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1 Introduction
Let us consider a 2x2 system of conservation laws in one space dimen-

sion;

$U_{t}+F(U)_{x}=0$, $(x, t)\in \mathrm{R}\cross \mathrm{R}_{+}$ (1)

where $U=\mathrm{t}u,$ $v$ ) $\in\Omega$ for adomain $\Omega\subseteqq \mathrm{R}^{2}$ and $F={}^{t}(F_{1}, F_{2})$ : $\Omega\cdot\simarrow \mathrm{R}^{2}$ is $\mathrm{a}$

smooth map. We suppose that this system of equations (1) is hyperbolic, i.e.
the Jacobian matrix $F’(U)$ has real eigenvalues $\lambda_{1}(U),$ $\lambda_{2}(U)$ for any $U\in\Omega$ .
If, in particular, these eigenvalues are distinct $\lambda_{1}(U)<\lambda_{2}(U))$ the system
is called strictly hyperbolic at $U$ . Astate $U^{*}\in\Omega$ is called an umbilic point,
if $\lambda_{1}(U)--\lambda_{2}(U)$ and $F’(U)$ is diagonal at $U=U’$ . We suppose that the
system of equations (1) is strictly hyperbolic at any $U\in\Omega\backslash \{U^{*}\}$ and that
$U^{*}$ is asingle umbilic point in $\Omega$ . Since $U=U^{*}$ is an isolated umbilic point,
we have the Taylor expansion of $F(U)$ near $l^{\gamma}=U^{*}:$

$F(U)=F(U^{*})+\lambda^{*}(U-U^{*})+Q(U-U^{*})+O(1)|U-U^{*}|^{3}$

where $\lambda^{*}=\lambda_{1}(U^{*})=\lambda_{2}(U^{*})$ and $Q:\mathrm{R}^{2}arrow \mathrm{R}^{2}$ is ahomogeneous quadratic
mapping. After the Galilean change of variables: $xarrow x-\lambda^{*}t$ and $Uarrow$

$U+U^{*}$ , we observe that the system of equations (1) is reduced to

$U_{t}+Q(U)_{x}=0$ , $(x, t)\in \mathrm{R}\cross \mathrm{R}_{+}$ (2)
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modulo higher order terms. Now by achange of unknown functions $V=$

$S^{-1}U$ with aregular constant matrix $S$, we have anew system of equations
$V_{t}+P(V)_{x}=0$ where $P(V)=S^{-1}Q(SV)$ . Thus we come to

Definition 1.1 Two quadratic mappings $Q_{1}(U)$ and $Q_{2}(U)$ are said to be
equivalent, if there is a constant matrix $S\in GL_{2}(\mathrm{R})$ such that

$Q_{2}(U)=S^{-1}Q_{1}(SU)$ for all $U\in \mathrm{R}$ . (3)

Ageneral quadratic mapping $Q(U)$ has six coefficients and $GL_{2}(\mathrm{R})$ is a
four dimensional group. Thus by the above equivalence transformations, we
can eliminate four parameters. These procedures are successfully carried out
by Schaeffer-Shearer [25] and they obtained the following normal forms.

Let $Q(U)$ be a hyperbolic quadratic mapping with an isolated umbilic point
$U=0$, then there eist two real parameters $a$ and $b$ utith $a\neq 1+b^{2}$ such that
$Q(\mathrm{I}f)$ is equivalent to $\frac{1}{2}\nabla C$ where $\nabla={}^{t}(\partial_{u}, \partial_{v})$ and

$C(U)= \frac{1}{3}au^{3}+bu^{2}v+uv^{2}$ . (4)

Moreover, if $(a, b)\neq(a’, b’)$ , then the corresponding quadratic mappings:
$\frac{1}{2}\nabla C$ and $\frac{1}{2}\nabla C’$ are not equivalent.

