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1 Introduction
Let $X$ and $S$ be independent random variables where $X$ has pvariate normal distribution

$N_{p}(\theta, \sigma^{2}I_{p})$ and $S/\sigma^{2}$ has chi square distribution $\chi_{n}^{2}$ with $n$ degrees of freedom. We deal with

the problem of estimating the unknown variance $\sigma^{2}$ by an estimator $\delta$ relative to the quadratic

loss function $L_{2}(\delta, \sigma^{2})=(\delta/\sigma^{2}-1)^{2}$ .
Stein (1964) showed that the best affine equivariant minimax estimator is $\delta_{0}=S/(n+2)\mathrm{m}\mathrm{d}$

it can be improved by considering aclass of scale equivariant estimators

$\delta_{\phi}=\frac{1}{n+2}(1-\phi(W))S$, (1)

for $W=||X||^{2}/S$ . Explicitly, he found an improved estimator $\delta^{S}=\min\{S/(n+2)$ , $(||X||^{2}+$

$\mathrm{S}/(\mathrm{n}+n+2)\}=(n+2)^{-1}(1-\phi^{S}(W))S$, where $\phi^{S}(w)$ $= \max\{0, (p-(n+2)w)/(p+n+2)\}$ .
Brewster and Zidek (1974) derived an improved generalized Bayes estimator $\delta^{BZ}=(n+2)^{-1}(1-$

$\phi^{BZ}(W))S$ , where

$\phi^{BZ}(w)=\frac{2(1+w)^{-n/2-1}}{n+p+2}(\int_{0}^{1}t^{p/2-1}\{1-wt/(w+1)\}^{n/2+1}dt)^{-1}$ (2)

They also gave the general sufficient condition for minimaxity, which we denote by the BZ-
condition in this paper. They showed that $\delta_{\phi}$ is minimax if

(BZ1) $\phi(w)$ is nonincreasing,

(BZ2) $0\leq\phi(w)\leq\phi^{BZ}(w)$ .
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Clearly both $\phi^{S}(w)$ and $\phi^{BZ}(w)$ satisfy the BZ-condition.
On the other hand, Strawderman (1974) derived another sufficient condition for minimaxity,

which we denote by the $\mathrm{S}\mathrm{T}$-condition in this paper. He showed that $\delta\psi$ is minimax if

(ST1) $(1+w)^{\epsilon}\phi(w)$ is nonincreasing,

(ST2) $0\leq\phi(w)\leq B_{2}(p,$n,$\epsilon)$ .

The upper bound $B_{2}(p, n, \epsilon)$ will be discussed detail in Section 2. Strawderman (1974) claimed
that $\delta^{BZ}$ satisfies the $\mathrm{S}\mathrm{T}$-condition. But his claim is incorrect as pointed out in Ghosh (1994)
and Pal et al. (1998). Ghosh (1994) proposed ageneralized Bayes estimator $\delta^{G}=(n+2)^{-1}(1-$

$\phi^{G}(W))S$ where

$\phi^{G}(w)=\frac{2(1+w)^{-n/2-1}}{n+p+2(a+2)}(\int_{0}^{1}t^{p/2+a}\{1-wt/(w+1)\}^{n/2+1}dt)^{-1}$ (3)

and showed that $\phi^{G}(w)\mathrm{f}\mathrm{o}\mathrm{r}-p/2-1<a\leq-1$ satisfies the $\mathrm{B}\mathrm{Z}$-condition for minimaxity. Pal
et al. (1998) pointed out that $\phi^{G}(w)$ for some $a(<-1)$ also satisfies the $\mathrm{S}\mathrm{T}$ condition As far
as we know, however, generalized Bayes estimators which satisfy the $\mathrm{S}\mathrm{T}$-condition but do not
satisfy the $\mathrm{B}\mathrm{Z}$-condition have not been found to date.

In this paper, we propose such estimators. We consider ageneralized Bayes estimator $\delta^{GB}=$

$(n+2)^{-1}(1-\phi^{GB}(W))S$ where

$\phi^{GB}(w)=\frac{2b(w+1)^{-1}}{p+n+2(a+2)}\frac{\int_{0}^{1}t^{p/2+a+1}(1-t)^{b-1}\{1-wt/(w+1)\}^{n/2-b}dt}{\int_{0}^{1}t^{p/2+a}(1-t)^{b}\{1-wt/(w+1)\}^{n/2-b+1}dt}$ (4)

which, for $b>0$ does not satisfy the $\mathrm{B}\mathrm{Z}$-condition. We show that $\phi^{GB}(w)$ for some $a$ and $b>0$

satisfies the ST-condition. We make two main contributions. The first is to enrich the class
of minimax generalized Bayes estimators under $L_{2}$ . The second is to find within our class, a
subclass of estimators of aparticularly simple form $(n+2)^{-1}(1+\alpha/(W+1))^{-1}S$ . This second
contribution is interesting since most known generalized Bayes minimax procedures such as (2)
or (3) seem quite complicated while the empirical Bayes estimator $\delta^{S}$ is quite simple. Hence we
produce generalized Bayes estimators with aform as simple a $\delta^{S}$ .

