Viscous shock profile for 2×2 systems of hyperbolic conservation laws with an umbilic point

Fumioki ASAKURA*and Mitsuru YAMAZAKI[†] 浅倉史興(大阪電気通信大学工学部)·山崎満(筑波大学数学系)

1 Introduction

Let us consider a 2×2 system of conservation laws in one space dimension:

$$U_t + F(U)_x = 0, \quad (x,t) \in \mathbf{R} \times \mathbf{R}_+ \tag{1}$$

where $U = {}^{t}(u, v) \in \Omega$ for a domain $\Omega \subseteq \mathbb{R}^{2}$ and $F = {}^{t}(F_{1}, F_{2}) : \Omega \to \mathbb{R}^{2}$ is a smooth map. We suppose that this system of equations (1) is hyperbolic, i.e. the Jacobian matrix F'(U) has real eigenvalues $\lambda_{1}(U), \lambda_{2}(U)$ for any $U \in \Omega$. If, in particular, these eigenvalues are distinct $\lambda_{1}(U) < \lambda_{2}(U)$, the system is called strictly hyperbolic at U. A state $U^{*} \in \Omega$ is called an umbilic point, if $\lambda_{1}(U) = \lambda_{2}(U)$ and F'(U) is diagonal at $U = U^{*}$. We suppose that the system of equations (1) is strictly hyperbolic at any $U \in \Omega \setminus \{U^{*}\}$ and that U^{*} is a single umbilic point in Ω . Since $U = U^{*}$ is an isolated umbilic point, we have the Taylor expansion of F(U) near $U = U^{*}$:

$$F(U) = F(U^*) + \lambda^*(U - U^*) + Q(U - U^*) + O(1)|U - U^*|^3$$

where $\lambda^* = \lambda_1(U^*) = \lambda_2(U^*)$ and $Q: \mathbb{R}^2 \to \mathbb{R}^2$ is a homogeneous quadratic mapping. After the Galilean change of variables: $x \to x - \lambda^* t$ and $U \to U + U^*$, we observe that the system of equations (1) is reduced to

$$U_t + Q(U)_x = 0, \quad (x,t) \in \mathbf{R} \times \mathbf{R}_+$$
(2)

^{*}Faculty of Engineering, Osaka Electro-Communication Univ., Neyagawa, Osaka 572-8530, JAPAN, asakura@isc.osakac.ac.jp

[†]Institute of Mathematics, Univ. of Tsukuba, Tsukuba, Ibaraki 305-8571, JAPAN, yamazaki@math.tsukuba.ac.jp

modulo higher order terms. Now by a change of unknown functions $V = S^{-1}U$ with a regular constant matrix S, we have a new system of equations $V_t + P(V)_x = 0$ where $P(V) = S^{-1}Q(SV)$. Thus we come to

Definition 1.1 Two quadratic mappings $Q_1(U)$ and $Q_2(U)$ are said to be equivalent, if there is a constant matrix $S \in GL_2(\mathbf{R})$ such that

$$Q_2(U) = S^{-1}Q_1(SU) \quad \text{for all} \quad U \in \mathbf{R}^2.$$
(3)

A general quadratic mapping Q(U) has six coefficients and $GL_2(\mathbf{R})$ is a four dimensional group. Thus by the above equivalence transformations, we can eliminate four parameters. These procedures are successfully carried out by Schaeffer-Shearer [25] and they obtained the following normal forms.

Let Q(U) be a hyperbolic quadratic mapping with an isolated umbilic point U = 0, then there exist two real parameters a and b with $a \neq 1 + b^2$ such that Q(U) is equivalent to $\frac{1}{2}\nabla C$ where $\nabla = {}^{t}(\partial_{u}, \partial_{v})$ and

$$C(U) = \frac{1}{3}au^3 + bu^2v + uv^2.$$
(4)

Moreover, if $(a, b) \neq (a', b')$, then the corresponding quadratic mappings: $\frac{1}{2}\nabla C$ and $\frac{1}{2}\nabla C'$ are not equivalent.