In the following argument, we shall confine ourselves to the quadratic
mapping:

$F( \ddagger^{\tau}’)=Q(U)=\frac{1}{2}\nabla C(U)=\frac{1}{2}(\begin{array}{l}au^{2}+2buv+v^{2}bu^{2}+2uv\end{array})(a\neq 1+b^{2})$ . (5)

Mathematical properties of the systems of equations (1) depends on $(a, b)$ .
Schaeffer-Shearer classify in [25] a&plane into four cases: Case Iis $a< \frac{3}{4}b^{2}$ ;
Case $\mathrm{I}\mathrm{I}$ is $\frac{3}{4}b^{2}<a<1+b^{2}$ ;for $a>1+b^{2}$ , the boundary between Case III and
Case $\mathrm{I}\mathrm{V}$ is $4\{4b^{2}-3(a-2)\}^{3}-\{16b^{3}+9(1-\cdot 2a)b\}^{2}=0$ . We notice that these
2 $\mathrm{x}2$ system of hyperbolic conservation laws with an isolated umbilic point
is ageneralization of athree phase Buckley-Leverett model for oil reservoir
flow where the flux functions are represented by aquotient of polynomials of
degree two. In Appendix of [25]: in collaboration with Marchesin and Paes-
Leme, they show that the quadratic approximation of the flux functions i8
either Case Ior Case $\mathrm{I}\mathrm{I}$ .

The Riemann problem for (1) is the Cauchy problem with initial data of
the form

$U(x, 0)=\{$
$U_{L}$ for $x<0$ ,
$U_{R}$ for $x>0$

(6)
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where $U_{L},$ $U_{R}$ are constant states in $\Omega$ . Ajump discontinuity defined by

$U(x, t)=\{$
$U_{L}$ for $x<st$ , (7)
$U_{R}$ for $x>st$

is apiecewise constant weak solution to the Riemann problem, provided these
quantities satisff the Rankine-Hugoniot condition:

$s(U_{R}-U_{L})=F(U_{R})-F(U_{L})$ . (8)

We say that the above discontinuity is a $j$-compressive shock wave $(j=$

$1,2)$ if it satisfies the Lax entropy conditions :

$\lambda_{j}(U_{R})<s<\lambda_{j}(U_{L})$ , $\lambda_{j-1}(U_{L})<s<\lambda_{j+1}(U_{R})$ (91,

(Lax [16], [17]). Here we adopt the convention $\lambda_{0}=-\infty$ and $\lambda_{3}=\infty.$ The
presence of an umbilic point bring us to face with non-classical: overcom-
pressive shocks and crossing shocks. We say that apiecewise constant weak
solution (7) is aovercompressive shock if it satisfies

$\lambda_{1}(U_{R})<s<\lambda_{1}(U_{L})$ , $\lambda_{2}(U_{R})<s<\lambda_{2}(U_{L})$ . (10)

We say also that apiecewise constant weak solution (7) is acrossing shock
if it satisfies

$\lambda_{1}(U_{R})<s<\lambda_{2}(U_{R})$ , $\lambda_{1}(U_{L})<s<\lambda_{2}(U_{L})$ . (11)

In this note, we shall confine ourselves to Case $\mathrm{I}\mathrm{I}$ of the representative
quadratic mapping $F(U)=Q(U)$ defined by (5). Our aim is to show that
there is no crossing shock with viscous profile on the complement of medians
$M_{1}\cup M_{3}$ hence the associated vector field $X_{s}(U_{L}, U)$ is structurally stable on
the complement of $M_{1}\cup M_{3}$ in Case $\mathrm{I}\mathrm{I}$ . In Section 2, we introduce the vector
field $X_{s}(U, U_{L})$ which allows us to determine the existence of aviscous profile
to the shock wave solutions. Then we classify the character of critical points
for the vector field $X_{s}(U_{L}, U)$ . In Section 3, we show that there is no crossing
shock with viscous profile on the complement of $M_{1}\cup M_{3}$ . In Section 4, as
conclusion, we show that the vector field $X_{s}(U_{L}, U)$ is structurally stable on
the complement of $M_{1}\cup M_{3}$ in Case $\mathrm{I}\mathrm{I}$ .

2Viscous Shock Profiles
One admissibility condition for shock wave solutions (7) to the Riemann

problem (6) for ahyperbolic system of conservation laws (1) is to obtain these
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solutions as limits of travelling wave solutions to an associated parabolic
equation:

