
Lupin: from Web Services to Web-based Problem
Solving Environments

K. Li, M. Sakai, Y. Morizane, M. Kono, and M.-T.Noda
Dept. of Computer Science, Ehime University’

Abstract
The research of powerful Problem Solving Environments (PSEs) is strongly motivated by the increasing

complexity in scientific and engineering computation. In this paper, an initial design of Lupin, aframework
of PSEs construction based on Web technologies is proposed and discussed. We predicate that common
inffastructure of PSEs can be powerfully supported by the Web, which is moving from being acollection
of static pages toward acollection of dynamic services that interoperate through the Internet. The idea
of invoking Web technologies such as XML and the emerging Web services for Lupin’s approach is briefly
discussed; Aproof-0f-concept system based on the current Web service protocols is also presented to check
out the term mathematical Web service and how can Lupin benefit from it. Related issues are discussed
based on the experiments and new proposals are offered for future research.

1Introduction
The research of powerful Problem Solving Environments (PSEs) is strongly motivated by the increasing
complexity in scientific and engineering computation [3, 2, 14]. As complex software systems, the tradi-
tional PSEs are monolithic. The main objective of their designers is to provide asolution to aspecific
problem rather than identify common function and build acommon PSE platform. Hence the construc-
tion of PSEs still remains largely ahigh-cost heavy-coded $\mathrm{a}\mathrm{d}$ hoc procedure that lack of either flexibility,
portability and generality. Due to this, it is believed that the network-centric, distributed approaches
that exploit the existing hardware and software resources will be an attractive direction of further PSEs
development. There are many notable works have been done to put forward PSE technologies on this
way, most of their focus are on the problem solver integration that enables the interoperation over net-
works [1, 4, 6, 5]. However, the potential problem might be that those interactive, distributed approaches
will not be well performed until being international standards and to be widely supported by the whole
academic community. On the other hand, except the integration technologies, other critical PSE facilities
such as the semantic problem definition, automatic or semi-automatic problem solver location and selec-
tion have not been significantly addressed yet. One of the reasons is also that the distributed components
are language, vendor- and platform neutral and hard to be communicated with and selected in asimple,
standard way. Obviously, acommon fundamental mechanism that enables the network-centric computing
that built on wide supported standards is needed.

Internet is changing the way of gathering information; it is also expected to be able to upgrade the
mechanism of PSEs construction. Emerging Web technologies such as Web services [7] that based on
XML are enabling the capabilities of applications discovery, registration, and invocation over the Internet.
Hence we predicate that it’s the time to consider the mechanism of PSEs to be Web-based that truly
supports the “cheap and effective” computation by enabling the problem solver portability, reusability
and search-ability. Towards this end, Lupin is an ongoing research subject in Ehime University, Japan
that aims at:. Establishing a Web based mechanism and fram ework that allows easy and systematic creation and

construction of computational PSEs.

’{likai, masato, morizan\"e, kono, noda}@hPc.cs.ehime u.ac.jp

21-1

数理解析研究所講究録 1335巻 2003年 149-156

149

. Exploiting the standard Web technologies to support the infrastructure.. Implementing a prototype to demonstrate the feasibility.

In this paper, we briefly present an initial common architecture of constructing Web base compu-
tational PSEs under Lupin’s framework. Alayered approach is given to enable the independent devel-
opment and deployment of Internet accessible PSE components (we call them Lupin services) by the
service provider, and actual PSE construction by the PSE provider, on the base of following process of
Lupin service composition: (1)to search for the services that Internet accessible and that can be used to
contribute the solution; (2)to locate the corresponding services that with the information of binding; and
(3) the generation of the interface to invoke the service to get it work for the user. Atesting prototype
has been implemented as aproof-0f-concept system to demonstrate the feasibility of Lupin architecture
that supported by Web service technologies such as SOAP [8], WSDL [9], UDDI [10]. Various discussions
are done according to the implementation and the new proposals are offered for future research.