In the following argument, we shall confine ourselves to the quadratic mapping:

$$F(U) = Q(U) = \frac{1}{2}\nabla C(U) = \frac{1}{2} \left(\begin{array}{c} au^2 + 2buv + v^2 \\ bu^2 + 2uv \end{array}\right) (a \neq 1 + b^2).$$
(5)

Mathematical properties of the systems of equations (1) depends on (a, b). Schaeffer-Shearer classify in [25] *ab*-plane into four cases: Case I is $a < \frac{3}{4}b^2$; Case II is $\frac{3}{4}b^2 < a < 1+b^2$; for $a > 1+b^2$, the boundary between Case III and Case IV is $4\{4b^2-3(a-2)\}^3 - \{16b^3+9(1-2a)b\}^2 = 0$. We notice that these 2×2 system of hyperbolic conservation laws with an isolated umbilic point is a generalization of a three phase Buckley-Leverett model for oil reservoir flow where the flux functions are represented by a quotient of polynomials of degree two. In Appendix of [25]: in collaboration with Marchesin and Paes-Leme, they show that the quadratic approximation of the flux functions is either Case I or Case II.

The Riemann problem for (1) is the Cauchy problem with initial data of the form

$$U(x,0) = \begin{cases} U_L & \text{for } x < 0, \\ U_R & \text{for } x > 0 \end{cases}$$
(6)

where U_L, U_R are constant states in Ω . A jump discontinuity defined by

$$U(x,t) = \begin{cases} U_L & \text{for } x < st, \\ U_R & \text{for } x > st \end{cases}$$
(7)

is a piecewise constant weak solution to the Riemann problem, provided these quantities satisfy the *Rankine-Hugoniot condition*:

$$s(U_R - U_L) = F(U_R) - F(U_L).$$
 (8)

We say that the above discontinuity is a *j*-compressive shock wave (j = 1, 2) if it satisfies the Lax entropy conditions :

$$\lambda_j(U_R) < s < \lambda_j(U_L), \quad \lambda_{j-1}(U_L) < s < \lambda_{j+1}(U_R)$$
(9)

(Lax [16], [17]). Here we adopt the convention $\lambda_0 = -\infty$ and $\lambda_3 = \infty$. The presence of an umbilic point bring us to face with non-classical: overcompressive shocks and crossing shocks. We say that a piecewise constant weak solution (7) is a overcompressive shock if it satisfies

$$\lambda_1(U_R) < s < \lambda_1(U_L), \quad \lambda_2(U_R) < s < \lambda_2(U_L).$$
(10)

We say also that a piecewise constant weak solution (7) is a crossing shock if it satisfies

$$\lambda_1(U_R) < s < \lambda_2(U_R), \quad \lambda_1(U_L) < s < \lambda_2(U_L).$$
(11)

In this note, we shall confine ourselves to Case II of the representative quadratic mapping F(U) = Q(U) defined by (5). Our aim is to show that there is no crossing shock with viscous profile on the complement of medians $M_1 \cup M_3$ hence the associated vector field $X_s(U_L, U)$ is structurally stable on the complement of $M_1 \cup M_3$ in Case II. In Section 2, we introduce the vector field $X_s(U, U_L)$ which allows us to determine the existence of a viscous profile to the shock wave solutions. Then we classify the character of critical points for the vector field $X_s(U_L, U)$. In Section 3, we show that there is no crossing shock with viscous profile on the complement of $M_1 \cup M_3$. In Section 4, as conclusion, we show that the vector field $X_s(U_L, U)$ is structurally stable on the complement of $M_1 \cup M_3$ in Case II.