$U_{t}+F(U)_{x}=\epsilon(B(U)U_{x})_{x},$ $\epsilon>0$ (12)

with an admissible matrix $B(U)$ in [4, 8, 9, 21, 28, 31]. More precisely, let
$U_{L}$ and $U_{R}$ be two constant states to Riemann problem (1), (6). If there
exists ashock $U(x,t)(7)$ with speed $s$ to this Riemann problem and the two
constant states $U_{L}$ and $U_{R}$ are connected through atravelling wave solution
$U_{\epsilon}(x,t)=U( \frac{x-st}{\epsilon})$ to (12) with shock speed $s$ which converges to the

shock wave $U(x, t)(7)$ as $\epsilon$ tends to 0, then we say that this shock (7)
satisfies the viscosity adrnissibility $c\mathrm{r}\dot{\tau}te\mathrm{r}ion$ and that it has aviscous shock

profile $U_{\epsilon}(x, t)=U( \frac{x-st}{\epsilon})$ . TThhee ttrraavveelllliinngg wwaavvee $U_{\epsilon}(x, t)=U( \frac{x-st}{\epsilon})$

should satisfy, by integrating (12), the $2\cross 2$ system of nonlinear ordinary
equations:

$B(U)U_{\xi}=-s(U-U_{L})+f(U)-f(U_{L})$ (13)

with $\xi=\frac{x-st}{\epsilon}$ and the boundary conditions at the infinity

$\lim_{\xiarrow-\infty}U(\xi)=U_{L},\lim_{\xiarrow\infty}U(\xi)=U_{R}$. (14)

The conditions (13), (14) required for the travelling wave solution imply
automatically the Rankine-Hugoniot condition (8) for the Riemann problem.
The existence of shock with aviscous profile is equivalent to the system of
(13) with the boundary condition (14).

Let $X_{s}(U, U_{L})$ be the vector field

$X_{s}(U, U_{L})=-s(U-U_{L})+F(U)-F(U_{L})$ . (15)

The shock wave solution (7) has aviscous shock profile if and only if there
exists an orbit along the vector-field $X_{\mathit{8}}(U, U_{L})$ from the critical point $U_{L}$ to
the critical point $U_{R}$ of this vector-field.

Let $p$ be acritical point of avector field $X$ . We say that $p$ is hyperbolic if
$dX$ has two eigenvalues with non-zero real part at $p$ . Clearly the eigenvalues
of $dX_{s}(U, U_{L})\mathrm{a}\mathrm{r}\mathrm{e}-s+\lambda_{\mathrm{j}}(U)$. In particular, $dX_{s}(U, U_{L})$ has real eigenvalues.

The critical point $U$ of $X_{s}$ is not hyperbolic if and only if $s=\lambda j(U)(j=$

$1$ or 2).

Proposition 2.1 The shock wave (7) is
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$\bullet$ 1-compressive shock if and only if $U_{L}$ is repeller and $U_{R}$ is saddle.

$\bullet$ 2-cornpressive shock if and only if $U_{L}$ is saddle and $U_{R}$ is attractor.

$\bullet$ overcompressive shock if and only if $U_{L}$ is repeller and $U_{R}$ is attractor.

$\bullet$ crvssing shock if and only if $U_{L}$ and $U_{R}$ are saddles.

For all above shocks, both critical point $U_{L}$ and $U_{R}$ are hyperbolic. Moreover
there $e\dot{m}ts$ a shock wave (7) with a viscous profile if and only if there esists
an orbit connecting two critical points of the vector field $X_{s}$ .

We say, for example, repeller-saddle connection or simply R-S connection
an orbit from arepeller point to asaddle point.

In Case $\mathrm{I}\mathrm{I}$ , we investigate the critical points of the vector-field $X_{s}(U, U_{L})$

in the finite part of the $U$-plane and at the infinity. The Poincare’ transfor-
mation $[2, 9]$ enables us to make aone-t0-0ne correspondence from U-plane
including the infinity to the sphere $S^{2}$ by identifying two antipodal points.
The line joining two antipodal points of $S^{2}.=\{(x_{1}, x_{2}, x_{3})\in \mathrm{R}^{3};x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=$

$1\}$ intercepts the plane $P_{1}=\{(u, v, -1);(u, v)\in \mathrm{R}^{2}\}\simeq U$ –plane at one
point, This mapping induces the vector field $X_{\epsilon}(U, U_{L})$ on $U$-plane to the
vector field $X_{s}^{S^{2}}(U, U_{L})$ on the sphere $S^{2}$ minus the equator $\{x_{3}=0\}.$ The
equator $\{x_{3}=0\}$ corresponds to $\infty\cross S^{1}$ of $U$-plane. SiInilarly the line
joining the origin and apoint on $P_{2}=\{(1, w, -z);(w, z)\in \mathrm{R}^{2}\}$ intercepts
$S^{2}$ at two antipodal points. By this mapping, avector field $011P_{2}$ is induced
to avector field on the sphere $S^{2}$ minus the equator $\{x_{1}=0\}$ . $\mathrm{T}1_{1}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{f}_{0\Gamma^{(^{\backslash }}}\mathrm{t}]_{1\mathrm{P}_{-}}$

composition of two mappings above transforms a $\mathrm{p}o\mathrm{i}_{\mathrm{I}1}\mathrm{t}(1, u’, -z)\in I_{2}^{\supset}\{|(’ \mathrm{f}1$

point $(u, v, 1)\in P\iota$ :

$u=1/z,$ $v=w/z$ if $z\neq 0$ ,

or equivalently

$w=v/u,$ $z=1/u$ if $u\neq 0$ .

