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Abstract

We derive avalue to determine the shape of aparametric cubic curve segment without use of trans-
formation. It can be easily calculated ffom the Hermite data at two points. The number and location of
curvature extrema are determined without its practical computation.

1Introduction and Description of Method
Parametric cubic curves are popular in CAD applications because they are the lowest degree polynomial

curves that allow inflection points (where curvature is zero). The B\’ezier form of aparametric cubic curve
is usually used in CAD and CAGD applications because of its geometric and numerical properties. Cubic
curves are also important in applications such as highway design, or the design of robot trajectories.
Many authors have advocated their use in different applications like data fitting and font designing. The
importance of using fair curves in the design process is well documented in the literature [1, 2, 4].

Walton&Meek have examined the shapes of the whole parametric cubic curves ([5]). Their paper
presents results on the number and location of curvature extrema of the whole cubic segments. With help
of Mathernatica, we derive avalue to characterize the shapes of the cubic curves which is easily computed
from given Hermite data at two specified points. Objectives of our paper are:. To derive affiue to determine the shape of acubic curve segment.. To provide an alternative derivation of the results presented in Meek&Walton on the shapes (cusP,
loop&inflections points) of the cubic curves without use of translation, rotation, uniform scaling and
reflection.. To simplify and complete the analysis of Meek&Walton.. To determine the number and location of curvature extrema without its practical computation.

We consider acubic curve: $z(t),$ $-\infty<t<\infty$ satisfying $z$ (0) $=z_{0}$ and $z$ (1) $=z_{1}$ . Its signed curvature
$\kappa(t)$ is given by

$\mathrm{K}(\mathrm{t})=(z’\mathrm{x}z’)(t)/||z’(t)||^{3}$ (1.1)

where “
$\cross$ ”and $||\cdot||$ mean the cross product of two vectors and the Euclidean norm, respectively. We

assume that $z’(0)(=z_{0}’)$ and $z’(1)(=z_{1}’)$ are linearly independent, i.e., $z_{0}’\mathrm{x}z_{1}’(=D)\neq 0$ . Then,
$\Delta z(=z_{1}-z_{0})$ can be represented in terms of $z_{0}’$ and $z_{1}’$ :

$\Delta z$ $=\lambda z_{0}’+\mu z_{1}’$ (1.2)

where $D(\lambda, \mu)=$ ( $\Delta z$ $\mathrm{x}z_{1}’,z_{0}’\mathrm{x}$ Az). Note the identity

$z(t)=f(t)z_{0}+f(1-t)z_{1}+g(t)z_{0}’-g(1-t)z_{1}’$ (1.3)
$=\mathrm{f}(\mathrm{t})+f(1-t)\}z_{0}+\{\lambda f(1-t)+g(t)\}z_{0}’+\{\mu f(1-t)-g(1-t)\}z_{1}’$

with $f(t)=(1-t)^{2}(1+2t)$ , $g(t)=(1-t)^{2}t$ . Asimple calculation gives
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Lemma 1.1 $z’(t)\cross z’(t)(=\phi(t))$ reduces to

$-2D\{3(1-\lambda-\mu)t^{2}-3(1-2\mu)t+1-3\mu\}$ (1.4)

Singularity and inflection points are discussed in next section. Curvature extrema are then presented
followed by illustrative examples.

2Singularity and Inflection Points
The following theorem provides an alternative derivation of the results presented in Walton&Meek

([5]) on the shapes (cusP, loop, inflections points) of the cubic curves without use of translation, rotation,
uniform scaling and reflection.

Theorem 2.1 The presence of a singularity and inflection points on the cubic curve is characterized by
the sign of $I(=1-4\lambda-4\mu+12\lambda\mu)$ :
Case 1(CusP): $I=0((\lambda, \mu)\neq(1/2,1/2))$ a cusp, no inflection point
Case $Z$ (LooP): $I>0$ a loop, no inflection point
Case 3(Two or one inflection point): $I<0$ two inflection points $(\lambda+\mu\neq 1)$ or one inflection
point $(\lambda+\mu=1)_{l}$ no singularity
Case 4(Quadratic): $I=0((\lambda, \mu)=(1/2,1/2))$ no singularity, no inflection point