2 Viscous Shock Profiles

One admissibility condition for shock wave solutions (7) to the Riemann problem (6) for a hyperbolic system of conservation laws (1) is to obtain these

solutions as limits of travelling wave solutions to an associated parabolic equation:

$$U_t + F(U)_x = \epsilon(B(U)U_x)_x, \epsilon > 0$$
(12)

with an admissible matrix B(U) in [4, 8, 9, 21, 28, 31]. More precisely, let U_L and U_R be two constant states to Riemann problem (1), (6). If there exists a shock U(x,t) (7) with speed s to this Riemann problem and the two constant states U_L and U_R are connected through a travelling wave solution $U_{\epsilon}(x,t) = U\left(\frac{x-st}{\epsilon}\right)$ to (12) with shock speed s which converges to the shock wave U(x,t) (7) as ϵ tends to 0, then we say that this shock (7) satisfies the viscosity admissibility criterion and that it has a viscous shock profile $U_{\epsilon}(x,t) = U\left(\frac{x-st}{\epsilon}\right)$. The travelling wave $U_{\epsilon}(x,t) = U\left(\frac{x-st}{\epsilon}\right)$ should satisfy, by integrating (12), the 2 × 2 system of nonlinear ordinary equations:

$$B(U)U_{\xi} = -s(U - U_L) + f(U) - f(U_L)$$
(13)

with $\xi = \frac{x - st}{\epsilon}$ and the boundary conditions at the infinity

$$\lim_{\xi \to -\infty} U(\xi) = U_L, \lim_{\xi \to \infty} U(\xi) = U_R.$$
(14)

The conditions (13), (14) required for the travelling wave solution imply automatically the Rankine-Hugoniot condition (8) for the Riemann problem. The existence of shock with a viscous profile is equivalent to the system of (13) with the boundary condition (14).

Let $X_s(U, U_L)$ be the vector field

$$X_s(U, U_L) = -s(U - U_L) + F(U) - F(U_L).$$
(15)

The shock wave solution (7) has a viscous shock profile if and only if there exists an orbit along the vector-field $X_s(U, U_L)$ from the critical point U_L to the critical point U_R of this vector-field.

Let p be a critical point of a vector field X. We say that p is hyperbolic if dX has two eigenvalues with non-zero real part at p. Clearly the eigenvalues of $dX_s(U, U_L)$ are $-s + \lambda_j(U)$. In particular, $dX_s(U, U_L)$ has real eigenvalues.

The critical point U of X_s is not hyperbolic if and only if $s = \lambda_j(U)$ (j = 1 or 2).

Proposition 2.1 The shock wave (7) is

- 1-compressive shock if and only if U_L is repeller and U_R is saddle.
- 2-compressive shock if and only if U_L is saddle and U_R is attractor.
- overcompressive shock if and only if U_L is repeller and U_R is attractor.
- crossing shock if and only if U_L and U_R are saddles.

For all above shocks, both critical point U_L and U_R are hyperbolic. Moreover there exists a shock wave (7) with a viscous profile if and only if there exists an orbit connecting two critical points of the vector field X_s .

We say, for example, repeller-saddle connection or simply R-S connection an orbit from a repeller point to a saddle point.

In Case II, we investigate the critical points of the vector-field $X_s(U, U_L)$ in the finite part of the U-plane and at the infinity. The Poincaré transformation [2, 9] enables us to make a one-to-one correspondence from U-plane including the infinity to the sphere S^2 by identifying two antipodal points. The line joining two antipodal points of $S^2 = \{(x_1, x_2, x_3) \in \mathbf{R}^3; x_1^2 + x_2^2 + x_3^2 = 1\}$ intercepts the plane $P_1 = \{(u, v, -1); (u, v) \in \mathbf{R}^2\} \simeq U$ - plane at one point. This mapping induces the vector field $X_s(U, U_L)$ on U-plane to the vector field $X_s^{S^2}(U, U_L)$ on the sphere S^2 minus the equator $\{x_3 = 0\}$. The equator $\{x_3 = 0\}$ corresponds to $\infty \times S^1$ of U-plane. Similarly the line joining the origin and a point on $P_2 = \{(1, w, -z); (w, z) \in \mathbf{R}^2\}$ intercepts S^2 at two antipodal points. By this mapping, a vector field on P_2 is induced to a vector field on the sphere S^2 minus the equator $\{x_1 = 0\}$. Therefore the composition of two mappings above transforms a point $(1, w, -z) \in P_2$ to a point $(u, v, 1) \in P_1$:

$$u = 1/z, v = w/z$$
 if $z \neq 0$,

or equivalently

$$w = v/u, z = 1/u$$
 if $u \neq 0$.