For $u=0$, we take instead of tlie plane $P_{2}$ the plane $P_{2}=\{(w, 1, -z);(\tau v, z)\in$

$\mathrm{R}^{2}\}$ . Similarly apoint $(w, 1, -z)\in P_{2}’$ corresponds $\mathrm{f}_{1}0$ fl $\mathrm{p}‘$)$\mathrm{i}\mathrm{n}\mathrm{t}(?\iota, v, 1)\in P_{1}$ :

$w=u/v,$ $z=1/v$ if $v\neq 0$ .

By the mapping from $P_{2}$ to $P_{1}$ , the differential $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\cdot \mathrm{o}\mathrm{n}\frac{dv}{du}=\frac{-sv+F_{\acute{2}}(U)}{-su+F_{1}(U)}$

of the vector field $X_{s}(U, U_{L})$ is induced to the differential equation

$\frac{dz}{dw}=\underline{\underline{\underline{\Psi}}}-$ (16)
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where
$\Psi---$

$=$ $-z\{-sz(1-zu_{L})+F_{1}(1, w)-z^{2}F_{1}(U_{L})\}$ ,
$=$ $-w\{-sz(1-zu_{L})+F_{1}(1, w)-z^{2}F_{1}(U_{L})\}+F_{2}(1,$w)

$-z^{2}F_{2}(U_{L})-sz(w-zv_{L})$ .

The right-hand side of the differential equation (16) is well-defined also for
$\{z=0\}$ which corresponds to the equator $\{x_{3}=0\}$ of $S^{2}$ then to the infinity
of U-plane.

We consider the critical points of $X_{5}(U, U_{L})$ at the infinity. They satisfy
$z=\mathrm{O}$ then

$-wF_{1}(1, w)+F_{2}(1, w)=-\Phi(w)=-(w^{3}+2bw^{2}+(a-2)w-b)=0$

which has three distinct real roots $\mu_{1},$ $\mu_{2},$ $\mu_{3}$ for $a<1+b^{2}$ . The corresponding
vector field of (16) is $\dot{w}=---$ , $:=\Psi$ and its Jacobian matrix at $z=\mathrm{O}$ is

$(\begin{array}{lll}-F_{1}(1,w)- wF_{1}^{/}(1,w)+F_{2}’(1,w) 0 0 --F_{1}(1,w)\end{array})$ . (17)

We have already known [3] the configuration of the roots $\mu$:of $\Phi(w)=0$ ,

For $b>0$ ,

in Case $\mathrm{I}\mathrm{I},$ $\mu_{1}<-b<\mu_{2}<-b/2<0<\mu_{3}$ . (18)

Then we have

$-F_{1}(1, w)-wF_{1}’(1, w)+F_{2}’(1, w)=-\Phi’(w)\{$
$<0$ for $w=\mu_{1},$ $\mu_{3}$ ,
$>0$ for $w=\mu_{2}$

(19)

and

$-F_{1}(1, w)=- \frac{1}{w}(\Phi(w)+2w+b)\{$
$\backslash ’0$ for $\mu_{1},$ $\mu_{2}$ ,
$>0$ for $\mu_{3}$ . (20)

Therefore in Case $\mathrm{I}\mathrm{I},$

$\mu_{1}$ is aattractor, $\mu_{2}$ is asaddle and $\mu_{3}$ is arepeller. On
account of the fact that, at the antipodal point, the character of acritical
point is the inverse, we have

Theorem 2.1 The vector field $X_{\epsilon}(U, U_{L})$ has six singularities at infinity.
In Case $II$, two are repellers, two are attractors and trno are saddles.