2Lupin overview
The basic idea of Lupin is due to the following thought: generally, as aintegrated or interactive computing
system, there are two key elements that aPSE contains: the user interface and packages of computing
kernels -the computing engines, plotting applications, databases and other programs. In the Web
centric environment, it is expected that one kernel can contribute to anumber of user interfaces that
designed for different purpose and different end users -computer modeling for physical phenomena,
numerical simulation, engineering computation and so on. In another word, depending on target class
of problems, the process of aPSE construction is essentially the process of choosing and locating the
certain computation kernels and binding them in an appropriate flow. Thus, via acarefully designed and
implemented user interface created by the PSE provider, the end users can get their desired computation
to be well defined and solved transparently, without necessary to cone ern about such questions as: where
is the data needed for this computation? Which computer is used? Where is the computing engine located
and so on. Different user interface and its bound computing kernels provides different PSE for different
class of computations. Based on this conception, following elements are considered to play the critical
roles under Lupin’s framework.. the computing kernels, that are called Lupin services, are Internet accessible.

\bullet amechanism of Lupin services discovery, which allows those geographically-distributed Lupin services
to be correctly selected and located.. amechanism of Lupin service binding to enable the actual integration and interoperation.. amechanism of PSE interface generation due to acertain flow definition of selected Lupin services
for the end user.

To perform the above operations in an interoperable manner, aconceptual stack is shown to illustrate
the layered relation. The upper layer build upon the capabilities provided by the lower layers. Within
the conceptual stack, it is noted that the Lupin service provider, the PSE provider, and the end user
is sitting at different layer respectively -that means all the operations of Lupin service developing and
maintaining, PSE creation and generation, and the use of PSE can be performed independently and
interoperate one another on aglobal wide.

3Lupin architecture and its usage diagram
In order to achieve the above conception of Web based PSEs construction, Lupin is designed to have the
following architecture. There are 3main parts, which is called the Lupin service gene ration mechanism,
the Lupin discovery mechanism and the PSE composition mechanism that plays the key role respectively.

21-2

150

$\neg|!\lceil_{\not\in}^{\mathrm{e}}\langle\underline{\underline{\approx}}\mathrm{D}\mathrm{o}\ovalbox{\tt\small REJECT} \mathrm{r}-$

.

τ^{I}

p

$|!_{1}^{1}|$

Figure 1: Lupin’s stack

$\mathrm{L}’\dot{\mathrm{r}}\mathrm{n}$ swncc generation $\mathrm{m}\epsilon \mathrm{d}[] \mathrm{I}\mathrm{u}\mathrm{m}$

Figure 2: Lupin’s conceptual architecture

In atypical scenario, Lupin service generation mechanism is used by the service provider to develop the
actual Lupin service that is Internet accessible; and the other two parts are used by the PSE provider to
achieve the appropriate Lupin service selection and location and the PSE user interface generation.

3.1 Lupin service generation mechanism
Developed for particular purposes, Lupin services are separately owned and located and are available to
participate in other systems via different interfaces. Lupin service generation mechanism aims to facilitate
the easy development of Lupin service as aback-end and its deployment to be Internet accessible. There
are dozens of contributions can be listed to support the distributed mechanism either in encoding protocol
level $[1, 6]$, and program interface level $[5, 4]$. As an emerging standard protocol, SOAP over HTTP is
garnering agreat deal of interest from industry to address the Web based XML messaging.

3.2 Lupin service discovery mechanism
It aims to organize Lupin services into acoherent collection to enable discovery, i.e. locating Lupin services
that provide aparticular functionality and that adhere to specified constraints. It should be based on the
semantic match between adeclarative description of the Lupin service being sought, and adescription of
the lupin service being offered. This is regarded to be addressed by the reconunender system. Generally,

21-3

151

the recommender system contains an agent accessible registry, which holds Lupin service descriptions
registered by service provider. It accepts the query information from the PSE provider via interfaced
service browser, searches for the satisfied one according to the existing service description, and return the
result together with the sufficient binding information to the PSE provider for the use of PSE composition.
In the Web environment, XML-based technologies provide us facilities to achieve asemantic approach
towards the mathematical service d escription.