Dependent on the sign of $I$ , we give asimple proof of the above four cases.
Case 1: Note that acusp occurs if and only if the quadratic polynomials $z’(t)(=(x’(t), y’(t))$ have the
common zero(s). Sylvester’s resultant of the above quadratic ones is equal to $-3D^{2}I$ and at least one
of $z’(t)$ is really quadratic for $(\lambda, \mu)\neq(1/2,1/2)$ since its coefficient of $t^{2}$ is $3(1-2\lambda)z_{0}’+3(1-2\mu)z_{1}’$ .
Hence, acusp occurs if $I=0$ and $(\lambda, \mu)\neq(1/2,1/2)$ . The common zero is $p=1/(3-6\lambda)$ .
Case 2: $(z(p)-z(q))/(p-q)=(0,0)(p\neq q)$ gives ahomogeneous system of equations in $A(=$

$(1-2\lambda)(p^{2}+pq+q^{2})+(3\lambda-2)(p+q)+1)$ and 73$(=(1-2\mu)(p^{2}+pq+q^{2})+(3\mu-1)(p+q))$ whose
.coefficient matrix is $(z_{0}’, z_{1}’)$ . Since the matrix is nonsingular, we obtain $A=B=0$, i.e., if $I>0$

$p$ , $q= \frac{1-2\mu\pm\sqrt{I}}{2(1-\lambda-\mu)}$ (2.1)

Case 3: The discriminant of the quadratic (1.4) is -127 if $\lambda+\mu\neq 1$ .
Case 4: Note that (1.4) is constant.

Remark 1: In Case 3 $(\lambda+\mu=1)$ , atransformation makes aspecial case of acubic function ([5]) since
with the coefficient $z_{3}$ of $t^{3}$ of $z(t)$ ,

$(z_{3}\cross z)(t)=(-1+2\mathrm{p})(\mathrm{t}\mathrm{D}+z_{0}\mathrm{x}\Delta z’)$ (2.2)

In Figures 1-2, $N_{i}(i=0,1,2)$ , $L$ and $C$ mean the whole and restricted cubic curves have $i$ inflection
points, aloop and acusp, respectively. Here we note the similar results on the restricted (not whole)
cubic segment $z(t)$ , $0\leq t\leq 1([3])$ . Since our analysis does not use any algebraic manipulation, Cases
1-2 require the conditions so that the common zero $p\in(0,1)$ and the both $(p, q)\in(0,1)$ , respectively.
Case 3requires to count the number of the zeros of (1.4) $\in(0,1)$ . As aconsequence of these results, for
example, we see that acusp occurs in (or out of) the restricted segment if $(\lambda, \mu)$ lies on the lower (or
upper) branch of the hyperbolic $I=0$ .

3Curvature Extrema
The following lemma helps us examine the curvature extrema where “. ” means the dot product of

two vectors.
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$\mathrm{t}^{\mathrm{t}}$

Figure 1: Singularities and inflection points on whole cubic segments.

Lemma 3.1 For $v(t)=\kappa’(t)||\mathrm{z}’(t)||^{5}l$

$v(t)=-3\phi(t)\mathrm{z}’(t)\cdot$ $\mathrm{z}’(t)+\phi’(t)||\mathrm{z}’(t)||^{2}$

$v’(t)=-\phi(t)\{3||\mathrm{z}’(t)||^{2}+4\mathrm{z}’(t)\cdot$ $\mathrm{z}^{(3)}(t)\}$

For the above Cases 1-4, we consider the curvature extrema where $(\alpha, \beta, \gamma)=(||z_{0}’||, ||z_{1}’||, z_{0}’. z_{1}’)$ .
Case 1: Letting A $=1/3-m/6$ , $\mu=1/3-1/(6m)(m\neq-1)$ ,

$m^{3}v(t)=D(-1+t+mt)^{3}Q(t)$ (3.1)

where quadratic $Q(t)(=a_{1}t^{2}-b_{1}t+c_{1})$ satisfies

$a_{1}=4(1+m)(\alpha^{2}m^{2}+2\gamma m+\beta^{2})(=4(1+m)||mz_{0}’+z_{1}’||^{2})$

$b_{1}=5\alpha^{2}m^{3}+(8\alpha^{2}+5\gamma)m^{2}+11\gamma m+3\beta^{2}$ , $c_{1}=m\{m(m+4)\alpha^{2}+3\gamma\}$ (3.2)

$Q( \frac{1}{1+m})=\frac{\alpha^{2}m^{4}-2\gamma m^{2}+\beta^{2}}{1+m}(=\frac{||m^{2}z_{0}’-z_{1}’||^{2}}{1+m})$