2Strawderman’s type sufficient condition for minimaxity
First we review Strawderman (1974)’s sufficient condition for minimaxity. Under L2, Straw-

derman (1974) proposed as aupper bound of $\phi$

$B_{2}^{ST}(p, n, \epsilon)=\min(\frac{2}{1+\epsilon},$ $2 \frac{\Gamma(p/2+n/2+2\epsilon+2)\Gamma(n/2+\epsilon+1)}{\Gamma(p/2+n/2+\epsilon+2)\Gamma(n/2+2\epsilon+2)}\frac{p\epsilon}{p+n+2})$ . (5)

He claimed that $B\leq 2/(1+\epsilon)$ is required to guarantee that the function $g(u)u^{\epsilon+1}$ , where
$g(u)=2u-Bu^{\epsilon+1}-2(n+2)/(p+n+2)$ , changes sign only once from negative to positive on
$u\in[0,1]$ . Pal et al. (1998) pointed out that $g(1)>0$ , that is, $B<2p/(p+n+2)$ , should be
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also required and hence proposed $\min(B_{2}^{ST}, 2p/(p+n+2))$ as the upper bound. Here noting
that the equation $g(u)=0$ has at most two solutions on [0,$\infty]$ , $g(0)<0$ and $g(u)$ is negative for
sufficiently large u, we see that $g(u)$ changes sign only once from negative to positive on [0, 1] if
and only if $g(1)>0$ . Therefore we propose the modified version of the ST-condition.

Theorem 2.1. Estimators of the $fom(\mathit{1})$ are minimcrx under $L_{2}$ prvvided $\epsilon>0$ , $(1+w)^{\epsilon}\phi(w)$

is nonincreasing and $0\leq\phi<B_{2}(p, n, \epsilon)$ where

$B_{2}(p,$n,$\epsilon)=\min(\frac{2p}{p+n+2},2\frac{\Gamma(p/2+n/2+2\epsilon+2)\Gamma(n/2+\epsilon+1)}{\Gamma(p/2+n/2+\epsilon+2)\Gamma(n/2+2\epsilon+2)}\frac{p\epsilon}{p+n+2})$ . (6)

3Minimax generalized Bayes estimators
In this section, we derive minimax generalized Bayes estimators satisfying the sufficient condi-

tion proposed in Theorem 2.1 for the loss $L_{2}$ . We consider aclass of generalized Bayes estimators
with respect to the following prior distribution. For $\eta=\sigma^{-2}$ , let the conditional distribution
of $\theta$ given Aand $\eta$ , for $0<\lambda<1$ , be normal with mean vector 0and covariance matrix
$\lambda^{-1}(1-\lambda)\eta^{-1}I_{p}$ and let the density functions of Aand $\eta$ be proportional to $\lambda^{a}(1-\lambda)^{b}I_{(0,1)}(\lambda)$

and $\eta^{\mathrm{c}}I(0,\infty)(\eta)$ , respectively. Then the joint distribution $\mathrm{g}(\mathrm{r}\}, x, s)$ of $\eta$ , $X$, $S$ is given by

$g( \eta, x, s)\propto\int\eta^{p/2}\exp(-\frac{\eta}{2}||x-\theta||^{2})(\frac{\eta\lambda}{1-\lambda})^{p/2}\exp(-\frac{\lambda}{1-\lambda}\frac{\eta}{2}||\theta||^{2})$

. $\eta^{e}\lambda^{a}(1-\lambda)^{b}\eta^{n/2}\exp(-\eta s/2)d\theta d\lambda$

$\propto\int\eta^{p/2}(\frac{\eta\lambda}{1-\lambda})^{p/2}\exp(-\eta\frac{||\theta-(1-\lambda)x||^{2}}{2(1-\lambda)}-\frac{\eta||x||^{2}\lambda}{2})$

. $\eta^{c}\lambda^{a}(1-\lambda)^{b}\eta^{n/2}\exp(-\eta s/2)d\theta d\lambda$

$\propto\eta^{(p+n)/2+c}\int_{0}^{1}\lambda^{p/2+a}(1-\lambda)^{b}\exp(-\eta\frac{||x||^{2}\lambda+s}{2})d\lambda$ .