3.3 PSE composition mechanism
In the conceptual architecture of Lupin, the PSE provider contacts the recommender system via Lupin
service browser to seek any Lupin services that contribute to the certain computation. After gathering
all necessary Lupin services, the next step should be how to organize them to be interactive to work
with each other in an appropriate way. PSE composition mechanism is motivated to address this goal.
In ageneral paradigm, the PSE builder obtains the chosen Lupin services as the “raw materials” and
organizes them according to the certain application. Then, auser interface (which can be astandalone
or the regular Web browser compliant) will be defined and generated as the client site front-end.

It should be noted that, from the perspective of PSE, it is not sufficient to have the only three
mechanisms to define asignificant PSE infrastructure. Our objective is to extract the most critical 3
parts from the whole architecture of PSE to establish the backbone, and to demonstrate whether it makes
sense to shift PSE architecture to the Web environment, using the emerging XML-based technologies to
support the mathematical distributed computing system.

4Towards the implementation
As aWeb based framework, Lupin should be implemented by the standard Web technologies so that can
be widely supported. Due to this thought, in our first attempt of implementation, we focus our eyes on
Web ser vice, apackage of emerging technologies for program-to program interactions.

4.1 Web service
The term Web service is an emerging -business framework that can describe and interface acollection of
operations that are network-accessible through standardized XML messaging [7]. The significant facilities
are its potential capabilities of service description, discovery and invocation over the Internet offered by
XML technologies. There are 3main roles in Web service architecture: the service provider, who hosts the
actual service that is accessible over the Web; the service requestor, an application that requires certain
function to be satisfied; and the service registrry, asearchable registry of service descriptions where service
providers publish their service descriptions to, and service requestors find service and obtain binding
information from. Some XML-based standards such as Simple Object Access Protocol (SOAP), Web
Service Description Language (WSDL), and Universal Description, Discovery and Integration (UDDI)
are being developed to address its conceptual view.

4.2 Lupin implementation using Web service
The architecture of Web services draws us ablueprint of next horizon of e-business by its Web have
integrated mechanism and potential capabilities of service description, registration and discovery. It also
extends the application of Web ffom pure html-based contents to Programming language, programming
model-, and system software-neutral platform. Hence it strongly motivates us to expand its characteristics
to the term mathematical Web service to support Lupin implementation. That is, our first attempt will use
SOAP as the most fundamental underpinnings for XML-messaging and Web based distributed computing
to serve the PSE composition mechanism; adopt WSDL as the standard protocol for Lupin service
description; and consider to use UDDI to support the implementation of Lupin discovery mechanism.
For more detailed discussion about this implementation, please refer to our technical report.

21-4

152

$\triangleleft\dot{\mathrm{s}}\underline{\S}\mathrm{g}\leq\omega\ulcorner$

Lupjn Service genecation mechanism

Figure 3: Lupin’s implementation based on Web service

5Experiments

5.1 Overview
This section briefly introduces our proof-0f-concept system and its relevant experiments on the Lupin
implementation. Highlighted works for asimple example are listed to illustrate the whole lifecycle of Lupin
application. From the perspective of Lupin architecture implemented by Web service, the experiments
include the process of Lupin service generation by SOAP infrastructure in the Lupin service generation
mechanism; service registration and discovery by UDDI registry in the Lupin discovery mechanism; and
the actual service binding and user interface by Lupin PSE runtime in the PSE composition mechanism.

Basically, the operation in the PSE composition mechanism is to allocate and remotely bind the series
of discovered services in an appropriate flow and to get them working transparently for the certain class
of purpose. In this experiments, our focus is on the demonstration of mathematical Web service and the
exploration of how can we benefit from it. Hence we make asimply example that built on the single
Lupin service: suppose one of the Lupin service is EuclidGcd, which accepts two integers as input and
compute their GCD using general Euclidean algorithm. Fig. 4is the whole diagram of the testing system.

Our implementation is performed under the environment of Apache Tomcat Web server. Tomcat is a
highly configurable server that supports Java servlets, which can well handles the Lupin service that one
wants to make accessible. On the other hand, because Lupin is designed to be aXML based distributed
environment using SOAP, among those available implementations that enable SOAP application, we
chose also an Apache package called AXIS (Apache extensible Interaction System). Apache Tomcat
Web server and AXIS construct the backbone of our experiment environment.