We investigate critical points of $X_{s}(U, U_{L})$ in the bounded region of
$U$-plane. Owing to the Poincar\’e-Hopf theorem, we can show
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Theorem 2.2 The vector field $X_{s}(U, U_{L})$ has two, three or four critical
points in the bounded region of $U$ -plane. In Case $II$,

(i) if the vector field $X_{s}(U, U_{L})$ has four critical points in the bounded
region of $U$-plane, then the critical points are ttno nodes and two saddles.

(ii) if the vector field $X_{s}(U, U_{L})$ has three critical points in the bounded
region of $U$-plane, then the critical points are one node, one saddle and one
saddle-node.

(iii) if the vector field $X_{s}(U, U_{L})$ has trno critical points in the bounded
region of $U$-plane, then the critical points are one node and one saddle or
two saddle-nodes.

Let us recall the notion of structurally stable vector fields. Let $\chi(M^{2})$ be
the space of all vector fields of $C^{1}$ class on a2-dimensional compact manifold
$M^{2}$ with the $\mathrm{C}^{1}$-topology.

Definition 2.1 A vector field $X\in\chi(M^{2}\grave{)}$ is said to be structurally stable
if there exists a neighborhood $N$ of $X$ in $\chi(M^{2})$ such that for any $\mathrm{Y}\in N$ ,
there eists a homeomorphism $\rho$ : $M^{2}arrow M^{2}$ which maps any orbit of $X$ to
an orbit Y.

The following theorem due to Peixoto [24] gives acharacterization of
structurally stable vector fields.

Theorem 2.3 A vector field $X\in\chi(M^{2})$ is structurally stable if and only

if it satisfies the follouing conditions:

$\bullet$ there are only a finite $n$ rmber of critical points and all are hyperbolic,

$\bullet$ there are only a finite nurnber of closed orbits and all are hyperbolic,

$\bullet$ the {$v$ -limit sets and $\alpha$-limit sets of any orbit consist only of $c\mathrm{r}\dot{\tau}tical$

points or closed orbits,

$\bullet$ there are no saddle-saddle connections.

Since both eigenvalues of $X_{s}(U_{L}, U)$ are real, we have

Proposition 2.2 The vectorfield $X_{s}(U_{L}, U)$ has no closed orbits, nor sin-
gular closed orbit, nor $\omega$ -limit sets, nor $\alpha$ -lirnit sets.

The most unstable connection is clearly saddle saddle connection. We
will show in the next section that there are no saddle-saddle connections on
the complement of $M_{1}\cup \mathrm{A}\#_{3}$ in Case $\mathrm{I}\mathrm{I}$ .
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3Saddle-Saddle Connections
The aim of this section is to show that there is no crossing shock on the
complement of $M_{1}\cup M_{3}$ in the Case $\mathrm{I}\mathrm{I}$ .

Theorem 3.1 A crvssing shock has a viscoets profile if and only if this
profile comes from a saddle-saddle connection which is a straight line on the
median $M_{j}=\{U={}^{t}(u, v);v=\mu ju\}(j=1,2,3)$ .

Proof. Suppose that there is acrossing shock. It is obvious, from PropO-
sition 2.1 and its following remark, that the existence of acrossing shock is
equivalent to the existence of aS-S connection. The next lemma is due to
Chicone [6].

Lemma 3.1 Let $X={}^{t}(\Psi, ---)$ be a quadratic vector field on the plane
where $\Psi and---are$ relatively prime polynomials. Then every saddle-saddle
connection lies on a straight line.

To accomplish the proof of the theorem, we make of ause of astrategy
of Gomes [9]. Let $U_{L}$ and $U_{R}$ be two saddle points connected by an straight
orbit $L$ : $U-rightarrow{}^{t}(1,k)t+U_{L}$ . Owing to the fact that the segment $\tilde{L}$ from $U_{L}$.

to $U_{R}$ is invariant under the vector field $X_{\mathit{8}}$ , we have $(X_{s}|_{\overline{L}},{}^{t}(-k, 1))=0$ .
Denoting $U={}^{t}(u, v)$ and $U_{L}={}^{t}(u_{L}, v_{L})$ , we have, from the above equa-

tion,

$F_{2}(U)-F_{2}(U_{L})=k(F_{1}(U)-F_{1}(U_{L}))$ , (21)

i.e. $(kF_{1}(1, k)-F_{2}(1, k))u^{2}=0$ modulo polynomial of $u$ of degree $\leq 1$ . It
implies that

$kF_{1}(1, k)-F_{2}(1, k)(=\Phi(k))=0$, (22)

then $k=\mu_{j}$ ($j=1,2$ or 3). Substituting $k=\mu_{\mathrm{j}}$ into (21), we obtain

$k^{2}(bu_{L}+v_{L})+k((a-1)u_{L}+bv_{L})-(bu_{L}+v_{L})=0$. (23)

(22) $\mathrm{x}u_{L}-(23)$ gives us $(k^{2}+bk-1)(ku_{L}-v_{L})=0$ . Because clearly
$k^{2}+bk-1\neq 0$ , we have $ku_{L}=v_{L}$ . Then $L$ is on amedian.