Note that $Q$ is alinear combination of $\alpha^{2}$ , $\beta^{2}$ , $\gamma$ to make the above derivation of $Q(1/(1+m))$ easier.
Here we note that $t=1/(1+m)$ does not give the curvature extrema since then the denominator of $\kappa’(t)$

vanishes. Since $a_{1}Q(1/(1+m))>0$ , no or two curvature extrema occur and the two extrema (if exist)
are on one side of the cusp.
Case 2: Since $\phi(t)$ of $v’(t)$ has no zero, the curve has one zero or three curvature extrema. Mathematica
helps us obtain the following relation with $(p, q)$ by (2.1)

$v(p)+v(q)=-48v( \frac{p+q}{2})$ (3.3)
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Figure 2: Singularities and inflection points on restricted cubic segments.

which shows there is at least one curvature extremum on the same side of the loop.
Case 3: If $\lambda+\mu\neq 1$ , unlike acusp or loop case, $\phi(t)$ has two distinct zeros:

$p$ , $q= \frac{3(1-2\mu)\mp\sqrt{-3I}}{6(1-\lambda-\mu)}$ (3.4)

Note $\phi(t)=0$ for $t=p$, $q$ and $\phi’(t)=-6D\{(1-\lambda-\mu)t-(1-2\mu)\}$ to obtain

$v(p)=2D||z’(p)||^{2}\sqrt{-3I}$, $v(q)=-2D||z’(q)||^{2}\sqrt{-3I}$ (3.5)

If the quadratic factor $\psi(t)(=a_{2}t^{2}+b_{2}t+c_{2})$ in braces of $v’(t)$ of Lem ma 3.1 has no zero or adouble
zero, there exists asingle curvature extremum in the loop, and two extrema are on the opposite sides of
the loop. Next, assume that $\psi(t)$ has two distinct zeros, i.e., $b_{2}^{2}-4\mathrm{a}2\mathrm{C}2>0$ . Then,

$a_{2}^{2}(- \frac{b_{2}}{2a_{2}}-p)(-\frac{b_{2}}{2a_{2}}-q)-\frac{5(b_{2}^{2}-4a_{2}c_{2})}{8}$ (3.6)

$(=5400(1-\lambda-\mu)^{2}(\alpha^{2}\beta^{2}-\gamma^{2}))=5400$ $\{D(1-\lambda-\mu)\}^{2}$

there $\mathrm{c}\mathrm{o}\mathrm{e}$ fHcients $(a_{2}, b_{2}, c_{2})$ are given by

a2 $=180\{(1-2\lambda)^{2}\alpha^{2}+2(1-2\mathrm{A})(1-2\mu)\gamma+(1-2\mu)^{2}\beta^{2}\}$

$(=180||(1-2\lambda)z_{0}’+(1-2\mu)z_{1}’||^{2})$ (3.7)

$b_{2}=-120\{(2-7\lambda+6\lambda^{2})\alpha^{2}+(3-5\lambda-7\mu+12\lambda\mu)\gamma+(1-5\mu+6\mu^{2})\beta^{2}\}$

$c_{2}=12\{(6-16\lambda+9\lambda^{2})\alpha^{2}+2(3-3\lambda-8\mu+9\lambda\mu)\gamma+(1-3\mu)^{2}\beta^{2}\}$

Note the position of the symmetric axis of $\psi(t)$ to see that the two zeros do not lie in the interval $(p, q)$

(or $(q,p)$ ). Therefore, $v(p)v(q)<0$ shows that asingle extremum is on the curve segment between the
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two inflection points corresponding to t $=p$ , q. If there are five curvature extrema, there are one and
three extrema in the opposite sides of the curve segment, respectively.

If $\lambda+\mu=1(\Leftrightarrow(\lambda, \mu)=(1/2+s, 1/2-s)$ , s $\neq 0)$ , $\phi(t)$ has asingle zero p $=(6s-1)/(12s)$ . Mathematica
helps us get $v(t)=D\{a_{3}(t-p)^{4}+b_{3}(t-p)^{2}+c_{3}\}$ :

a3 $=-2160s^{3}||z_{0}’-z_{1}’||^{2}$ $b_{3}=12s\{||(1+6s)z_{0}’+(1-6s)z_{1}’||^{2}-4\gamma\}$ (3.8)

$c_{3}= \frac{1}{48s}||(1+6s)^{2}z_{0}’-(1-6s)^{2}z_{1}’||^{2}$

Since $a3c3<0$ , two curvature extrema exist on the opposite sides of the inflection point.
Case 4: Note