As the generalized Bayes estimator under $L_{2}$ loss is written as $E(\eta|X, S)/E(\eta^{2}|X, S)=$

$\int\eta g(\eta, x, s)d\eta/\int\eta^{2}g(\eta, x, s)d\eta$ , we have the estimator

$\delta^{GB}=\frac{\int_{0}^{1}\lambda^{p/2+a}(1-\lambda)^{b}\int_{0}^{\infty}\eta^{(p+n)/2+c+1}\exp(-\eta\frac{||X||^{2}\lambda+S}{2})d\eta d\lambda}{\int_{0}^{1}\lambda^{p/2+a}(1-\lambda)^{b}\int_{0}^{\infty}\eta^{(p+n)/2+c+2}\exp(-\eta\frac{||X||^{2}\lambda+S}{2})d\eta d\lambda}$

$= \frac{1}{p+n+2(c+2)}\frac{\int_{0}^{1}\lambda^{p/2+a}(1-\lambda)^{b}(1+\lambda W)^{-(n+p)/2-c-2}d\lambda}{\int_{0}^{1}\lambda^{p/2+a}(1-\lambda)^{b}(1+\lambda W)^{-(n+p)/2-c-3}d\lambda}S$

$= \frac{1}{p+n+2(\mathrm{c}+2)}\frac{\int_{0}^{1}t^{p/2+a}(1-t)^{b}\{1-tW/(W+1)\}^{n/2-a-b+e}dt}{\int_{0}^{1}t^{p/2+a}(1-t)^{b}\{1-tW/(W+1)\}^{n/2-a-b+c+1}dt}S$ (7)

$=\varphi^{GB}(W)S$, (say)
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which is well-defined if a $>-\mathrm{p}/2$ and b $>-1$ . In the following, as we have $\lim_{warrow\infty}\varphi^{GB}(w)=$

$1/\{n+2+2(c-a)\}$ ffom (7), we only consider the case a $=c$, that is,

$\varphi^{GB}(w)=\frac{1}{p+n+2(a+2)}\frac{\int_{0}^{1}t^{p/2+a}(1-t)^{b}\{1-tW/(W+1)\}^{n/2-b}dt}{\int_{0}^{1}t^{p/2+a}(1-t)^{b}\{1-tW/(W+1)\}^{n/2-b+1}dt}$ . (8)

In particular, we have asimple form

$\varphi^{GB}(w)=(n+2+\frac{p+2a+2}{w+1})^{-1}$ (9)

by letting $b=n/2$ in (8). This is unexpected because generalized Bayes minimax shrinkage
estimators such as (2) and (3) typically have acomplicated form. The estimator (9) has aform
which is comparable to Stein’s estimator $\delta^{S}$ in its simplicity. We will show, in Proposition 3.5
below, that $\psi^{GB}(W)S$ given by (9) is minimax for certain $a$ .

Some basic properties of behavior of $\varphi^{GB}$ given by (9) are given in the following result.

Lemma 3.1. 1. $\varphi^{GB}(w)$ is increasing in w for b $\geq 0$ .

2. $\varphi^{GB}$ is decreasing in a for fixed b $\geq 0$ and w.

Since $\delta^{GB}$ for $a=-1$ and $b=0$ corresponds to $\delta^{BZ}$ , the $\mathrm{B}\mathrm{Z}$-condition together with Lemma
3.1 implies that $\delta^{GB}$ for $-p/2-1<a\leq-1$ and $b=0$ , which is equal to Ghosh’s (1994)
estimator is minimax.