Therefore the straight orbit lies on the medians and every median is
invariant of the vector field $X_{s}$ , which proves the assertion. The converse is
quite clear.

In the context of the above proof, we showed
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Corollary 3.1 i) Every median $M_{j}$ is invariant under the vector field $X_{s}$

and every straight line orbit lies on a median. ii) The orbit of any saddle-
saddle connection lies on a median.

Let us investigate the structure of orbits on the medians. Let $U_{L}=$

${}^{t}(u_{L}, v_{L})$ be apoint on amedian $M=$ { $U={}^{t}(u,$ $v)$ ;rr $=\mu u$} where $\mu=$

$\mu_{j}(1\leq j\leq 3)$ . Owing to Corollary 3.1, the orbit through $U_{L}$ lies on the
median $M$ . Then we have

$X_{s}(U, U_{L})=\{(a+2b\mu+\mu^{2})(u^{2}-u_{L}^{2})-s(u-u_{L})\}(\begin{array}{l}1\mu\end{array})$ . (24)

Let $U_{1}={}^{t}(u_{1},v_{1})$ be apoint $X_{\epsilon}(U_{1}, U_{L})=0(U_{1}\neq U_{L})$ . Then we have
$v_{1}=\mu u_{1}$ and

$u_{1}=-u_{L}+ \frac{\mu}{b+2\mu}s$ . (25)

If $u_{1}<u_{L}$ i.e. $u_{L}>\underline{\mu}s$ , then both components of $X_{s}(U, U_{L})$ are
$2(b+2\mu)$

negative for $u_{1}<u<u_{L}$ and positive for $u<u_{1}$ and for $u>u_{L}$ . Hence
there is an orbit from $U_{L}$ to $U_{1}$ .

If $u_{1}>u_{L}$ i.e. $u_{L}<\underline{\mu}s$ , then both components of $X_{s}(U, U_{L})$ are
$2(b+2\mu)$

negative for $u_{L}<u<u_{1}$ and positive for $u<u_{L}$ and for $u.>u_{1}.$ Hence
there is an orbit from $U_{1}$ to $U_{L}$ .

In any case, there is an orbit between $U_{L}$ and $U_{1}$ . Therefore we have

Theorem 3.2 Any point $U_{L}$ on a median 14 $(1 \leq j\leq 3)$ can be connected
via one shock to a point $U_{1}$ on the common median $M_{j}$ and this shock has $a$

viscous profile.

Furthermore the character of shock waves on the median A#7 $(1\leq j\leq 3)$

can be determined in Case $\mathrm{I}\mathrm{I}$ by the following two propositions

Proposition 3.1 Let $b\geq 0$ . On the rnedian $M_{2}$ , there is no crossing shock
in Case $II$.

Proof. On the median $M_{2}=\{^{t}(u, v);v=\mu_{2}u\}$ , the system (1) is reduced
to the equation

$v_{t}+( \frac{b}{\mu_{2}^{2}}+\frac{2}{\mu_{2}})(\frac{v^{2}}{2})_{x}=0$ . (26)
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Then the speed of shock wave joining $U_{+}={}^{t}(u_{+}.v_{+})$ and $U_{-}={}^{t}(u_{-}.v_{-})$ is
$s(U_{+}, U-)= \frac{b+2\mu_{2}}{2\mu_{2}^{2}}(v_{+}+v-)$ . The Jacobian matrix $F’(U)$ on the median
$M_{2}$ is

$F’(U)= (\begin{array}{ll}au+bv bu+vbu+v u\end{array})=\frac{1}{\mu_{2}}(\begin{array}{ll}a+b\mu_{2} b+\mu_{2}b+\mu_{2} 1\end{array})v$.