$v(t)=3D(\alpha^{2}-\gamma-t||z_{0}’-z_{1}’||^{2})$ (3.9)

which shows there is asingle curvature extremum on the quadratic curve.
The following theorem presents the number and positions of the curvature extrema:

Theorem 3.1 Let $M$ ($=the$ ne ynber of the curvature extrema). Then, for Cases 1-4 of Theorem 21, we
obtain
Case 1(Cusp): $M=0,2$ . If $M=2$, curvature extrema are on the same side of the cusp.
Case 2(Loop): $M=1,3$ . At least one curvature extremum is in the loop.
Case 3(Two or one inflection point): If $\lambda+\mu\neq 1$ , Af $=3,5$ . One curvature extremum is on the
curve segment connecting the two inflection points. On the (exterior) opposite sides of the connecting
curve segment one extremum on each side for $M=3$ or one and three extrema for $M=5$ eist. If
$\lambda+\mu=1$ , two curvature extrema eist on the opposite sides of the inflection point.
Case 4(Quadratic): $M=1$ .

Finally we give aremark for $D(=z_{0}’\mathrm{x} z_{1}’)=0$ , for example, $z_{1}’=rz_{0}’$ . Assume $z_{0}’\cross\Delta z(=\overline{D})\neq 0$ ;
otherwise $z(t)$ reduces to alinear segment and we omit this case. Then, linearly independent $\Delta z$ and $z_{0}’$

are used in (1.3) instead of $z_{0}’$ and $z_{1}’$ . Note the identity

$z(t)=f(t)z_{0}+f(1-t)z_{1}+g(t)z_{0}’-g(1-t)z_{1}’$ (3.10)

First, note $\phi(t)(=z’(t)\cross z’(t))=6\overline{D}\{(t-1)^{2}-rt^{2}\}$ . Next, (i) Sylvester’s resultant of quadratic

(&) Aparametric cubic curve (b) Curvature Plot (c) Derivative of curvature plot

Figure 3: Example 1

$\mathrm{z}(\mathrm{t})$ is $36\overline{D}^{2}r$ (note that acusp occurs if $z’(t)$ has common roots), and their coefficients of $t^{2}$ are
3 $\{(1+r)z_{0}’-2\Delta z\}$ . Therefore, acusp occurs for $r=0$ at $t=1$ . (ii) $(z(p)-z(q))/(p-q)=0,p\neq q$
gives asystem of homogeneous equations in $A(=(1+r)(p^{2}+pq+q^{2})-(2+r)(p+q)+1)$ and $B(=$

$2(p^{2}+pq+q^{2})-3(p+q))$ whose coefficient matrix is $(z_{0}’, -\Delta z)$ . Note $\overline{D}\neq 0$ to obtain $A=B=0$,
i.e., $p$ , $q=(1\pm\sqrt{-3r})/(1-r)(r<0)$ . Hence, aloop exists for $r<0$ . (iii) For $r>0(r\neq 1)$ , $\phi(t)$ has
two zeros $p$ , $q=1/(1\mp\gamma r)$ where the curve has two inflection points, and for $r=1$ , $\phi(t)$ has one zero
$t=1/2$ where an inflection point occurs.
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(a) Aparametric cubic curve (b) Curvature plot (c) Derivative of curvature plot

Figure 4: Example 2

(a) Aparametric cubic curve (b) Curvature plot (c) Derivative of curvature plot

Figure 5: Example 3

(a) Aparametric cubic curve (b) Curvature plot (c) Derivative of curvature plot

Figure 6: Example 4

For the curvature extrema, we require to check the following results:
(i) for $r=0$ , $v(t)=-12\overline{D}s^{3}(18s^{2}||c||^{2}+15sc\cdot d+2||d||^{2})$ , $t=s+1$ with $c=z_{0}’-2\Delta z$ and $d=z_{0}’-3\Delta z$ .
Here $s=0$ makes the denominator of the derivative of the curvature, and so it does not give the curvature
extrema. In addition, the signs of the coefficient of $s^{2}$ and the constant term are of the same. Therefore,
if the two roots exist, they are of the same sign (with respect to $s$), i.e., both of them are greater or less
than one (with respect to $t$ ) where the cusp occurs, (ii) for $r<0$ , $p$ , $q=(1\pm\sqrt{-3r})/(1-r)$ and (3.3)
is valid, (iii) for $r>0(r\neq 1)$ , with $(p, q)=(1/(1-\sqrt{r}), 1/(1+\sqrt{r}))$ , $v(p)=12\overline{D}||z’(p)||^{2}\sqrt{r}$ , $v(q)=$