5.2 Service development, deployment and registration
The example Lupin solver EuclidGcd is implemented by aJava class EuclidGcd. With AXIS, it is easy
to be deployed online at acertain URL, by using awsdd (Web service deployment descriptor) file which
specifies certain properties of the service:

deployment $\mathrm{m}1\mathrm{n}\mathrm{s}\sim^{1}’ \mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}://\mathrm{m}1$.apache. $\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{s}/\mathrm{w}\mathrm{s}\mathrm{d}\mathrm{d}/|$ ’

xmlns: $\mathrm{j}\mathrm{a}\mathrm{v}\mathrm{a}-||\mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}://\mathrm{x}\mathrm{m}\mathrm{l}$.apache. $\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{s}/\mathrm{w}\mathrm{s}\mathrm{d}\mathrm{d}/\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{l}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{s}/\mathrm{j}$ ava $>$

$<\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{i}\mathrm{c}\mathrm{e}$
$\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{e}\sim$“Euclidl ” provider$=$ ”java: RPC $”>$

$<\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}$ name$=^{1\prime}\mathrm{c}1\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{N}\mathrm{a}\mathrm{m}\mathrm{e}^{11}$ $\mathrm{v}\mathrm{a}1\mathrm{u}\mathrm{e}\Leftarrow’\mathrm{E}\mathrm{u}\mathrm{c}11\mathrm{d}1^{\prime 1}/>$

21-5

153

Figure 4: Operation flow of Lupin application

$<\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}$
$\mathrm{n}\mathrm{a}\mathrm{m}\mathrm{g}-1\downarrow \mathrm{a}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{d}\mathrm{K}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d}\mathrm{s}1$’ $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}\approx" \mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{l}’/>$

$</8\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{i}\mathrm{c}\mathrm{e}>$

$</\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{l}\mathrm{o}\mathrm{y}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}>$

The corresponding WSDL file EuclidGcd. wsdl can also be generated by the attached tool $\mathrm{J}\mathrm{a}\mathrm{v}\mathrm{a}2\mathrm{W}\mathrm{S}\mathrm{D}\mathrm{L}$

provided by the AXIS SOAP infrastructure. The WSDL file, which enables the dynamic interface genera-
tion to invoke the actual Lupin service, is the key in Web service based lupin implementation. Because the
WSDL file holds sufficient information for service invocation, thus the process of discovery is essentially
the process of finding the most suitable WSDL file of certain Lupin service.

When the file EuclidGcd. wsdl is captured by the discovery mechanism, then it can be used to be part
of PSE edited by the PSE composition mechanism and to be actually invoked by Lupin PSE runtime.
To make the WSDL file to be searchable, it should be firstly registered to aUDDI service registry. In
our experiment, the operation is performed via systinet’s WASPUDDI registry [11]. It is through the
registration that some information such as the URL of EuclidGcd.wsdl, the service name, provider’s
entity and other data about Lupin service EuclidGcd can be stored for further search.

5.3 Service discovery

In Lupin, The operation of service searching is done through Lupin service browser which is bound to
UDDI registry that enables mathematical Web service discovery. Since that it is still under development
now, we use systinet’s WASPUDDI for experiment. According to the current UDDI specification, there
are only few information can be used to perform the UDDI-based discovery such as service name and
Taxonomy. Because Lupin is considered to target at mathematical application, and there is still not
default mathematical taxonomy system defined in UDDI, we added atemporary mathematical taxonomy
system based on GAMS for experiment. Due to the discovery facilities provides by UDDI specifications,
experiments are done to find the EuclidGcd. wsdl that enables the further invocation.

5.4 User interface generation and service binding
Another important issue of our experiment is how to achieve the actual Lupin service binding when
we obtained the WSDL file from UDDI registry. This operation is done by Lupin Solver Interface
Generator, which is apart of Lupin PSE runtime and currently implemented in Java. It can dynamically
and automatically generate the actual interface when given the URL of WSDL file. Fig. 6shows how
does it work: when given the URL of WSDL, an user interface is generated automatically due to the
service description information involved in WSDL, and accepts the further parameter input to invoke