As we have already seen in Proposition 5.1 [3], the eigenvalues of $F’(U)$ are

$\lambda(U)=(\frac{a}{\mu_{2}}+2b+\mu_{2})v=\frac{b+2\mu_{2}}{\mu_{2}^{2}}v$ and $\lambda^{[perp]}(U)=(\frac{1}{\mu_{2}}-b-\mu_{2})v$

and its eigenvectors are ${}^{t}(v, \mu_{2}v)$ and ${}^{t}(-\mu_{2}v, v)$ respectively. We can deter-
mine $\lambda_{1}(U)$ and A2(U) according to the sign of $v$ (or $u$ ). In fact, we have

$\lambda(U)-\lambda^{[perp]}(U)=\frac{v}{\mu_{2}^{2}}(1+\mu_{2}^{2})(\mu_{2}+b)$ . (27)

On the median $M_{2\prime}$.taking into account of (18), for $v>0,$ $\lambda_{1}(’U)=$

$\lambda^{[perp]}(U),$ $\lambda_{2}(U)=\lambda(U)$ and, for $v<0,$ $\lambda_{1}(U)=\lambda(U),$ $\lambda_{2}(U)=\lambda^{[perp]}(U)$ .
Suppose that there is acrossing shock on the median $M_{2}$ . We have four

cases: $i$ )$v_{+}\geq 0,$ $v_{-}>0,$ $ii$ ) $v_{+}>0,$ $v_{-}\leq 0,$ $iii$ ) $v_{+}<0,$ $v_{-}\geq,$ $0$ . $iv,1v_{[perp]}\leq_{-}$

$0.v_{-}<0$ . In case $i$ ), we would have

$s(U_{+}, U_{-})-\backslash \lambda_{2}(U_{+})$ $=$ $\frac{2\mu_{j}+b}{\mu_{j}^{2}}(\mathrm{t}\mathrm{z}_{-}-v_{+})<0$,

$s(U_{+}, U_{-})-\lambda_{2}(U_{-})$ $=$ $\frac{2\mu_{j}+b}{\mu_{j}^{2}}(v_{+}-v_{-})<0$

which is not possible to realize. In case $ii$ ), we would have

$s(U_{+}, \Gamma J_{-})-\lambda_{1}(U-)=\frac{2\mu_{j}+b}{2\mu_{j}^{2}}(v_{+}-v_{-})>0$ then $v_{+}<v_{-}$

which is not possible to realize. In case $iii$ ), we would have

$s(U_{+}, U_{-})- \lambda_{1}(U_{+})=\frac{2\mu_{j}+b}{2\mu_{j}^{2}}(v_{-}-v_{+})>0$ then $v_{-}<v_{+}$

which is not possible to realize. In case $iv$), we would have

$s(U_{+}, U_{-})-\lambda_{1}(U_{+})$ $=$ $\frac{2\mu_{j}+b}{\mu_{j}^{2}}(v_{-}-v_{+})<0$,

$s(U_{+}, U_{-})-\lambda_{1}$ (U-) $=$ $\frac{2\mu_{j}+b}{\mu_{j}^{2}}(v_{+}-v_{-})<0$
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which is not possible to realize.
Therefore there is no crossing shock on the median $M_{2}$ .

Proposition 3.2 Let $b\geq 0$ . Suppose that $(a, b)$ belongs to Case $II$. On
the median $M_{1}$ , there is a saddle-saddle connection from $U$-to $U_{+}$ if and
only if $v_{-}<0<v_{+}$ . On the median $M_{3}$ , there is a saddle-saddle connection
from $U$-to $U_{+}$ if and only if $v_{+}<0<v_{-}$ .

We can prove this proposition using asimilar strategy as Proposition 3.1.
Combining Corollary 3.1, Proposition 3.1 and Proposition 3.2, we have

Theorem 3.3 There is no saddle-saddle connection nor crossing shock
with viscous prvfile on the complement of $M_{1}\cup M_{3}$ in Case $II$.

The relation $X_{s}(U, U_{L})=0$ is the intersection of two quadratic equations
$F_{1}(U)-F_{1}(U_{L})-s(u-u_{L})=0$ and $F_{2}(U)-F_{2}(U_{L})-s(v-v_{L})=0.$ Then
it consists of at most four points including $U_{L}$ and $U_{1}$ . In fact, the others are
two saddle points. More precisely

Proposition 3.3 Let $U_{L}$ be a point on a median 14 $(1 \leq i\leq 3)$ . The
set $X_{s}(U, U_{L})=0$ consists of at most four points. The others critical points
than $U_{L}$ and $U_{1}$ consist only of saddle points.