$-12\overline{D}||z’(q)||^{2}\sqrt{r}$ and (3.6) is 5400 $\{\overline{D}(1-r)\}^{2}$ ; for $r=1$ , $v(t)=3\overline{D}(720s^{4}||\mathrm{c}||^{\underline{\mathrm{Q}}}-48s^{2}c\cdot d-||d||^{2})$ ,
$t=s+1/2$ with $\mathrm{c}=z_{0}’-\Delta z$ and $d=z_{0}’-\mathrm{S}\mathrm{A}\mathrm{z}$ . Hence, $v(t)$ has azero on each side of $t=1/2$ where the
inflection point occurs, (iv) Since the coefficient of $t^{3}$ of $z(t)$ is $(1+r)z_{0}’-2\Delta z$ , $z$ can not be quadratic.
Hence we have the following result:
Remark 2 $(z_{1}’=rz_{0}’, z_{0}’\mathrm{x}\Delta z\neq 0)$ . For $r=0$ , $r<0$ , $r>0$ , we have exactly the same results in the
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(a) Aparametric cubic curve (b) Curvature plot (c) Derivative of curvature plot

Figure 7: Example 5

(a) Aparametric quadratic (b) Curvature Plot (c) Derivative of curvature plot
curve

Figure 8: Example 6

above Cases 1-3 of Theorem 3.1, respectively where $r=1$ corresponds to $\lambda+\mu=1$ .

4Numerical Examples
The various shapes that aparametric cubic curve segment may assume are illustrated in figures 38.

The control points for the curves are determined by experimentation, but guided by the results of the
theorems. Control polygons are shown in dashed lines. Total number of inflection points and curvature
extrema for each cubic curve are shown in curvature plots (figures $3(\mathrm{b})- 8(\mathrm{b})$ ) and derivative of curvature
plots $(3(\mathrm{c})- 8(\mathrm{c}))$ respectively. Locations of singularities, inflection points and curvature extrema are
calculated mathematically and given in following examples.
Example 1(figure 3): This is case 1for $(\lambda, \mu)=(0.17,0.17)$ and $I=0$ .

Control points: $(1,0)$ ,(1,0.5),(0,0.5), $(2,0)$

Cusp: at $t=0.5$
Loop (Self Intersection): none
Inflection Point: none
Curvature Extrema: at $t=0.048$ , 0.327

Example 2(figure 4): This is case 2for $(\lambda, \mu)=(0.15,0.1)$ and $I=0.17$.
Control points: (1.5,0), $(2,1)$ , $(0,1)$ ,(2.5,0.2)
Cusp: none
Loop: Self Intersection at $t=0.25,0.81$
Inflection Point: none
Curvature Extrema: at $t=0.2$ , 0.34, 0.58

Example 3(figure 5): This is case 3for $(\lambda,\mu)=(0.21,0.21)$ and $I=-0.15$ .
Control points: $(0,0)$ ,(1.6,1),(0.4,1), $(2,0)$
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Cusp: none
Loop: none
Inflection Point: at $t=0.31,0.67$
Curvature Extrema: at $t=0.22$ , 0.5, 0.78

Example 4(figure 6): This is case 3for $(\lambda, \mu)=(0.16,0.17)$ and $I=$ -0.000056.
Control points: (0.987,0),(0.987,0.25), $(0,0)$ ,(2,0.25)
Cusp: none
Loop: none
Inflection Point: at $t=0.49,0.5$
Curvature Extrema: at $t=0.04,0.37$,0.491,0.498, 0.502

Example 5(figure 7): This is case 3for $(\lambda, \mu)=(1.17, -0.17)$ and $I=-5.33$ .
Control points: $(0,0)$ ,(1/3,0.5),(2/3,-0.5), $(1,1)$

Cusp: none
Loop: none
Inflection Point: at $t=0.375$
Curvature Extrema: at $t=0.16,0.67$

Example 6(figure 8): This is case 4for $(\lambda, \mu)=(0.5,0.5)$ and $I=0$.
Control points: $(0,0)$ (0.5,0.5 ) $(1,0)$

Cusp: none
Loop: none
Inflection Point: none
Curvature Extrema: at $t=0.67$
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