Proof By the change of variables in (8), we have

$\varphi^{GB}(w)=\frac{1}{p+n+2(a+2)}\frac{\int_{0}^{v}t^{p/2+a}(v-t)^{b}(1-t)^{n/2-b}dt}{\int_{0}^{v_{tp/2+a(v-t)^{b}(1-t)^{n/2-b+1}dt}}}$,

where $v=w/(w+1)$ . For $v_{1}>v_{2}$ and $b\geq 0$ ,

$\frac{\int_{0}^{v_{1}}t^{p/2+a}(v_{1}-t)^{b}(1-t)^{n/2-b}dt}{\int_{0}^{v_{1}}t^{p/2+a}(v_{1}-t)^{b}(1-t)^{\mathrm{n}/2-b+1}dt}\geq\frac{\int_{0}^{v_{2}}t^{p/2+a}(v_{1}-t)^{b}(1-t)^{n/2-b}dt}{\int_{0}^{v_{2}}t^{p/2+a}(v_{1}-t)^{b}(1-t)^{n/2-b+1}dt}$

$\geq\frac{\int_{0}^{v_{2}}t^{p/2+a}(v_{2}-t)^{b}(1-t)^{n/2-b}dt}{\int_{0}^{v_{2}}tp/2+a(v_{2}-t)^{b}(1-t)^{n/2-b+1}dt}$ .

The first inequality follows ffom the fact that the ratio of integrands of the numerator and
the denominator is increasing, the second inequality from the fact that $\{(v_{1}-t)/(v_{2}-t)\}^{b}$ is
increasing. This completes the proof of (i).

By the change of variables $(u=\eta s, t=u\lambda)$ , in the first equality in (7), we have

$\varphi^{GB}(w)=\frac{\int_{0}^{\infty}u^{n/2}\exp(-u/2)h_{w}(u)du}{\int_{0}^{\infty}u^{n/2+1}\exp(-u/2)h_{w}(u)du}$ ,

where $u(u, a)=\Gamma_{0}t^{p/2+a}(1-t/u)^{b}\exp(-wt/2)dt$. Hence, to prove (ii), it is sufficient to show
that $h_{w}(u, a_{1})/h_{w}(u, 0_{2})$ is increasing in $u$ for $a_{1}>a_{2}$ . As in the proof of (i), we see that for
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$u_{1}>u_{2}$ and $b\geq 0$

$\frac{\int_{0}^{u_{1}}t^{p/2+a_{1}}(u_{1}-t)^{b}\exp(-wt/2)dt}{\int_{0}^{u_{1}}t^{p/2+a_{2}}(u_{1}-t)^{b}\exp(-wt/2)dt}\geq\frac{\int_{0}^{u_{2}}t^{p/2+a_{1}}(u_{1}-t)^{b}\exp(-wt/2)dt}{\int_{0}^{u_{2}}t^{p/2+a_{2}}(u_{1}-t)^{b}\exp(-wt/2)dt}$

$\geq\frac{\int_{0}^{u_{2}}t^{p/2+a_{1}}(u_{2}-t)^{b}\exp(-wt/2)dt}{\int_{0}^{u_{2}}t^{p/2+a_{2}}(u_{2}-t)^{b}\exp(-wt/2)dt}$,

which completes the proof of (ii). $\square$

Note: Since the derivative of $\{(1-vt)/t\}^{n/2+1}$ is $(-n/2-1)\{(1-vt)/t\}^{n/2}t^{-2}$ , an integration
by parts in (8) gives $\varphi^{GB}(w)=(n+2)^{-1}(1-\phi^{GB}(w))$ where

$\phi^{GB}(w)=\frac{2b(1-v)}{p+n+2(a+2)}\frac{\int_{0}^{1}t^{p/2+a+1}(1-t)^{b-1}(1-vt)^{n/2-b}dt}{\int_{0}^{1}t^{p/2+a}(1-t)^{b}(1-vt)^{n/2-b+1}dt}$ for $b>0$

$= \frac{2(1-v)^{n/2+1}}{p+n+2(a+2)}\frac{1}{\int_{0}^{1}t^{p/2+a}(1-vt)^{n/2+1}dt}$ for $b=0$ .

Since $v=w/(1+w)$ and all integrals above approach constant values, we have

$\phi^{GB}(w)=\{$
$O\{(w+1)^{-n/2-1}\}$ for $b=0$

$O\{(w+1)^{-1}\}$ for $b>0$ .

Since $\phi^{BZ}(w)$ is $\phi^{GB}(w)$ for $a=-1$ and $b=0$ , $\phi^{BZ}(w)=O\{(w+1)^{-n/2-1}\}$ . This implies that
$\phi^{GB}(w)$ for $b>0$ is greater than $\phi^{BZ}(w)$ for sufficiently large $w$ . Thus we have the following
result.

Theorem 3.2. $\phi^{GB}(w)$ for $b>0$ does not satisfy (BZ2) of the BZ-condition.

Next we investigate the properties of $\phi^{GB}$ in order to apply the $\mathrm{S}\mathrm{T}$-condition proposed in
Theorem 2.1.