Proof. Let $U_{L}$ be apoint on amedian $M_{j}$ : $v_{L}=\mu_{j}u_{L}$ . The equation
$X_{s}(U, U_{L})=0$ implies that

$F_{1}(U)-F_{1}(U_{L})-s(u-u_{L})$ $=0_{\dot{l}}$ $(_{\backslash }28)$

$F_{2}(U)-F_{2}(U_{L})-s(v-v_{L})$ $=0$ . (29)

(29)–(28) $\mathrm{x}\mu_{j}$ implies that

$(a\mu_{j}-b‘)u^{2}+2(b\mu_{J}-1)uv+\mu_{j}v^{2}-s\mu_{j}u+sv+\{F_{2}(_{\backslash }U_{L})-\mu_{j}F_{1}(U_{L})\}=0$ .

Here
$F_{2}(U_{L})-\mu_{j}F_{1}(U_{L})$ $=$ $(b-a\mu_{j})u_{L}^{2}+2(1-b\mu_{j})u_{L}v_{L}-\mu_{j}v_{L}^{2}$

$=u_{L}^{2}\{(b-a\mu_{j})+2\mu_{j}(1-b\mu_{j})-\mu_{j}^{3}\}$

$=$ $-u_{L}^{2}\{\mu_{j}^{3}+2b\mu_{j}^{2}+(a-2)\mu_{j}-b\}$

$=$ $0$ .

Hence we have

0 $=$ $(a\mu_{j}-b)u^{2}+2(b\mu_{j}-1)uv+\mu j^{v^{2}-s\mu u+sv}j$

$=$ $(v- \mu_{j}u)\{\mu_{j}v-\frac{1}{\mu_{j}}(a\mu_{j}-b)u+s\}$

$=$ $(v-\mu_{j}u)\{\mu_{j}v+(\mu_{j}^{2}+2b\mu_{j}-2)u+s\}$ .
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Therefore we have $v=\mu_{j}u$ and

$v$ $=$ $\frac{1}{\mu_{j}^{2}}(a\mu_{j}-b)u-\frac{s}{\mu_{j}}$ (30)

or equivalently $v=$ $(- \mu_{j}-2b+\frac{2}{\mu_{j}})u-\frac{s}{\mu_{j}}$ . (31)

Substituting $v=\mu_{j}u$ into $X_{s}(U, U_{L})=0$ , we obtain as above $U=U_{L},$ $U_{1}$ .
Similarly substituting $v=(- \mu_{j}-2b+\frac{2}{\mu_{j}})u-\frac{s}{\mu_{j}}$ into $X_{s}(U, U_{L})$ , we

obtain

$X_{s}(U, U_{L})$ $=x_{s}^{1}(U, U_{L})(\begin{array}{l}1\mu_{j}\end{array})$ (32)

where $x_{s}^{1}(U, U_{L})$ $=$ $(-3b-2 \mu_{j}+\frac{4}{\mu_{j}})u^{2}+s(2b+\mu_{j}-\frac{4}{\mu_{j}})$ tz (33)

$+ \frac{s^{2}}{\mu_{j}}-(b+2\mu_{j})u_{L}^{2}+s\mu_{j}u_{L}$ . (34)

Therefore on the line $v=(– \mu_{j}-2b+\frac{2}{\mu_{j}})u-\frac{s}{\mu_{j}}$ , the vector field $X_{s}(U, U_{L})$

has the constant direction $\pm^{t}(1, \mu_{j})$ and passing through the critical point,
$X_{s}(U,$ $U_{L}\grave{)}$ changes the sign. It occurs only in the case of saddle points, which
proves the proposition.

4Structural Stability
Applying Theorem 3.3 and Proposition 2.2 to Theorem 2.3, avector field

$X_{s}(U_{L}, U)$ is structurally stable on the complement of $M_{1}\cup M_{3}$ if and only
if there are only afinite number of singularities and all are hyperbolic. Even
if there are many variations of critical points as stated in Theorem 2.2, in
any case, avector field $X_{s}(U_{L}, U)$ has at most four critical points in bounded
region and six critical points at infinity of $U$-plane and all of these are hy-
perbolic. Therefore we have

Theorem 4.1 A vector field $X_{\mathit{8}}(U_{L}, U)$ is strucrurally stable on the com-
plement of $M_{1}\cup M_{3}$ in Case $II$.
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