21-6

154

Request mes s age:

pOST $/\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{s}/\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}/\mathrm{E}\mathrm{u}\mathrm{c}1_{\mathrm{i}}\mathrm{d}1$ HTTP /1.0 Respons e message:
Content-Length: 495
Host: localhost HTTP /1 . 1 200 OK
Content-lype: $\mathrm{t}\mathrm{e}\mathrm{x}\mathrm{t}/\mathrm{x}\mathrm{m}\mathrm{l}$

i
$\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{t}\approx \mathrm{u}\mathrm{t}\mathrm{f}-8$

$\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{t}-\mathrm{T}\mathrm{y}\mathrm{p}\mathrm{e}$: $\mathrm{t}\mathrm{e}\mathrm{x}\mathrm{t}/\mathrm{x}\mathrm{m}\mathrm{l}$; $\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{t}\approx \mathrm{u}\mathrm{t}\mathrm{f}-8$

$\mathrm{S}\mathrm{O}\mathrm{A}\mathrm{P}\lambda \mathrm{c}\mathrm{t}_{1}\mathrm{o}\mathrm{n}$: \mathfrak{n} w

Content-Length: 434
Date: Tue, 26 Nov 2002 08:47:12 GMT

$<’ \mathrm{x}\mathrm{m}\mathrm{l}$ $\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{i}\circ \mathrm{n}\infty^{\mathrm{r}}1.0^{*}$ encoding$=^{\mathrm{w}}\mathrm{U}\mathrm{T}\mathrm{F}-8$ ” $7>$ Server: Apache $\mathrm{T}\mathrm{o}\mathrm{m}\mathrm{c}\mathrm{a}\mathrm{t}/4$. 0.4 ($\mathrm{H}\mathrm{T}\mathrm{T}\mathrm{P}/1.1$ Connector)
$<\mathrm{S}\mathrm{O}\mathrm{A}\mathrm{P}-\mathrm{E}\mathrm{N}\mathrm{V}$:Envelope
SOAP-ENV: $\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{S}\mathrm{t}\mathrm{y}\mathrm{l}\mathrm{e}=\mathrm{h}*\mathrm{t}\mathrm{t}\mathrm{p}$://

$<0[] \mathrm{o}\mathrm{n}1$ version$=^{\mathrm{n}}1.0^{*}$ encoding$=^{\mathrm{w}}\mathrm{U}\mathrm{T}\mathrm{F}-8$ $”>$
s chemas.xmls $\mathrm{o}\mathrm{a}\mathrm{p}.\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{s}\mathrm{o}\mathrm{a}\mathrm{p}/\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}/$

$*$

$<\mathrm{S}\mathrm{O}\mathrm{A}\mathrm{P}$ -ENV:Envelope
xmlns : $\mathrm{S}\mathrm{O}\lambda \mathrm{P}-\mathrm{E}\mathrm{N}\mathrm{V}-*$http: $//\mathrm{s}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{s}$.xmlsoap. $\mathrm{o}\mathrm{r}\mathrm{g}/$

xmln s : $\mathrm{S}\mathrm{O}\mathrm{I}\mathrm{P}-\mathrm{E}\mathrm{N}\mathrm{V}arrow$ ” httP: $//\mathrm{s}$ chemas.xmls $\mathrm{o}\mathrm{a}\mathrm{p}$. $\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{s}\mathrm{o}\mathrm{a}\mathrm{p}/$

$\mathrm{s}\mathrm{o}\mathrm{a}\mathrm{p}/\mathrm{e}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{p}\mathrm{e}/*$

$\mathrm{e}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{p}\mathrm{e}/*$

xmlns: $\mathrm{x}\mathrm{s}\mathrm{d}-^{\mathrm{w}}\mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}://\mathfrak{m}[] \mathrm{w}$.w3 . $\mathrm{o}\mathrm{r}\mathrm{g}/2001/\mathrm{K}4\mathrm{L}\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}$.
xmlns: $\mathrm{X}\mathrm{S}1arrow \mathfrak{n}|$http: $//\mathrm{v}\mathfrak{m}\mathrm{w}$.w3 . $\mathrm{o}\mathrm{r}\mathrm{g}/2001/\mathrm{X}\mathrm{l}4\mathrm{L}\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}-$