Theorem 3.3. 1. $\phi^{GB}(w)\leq(p+2a+2)/(p+n+2a+4)$ .

2. $(1+w)^{\epsilon}\phi^{GB}(w)$ is monotone nonincreasing if
(a) $b=0$ and $a<-p/2-2+(n/2+1)/\epsilon$ or
(b) $0<b\leq n/2+1$ , $\epsilon\leq 1$ and $a<-p/2-b-2+(n/2+1)/\epsilon$ .
(c) $b>n/2+1$ and $a<-p/2-b-2+b(b-n/2)/(\epsilon+b-n/2-1)$ .

Proof By Theorem 3.1 $\phi^{GB}(w)$ is decreasing in $w$ and hence $\phi^{GB}(w)\leq\phi^{GB}(0)=(p+2a+$

$2)/(p+n+2a+4)$ , which completes the proof of (i).
For $b=0$ , The derivative of $(1+w)^{\epsilon}\phi(w)$ with respect to $v=w/(w+1)$ is written as

$(1-v)^{--1}’ \phi(w)[-n/2-1+\epsilon+(n/2+1)(1-v)\frac{\int_{0}^{1}t^{p/2+a+1}(1-vt)^{n/2}dt}{\int_{0}^{1}t^{p/2+a}(1-vt)^{n/2+1}dt}]$ . (10)
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Using the relation

$\int_{0}^{1}t^{\alpha}(1-t)^{\beta}(1-vt)^{\gamma}dt=(1-v)^{\beta+\gamma+1}\int_{0}^{1}t^{\beta}(1-t)^{\alpha}(1-vt)^{-\alpha-\beta-\gamma-2}dt$ (11)

for $\alpha>-1$ and $\beta>-1$ , the term in bracket in (10) is written as

$-n/2-1+ \epsilon+(n/2+1)\frac{\int_{0}^{1}(1-t)^{p/2+a+1}(1-vt)^{-p/2-n/2-a-3}dt}{\int_{0}^{1}(1-t)^{p/2+a}(1-vt)^{-p/2-n/2-a-3}dt}$

which is less $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{n}-n/2-1+\epsilon+(n/2+1)(p/2+a+1)/(p/2+a+2)=\epsilon-(n/2+1)/(p/2+a+2)$

because $(1-vt)^{-1}$ is increasing in $t$ . This completes the proof in the case $b=0$ .
For $b>0$ , the derivative of $(1+w)^{\epsilon}\phi(w)$ with respect to $v=w/(w+1)$ , together with the

relation (11) is written as

$(1-v)^{-\epsilon-1} \phi(w)[\epsilon-1+(b-n/2)\frac{\int_{0}^{1}t^{b-1}(1-t)^{p/2+a+2}(1-vt)^{-p/2-n/2-a-2}dt}{\int_{0}^{1}t^{b-1}(1-t)^{p/2+a+1}(1-vt)^{-p/2-n/2-a-2}dt}$

$+(n/2+1-b) \frac{\int_{0}^{1}t^{b}(1-t)^{p/2+a+1}(1-vt)^{-p/2-n/2-a-3}dt}{\int_{0}^{1}t^{b}(1-t)^{p/2+a}(1-vt)^{-p/2-n/2-a-3}dt}]$ . (12)

By applying aMaclaurin expansion to the integrals in (12), the term in bracket in (12) is written
as

$\epsilon-1+\frac{(b-n/2)(p/2+a+2)}{p/2+a+b+2}\frac{F(p/2+n/2+a+2,b,p/2+a+b+3,v)}{F(p/2+n/2+a+2,b,p/2+a+b+2,v)}$

$- \frac{(b-n/2-1)(p/2+a+1)}{p/2+a+b+2}\frac{F(p/2+n/2+a+3,b+1,p/2+a+b+3,v)}{F(p/2+n/2+a+3,b+1,p/2+a+b+2,v)}$ , (13)

where $F(a, b, c, x)$ is the hypergeometric function

$F(a, b, c, x)=1+ \sum_{i=1}^{\infty}\frac{(a)_{i}(b)_{i}}{(\mathrm{c})_{i}}\frac{x^{i}}{i!}$ for $(a)_{i}=a\cdot(a+1)\cdots(a+i-1)$ .

