t)P/2+a(1 — yt)—P/2-n/2-a-3g}
which is less than —n/2 1+e+(n/2+1)(p/2+a+1)/(p/2+a+2) = e— (n/2+1)/(p/2+a+2)
because (1 — vt)~! is increasing in ¢. This completes the proof in the case b = 0.

For b > 0, the derivative of (1 + w)*¢(w) with respect to v = w/(w + 1), together with the
relation (11) is written as

-n/2-14+€e+(n/2+1)

tb—l(l t)p/2+a+2(1 - vt)—p/z—n/z—a—'zdt

-t e -1+ 6~ ny2) 02

fo tb=1(1 — t)p/2+a+1(] — pt)—p/2-n/2-a-244
fo th(1 — £)p/2+0+1(] _ p)~p/2-n/2-a~3g;
Jo t5(1 — t)p/2+a(1 — pt)-p/2-n/2-a-344 ]
By applying a Maclaurin expansion to the integrals in (12), the term in bracket in (12) is written
as

+(n/2+1-1) (12)

(b=n/2)(p/2+a+2) F(p/2+n/2+a+2,bp/2+a+b+3,v) -
p/2+a+b+2 F(p/2+n/2+a+2,b,p/2+a+b+2,0)
(b—n/2-1)(p/2+a+1) F(p/2+n/2+a+3,b+1,p/2+a+b+3,v)

B p/2+a+b+2 F(p/2+n/2+a+3,b+1,p/2+a+b+2,v)’

where F(a, b, ¢, z) is the hypergeometric function

a)i b)z
0 T for

e—1+

(13)

F(abc,a:)-l-i-z( (@i=a-(a+1)---(a+i—1).

From the inequality

F(p/2+n/2+a+2,b,p/2+a+b+3,v) > F(p/2+n/2+a+3,b+1,p/2+a+b+3,v)
F(p/2+n/2+a+2,b,p/2+a+b+2,v) ™ F(p/2+n/2+a+3,b+1,p/2+a+b+2,v)

(13) for b < n/2+1 is less than
p/2+a+1—-n/2+bF(p/2+n/2+a+2,b,p/2+a+b+3,v)

T atatb+? Fp/Ztn/2+atobpitatbia)
. n/2+1
< e—
=€ mm(l’p/2+a+b+2)

which is nonpositive when e < 1 and a < —p/2 — b — 2 + (n/2 + 1)/e. This completes the proof
in thecase 0 < b<n/2+1.
For b > n/2 + 1, (13) is less than
b-n/2)(®/2+a+2)
p/2+a+b+2
which is nonpositive when a < —p/2 —b -2+ b(b—n/2)/(e + b—n/2 — 1). This completes the
proof. O

e—1+4

)
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Combining Theorem 3.3 and Theorem 2.1, we have the following result.

Theorem 3.4. The generalized Bayes estimator 67 given by (4) is minimaz under Ly loss if

-p/2—-1<a<-p/2—-1+ max min ((n/2 + 1)1—13—2%———’—;25, Ca(n, e, b)) (14)
where
(n/2+1)/e—1 b=0
Ca(n,e,b) = { —b— 1+ max(n/2 +1,(n/2 + 1)/¢) 0<b<n/2+1

-b—1+bb-n/2)/(e+b-—n/2-1) b>n/2+1.

Figure 1 reveals the upper bounds for minimaxity in the case p = 10. Note that the upper
bound given by (14) is not always continuous in b = 0.

16 i - .

b14- —_— N=5H |
12} | = n=%8 .
ST 8 n=

191 \ (b=0)

8t e 1) =20

6 “ e n=20 |
al \\.\ (b=0)
| ; |
Ry — -4.5= rE—ya— T

(-p/2-1) a
Figure 1 : Ranges of values for minimaxity in the case p = 10 under L3 loss

As noted earlier, when b = 0 ¢CP satisfies the BZ-condition for —p/2 — 1 < a < —1 but does
not satisfy the ST-condition when a = —1 (i.e. B = §8Z). Our contribution when b = 0 is
to add an explicit upper bound on a so that the ST-condition is satisfied. This upper bound is
of course less than —1 so that when b = 0. The class of estimators satisfying the BZ-condition
contains the class satisfying the ST-condition. However when b > 0 the class of estimators 6GB
satisfying the BZ-condition is empty while the class satisfying the ST-condition is non-empty
and is in fact quite rich.
Finally we highlight the following very simple case.

Proposition 3.5. the generalized Bayes estimator

1 o -t
S
n+2 (1+W+1)

is minimaz under Ly if 0 < o < max, min (Bz(p, n,€)(1 — Bz(p, n, €)1 1/e— 1)




182

Proof. Apply Theorem 3.4 to the estimator given in (9). a
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