xmlns: $\mathrm{x}\mathrm{s}\mathrm{d}=^{\mathfrak{n}}$ http: $//\mathrm{w}\mathrm{w}\mathrm{w}$.w3 . $\mathrm{o}\mathrm{r}\mathrm{g}/2001/\mathrm{X}\mathrm{M}\mathrm{L}\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}^{*}$

instance, xmlns : $\mathrm{x}\mathrm{s}\mathrm{i}arrow \mathrm{n}\mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}://mm$.w3 .or$g/2001/’ afLS$ chema-
xmlns : SOAP-ENC$=^{\mathrm{n}}\mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}$ $://\mathrm{s}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{s}$.xmlsoap. $\mathrm{o}\mathrm{r}\mathrm{g}/$

instance” $>$

$\mathrm{s}\mathrm{o}\mathrm{a}\mathrm{p}/\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{n}g/^{*}>$

$<\mathrm{S}\mathrm{O}\mathrm{A}\mathrm{P}-\mathrm{E}\mathrm{N}\mathrm{V}$:Body $>$

$<\mathrm{S}\mathrm{O}\mathrm{h}\mathrm{P}-\mathrm{E}\mathrm{N}\mathrm{V}$:Body$>$
$<\mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{l}\mathrm{R}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{e}$ $\mathrm{S}\mathrm{O}\mathrm{A}^{\mathrm{p}}-\mathrm{E}\mathrm{N}\mathrm{V}$: $\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{S}\mathrm{t}\mathrm{y}\mathrm{l}\mathrm{e}=’ \mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}://$

$<\mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{l}\succ$ schemas.xmlsoap. $\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{s}\mathrm{o}\mathrm{a}\mathrm{p}/\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}/$ $\mathfrak{n}>$

$<\mathrm{a}1\mathrm{x}\mathrm{s}\mathrm{i}$:type$=^{\mathrm{w}}\mathrm{x}\mathrm{s}\mathrm{d}$:string” $>54</\mathrm{a}1\succ$ $<\mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{l}\mathrm{R}\mathrm{e}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{n}$ xsi : $\mathrm{t}\mathrm{y}\mathrm{p}\mathrm{e}=^{\mathrm{w}}\mathrm{x}\mathrm{s}\mathrm{d}$:strin$\mathrm{g}.>2</$

$<\mathrm{a}2$ XS1: $\mathrm{t}\mathrm{y}\mathrm{p}\mathrm{e}-" \mathrm{x}\mathrm{s}\mathrm{d}$: string $>32</\mathrm{a}2>$ FunctlReturn$>$

$</\mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{l}>$
$</\mathrm{F}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{l}\mathrm{R}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{e}>$

$</\mathrm{S}\mathrm{O}\mathrm{A}\mathrm{P}-\mathrm{E}\mathrm{N}\mathrm{V}:$ Body$>$ SOAP-ENV:Body$>$

$</\mathrm{S}\mathrm{O}\mathfrak{B}-\mathrm{E}\mathrm{N}\mathrm{V}$:Envelope $>$ $</\mathrm{S}\mathrm{O}1\mathrm{P}$ -ENV:Envelope$>$

Figure 5: SOAP messaging during the remote computation.

the service. In this implementation, every Lupin service is sitting at SOAP runtime and is responsible
for processing the request message and formulating aresponse. The response message is received by the
networking infrastructure on the service requestor’s node and can be converted ffom XML message into
certain object that fits the client.

6Remark
The experiments showed our first step on the road towards significant Lupin implementation based on
Web service. Effort has been made to answer such question as: can we make use of the conceptual
model of Web service and its relevant XML-based protocols to achieve our own global problem solving
ffamework? In order to reach asatisfied answer, focus is on the two critical processes in accordance with
the whole lifecycle of Lupin application: the service discovery and its invocation, which is expected to be
facilitated by the protocol of UDDI, SOAP and WSDL respectively.

Figure 6: Interface generation and $\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}/\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}$ from Lupin service.