From the inequality

$\frac{F(p/2+n/2+a+2,b,p/2+a+b+3,v)}{F(p/2+n/2+a+2,b,p/2+a+b+2,v)}\geq\frac{F(p/2+n/2+a+3,b+1,p/2+a+b+3,v)}{F(p/2+n/2+a+3,b+1,p/2+a+b+2,v)}$ ,

(13) for $b\leq n/2+1$ is less than

$\epsilon-1+\frac{p/2+a+1-n/2+b}{p/2+a+b+2}\frac{F(p/2+n/2+a+2,b,p/2+a+b+3,v)}{F(p/2+n/2+a+2,b,p/2+a+b+2,v)}$

$\leq\epsilon-\min(1,\frac{n/2+1}{p/2+a+b+2})$ ,

which is nonpositive when $\epsilon\leq 1$ and $a<-p/2-b-2+(n/2+1)/\epsilon$. This completes the proof
in the case $0<b\leq n/2+1$ .

For $b>n/2+1$ , (13) is less than

$\epsilon-1+\frac{(b-n/2)(p/2+a+2)}{p/2+a+b+2}$ ,

which is nonpositive when $a<-p/2-b-2+b(b-n/2)/(\epsilon+b-n/2-1)$ . This completes the
proof. Cl
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Combining Theorem 3.3 and Theorem 2.1, we have the following result.

Theorem 3.4. The generalized Bayes estimator $\delta^{GB}$ given by (4) is minimax under $L_{2}$ loss if

$-p/2-1<a<-p/2-1+ \max_{\epsilon}\min$ ($(n/2+1) \frac{B_{2}(p,n,\epsilon)}{1-B_{2}(p,n,\epsilon)}$ , $C_{2}(n, \epsilon, b)$) (14)

where

$C_{2}(n, \epsilon, b)=\{$

$(n/2+1)/\epsilon-1$ $b=0$

$-b-1+ \max(n/2+1, (n/2+1)/\epsilon)$ $0<b\leq n/2+1$

$-b-1+b(b-n/2)/(\epsilon+b-n/2-1)$ $b>n/2+1$ .

Figure 1reveals the upper bounds for minimaxity in the case p $=10$ . Note that the upper
bound given by (14) is not always continuous in b $=0$ .

Figure 1:Ranges of values for minimaxity in the case $p=10$ under $L_{2}$ loss

As noted earlier, when $b=0\phi^{GB}$ satisfies the $\mathrm{B}\mathrm{Z}$-condition for $-p/2-1<a\leq-1$ but does
not satisfy the $\mathrm{S}\mathrm{T}$-condition when $a=-1$ (i.e. $\delta^{GB}=\delta^{BZ}$ ). Our contribution when $b=0$ is

to add an explicit upper bound on $a$ so that the $\mathrm{S}\mathrm{T}$-condition is satisfied. This upper bound is
of course less $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{n}-1$ so that when $b=0$. The class of estimators satisfying the BZ-condition
contains the class satisfying the $\mathrm{S}\mathrm{T}$-condition. However when $b>0$ the class of estimators $\delta^{GB}$

satisfying the $\mathrm{B}\mathrm{Z}$-condition is empty while the class satisfying the $\mathrm{S}\mathrm{T}$-condition is non-empty

and is in fact quite rich.
Finally we highlight the following very simple case.

Proposition 3.5. the generalized Bayes estimator

$\frac{1}{n+2}(1+\frac{\alpha}{W+1})^{-1}S$

as minimax under $L_{2}$ if $0< \alpha\leq\max_{\epsilon}\min(B_{2}(p, n, \epsilon)(1-B_{2}(p, n, \epsilon))^{-1},1/\epsilon-1)$ .
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Proof. Apply Theorem 3.4 to the estimator given in (9). 口

参考文献
[1] Brewster, $\mathrm{J}.\mathrm{F}$ . and Zidek, $\mathrm{J}.\mathrm{V}$. (1974). Improving on equivariant estimators. Ann. Statist,

2, 21-38.
[2] Ghosh, M. (1994). On some Bayesian solutions of the Neyman-Scott problem. In Statistical

Decision Theory and Related Topics $V$, 267-276.
[3] Pal, N., Ling, $\mathrm{C}$ , and Lin, J. (1998). Estimation of anormal variance -acritical review.

Statist Papers, 4, 389-404.
[4] Stein, C. (1964). Inadmissibility of the usual estimator for the variance of anormal distri-

bution with unknown mean. Ann. Inst. Statist Math., 16, 155-160.
[5] Strawderman, $\mathrm{W}.\mathrm{E}$ . (1974). Minimax estimation of powers of the variance of anormal pop-

ulation under squared error loss. Ann. Statist, 2, 190-198

182