21-7

155

According to our experiences, the process of Lupin service invocation can be sufficiently achieved by
WSDL-based interface generation and SOAP-based data exchange. However, the discovery mechanism
provided by UDDI registry does not completely meet our needs of Lupin service dynamic location,
because of UDDI’s poor description facility. From our perspective, the process of Lupin service discovery
is regarded as: the process of matching adescription of aservice required with adescription of aservice
advertised. Thus the process of discovery is essentially carried out by some kinds of service descriptions:
one is on the base of the capabilities that offered by the service provider, while the other is about the
declaration that aPSE is seeking for. From the specification of UDDI, its mechanism of description
includes very little information about the content and capability of service, limiting itself to the service
name, the service provider and aport where to access the service. Even though UDDI allows services to
refer to aset of attributes, called “Tmodel” (for example, in our experiment, we referred Tmodel to the
Lupin service’s WSDL file), but still lack of mechanism to support the agent to perform aflexible and
intelligent match. Due to this, amachine-understandable semantic approach which enables the agent to
understand the essential relationship between the mathematical service advertisement and requirement,
is needed. We are now concentrating on emerging ontology technology DAML [13], which is built on
existing Web technologies such as earlier $\mathrm{W}3\mathrm{C}$ standards RDF [12] and RDF schema, to extend our work.
We predicate that, based on DAML ontology markup, Lupin discovery mechanism can be promoted to
address amore effective and dynamic service discovery.

Lupin is evolving, our immediate work is to complete the development of the description language
which can be used in semantic Lupin service registration, as well as the request description. The cor-
responding API for Lupin registry, Lupin service browser, markup language for Lupin service flowing
description and the implementation of prototypes must also be done to support the whole ffamework,
which currently targets Web-based distributed computation and interactive mathematical education.

References
[1] Wang, P. S. Design and Protocol for Internet Accessible Mathematical Computation. In Proc. IS-

SAC’gg, ACM Press, pp.291-298, 1999.
[2] Lakshman, Y.N., Char, B. and Johnson, J. Software Components using Symbolic Computation for

Problem Solving Environments. In Proc. ISSAC’98, ACM press, pp.46-53
[3] Houstis, E., and Rice, J. R.: On the Future of Problem Solving Environments

http://www.cs.purdue.edu/people/jrr, 2000.
[4] Liao, W., Lin, D. and Wang, P. S. OMEI: An Open Mathematical Engine Interface. In Proc.

ASCM’01, World Scientific Press, pp.82-91, 2001.
[5] JavaMath, http: $//\mathrm{j}$ avamath. sourcefar e.net.

[6] OpenXM(0pen message eXchange protocol for Mathematics), http: $//\mathrm{w}\mathrm{w}$.openxm.org
[7] Kreger, H. Web Service Conceptual Architecture(WSCA 1.0). IBM software Group,

http: $//\mathrm{w}\mathrm{m}-3.$ ibm. $\mathrm{c}\mathrm{o}\mathrm{m}/\mathrm{s}\mathrm{o}\mathrm{f}\mathrm{t}\mathrm{w}\mathrm{a}\mathrm{r}\mathrm{e}/\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}/\mathrm{w}\mathrm{e}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}$, 2001.
[8] SOAP(Simple Object Access Protocol). http: $//\mathrm{w}\mathrm{w}\mathrm{w}$. . $\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{T}\mathrm{R}/\mathrm{s}\mathrm{o}\mathrm{a}\mathrm{p}$

[9] WSDL(Web Services Description Language), http: $//\mathrm{w}\mathrm{w}\mathrm{w}.\mathrm{w}3.\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{T}\mathrm{R}/\mathrm{w}\mathrm{s}\mathrm{d}\mathrm{l}$

[10] UDDI(Universal Description, Discovery and Integration), http: $//\mathrm{w}\mathrm{w}\mathrm{w}$.uddi.org
[11] systinet WASP: http: $//\mathrm{m}\mathrm{w}$.syst inet .com
[12] RDF(Resource Description Framework). http: $//\mathrm{m}\mathrm{w}.\mathrm{w}3\mathrm{c}$

$\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{R}\mathrm{D}\mathrm{F}$

[13] DAML: http://www.daml.org
[14] Li, K. Zhi, L.H. and Noda, M.-T. One the Construction of aPSE for GCD Computation. In Proc.

ASCM’01, World Scientific Press, pp.7681, 2001.

21-8

156