For u = 0, we take instead of the plane P_2 the plane $P'_2 = \{(w, 1, -z); (w, z) \in \mathbb{R}^2\}$. Similarly a point $(w, 1, -z) \in P'_2$ corresponds to a point $(u, v, 1) \in P_1$:

$$w = u/v, z = 1/v$$
 if $v \neq 0$.

By the mapping from P_2 to P_1 , the differential equation $\frac{dv}{du} = \frac{-sv + F_2(U)}{-su + F_1(U)}$ of the vector field $X_s(U, U_L)$ is induced to the differential equation

$$\frac{dz}{dw} = \frac{\Psi}{\Xi} \tag{16}$$

where

$$\begin{split} \Psi &= -z\{-sz(1-zu_L)+F_1(1,w)-z^2F_1(U_L)\},\\ \Xi &= -w\{-sz(1-zu_L)+F_1(1,w)-z^2F_1(U_L)\}+F_2(1,w)\\ &-z^2F_2(U_L)-sz(w-zv_L). \end{split}$$

The right-hand side of the differential equation (16) is well-defined also for $\{z = 0\}$ which corresponds to the equator $\{x_3 = 0\}$ of S^2 then to the infinity of U-plane.

We consider the critical points of $X_s(U, U_L)$ at the infinity. They satisfy z = 0 then

$$-wF_1(1,w) + F_2(1,w) = -\Phi(w) = -(w^3 + 2bw^2 + (a-2)w - b) = 0$$

which has three distinct real roots μ_1, μ_2, μ_3 for $a < 1+b^2$. The corresponding vector field of (16) is $\dot{w} = \Xi$, $\dot{z} = \Psi$ and its Jacobian matrix at z = 0 is

$$\begin{pmatrix}
-F_1(1,w) - wF_1'(1,w) + F_2'(1,w) & 0 \\
0 & -F_1(1,w)
\end{pmatrix}.$$
(17)

We have already known [3] the configuration of the roots μ_i of $\Phi(w) = 0$. For b > 0,

in Case II,
$$\mu_1 < -b < \mu_2 < -b/2 < 0 < \mu_3$$
. (18)

Then we have

$$-F_1(1,w) - wF_1'(1,w) + F_2'(1,w) = -\Phi'(w) \begin{cases} < 0 & \text{for } w = \mu_1, \mu_3, \\ > 0 & \text{for } w = \mu_2 \end{cases}$$
(19)

and

$$-F_1(1,w) = -\frac{1}{w}(\Phi(w) + 2w + b) \begin{cases} < 0 & \text{for } \mu_1, \mu_2, \\ > 0 & \text{for } \mu_3. \end{cases}$$
(20)

Therefore in Case II, μ_1 is a attractor, μ_2 is a saddle and μ_3 is a repeller. On account of the fact that, at the antipodal point, the character of a critical point is the inverse, we have

Theorem 2.1 The vector field $X_s(U, U_L)$ has six singularities at infinity. In Case II, two are repellers, two are attractors and two are saddles.

We investigate critical points of $X_s(U, U_L)$ in the bounded region of U-plane. Owing to the Poincaré-Hopf theorem, we can show

Theorem 2.2 The vector field $X_s(U, U_L)$ has two, three or four critical points in the bounded region of U-plane. In Case II,

(i) if the vector field $X_s(U, U_L)$ has four critical points in the bounded region of U-plane, then the critical points are two nodes and two saddles.

(ii) if the vector field $X_s(U, U_L)$ has three critical points in the bounded region of U-plane, then the critical points are one node, one saddle and one saddle-node.

(iii) if the vector field $X_s(U, U_L)$ has two critical points in the bounded region of U-plane, then the critical points are one node and one saddle or two saddle-nodes.

Let us recall the notion of structurally stable vector fields. Let $\chi(M^2)$ be the space of all vector fields of C^1 class on a 2-dimensional compact manifold M^2 with the C^1 -topology.

Definition 2.1 A vector field $X \in \chi(M^2)$ is said to be structurally stable if there exists a neighborhood N of X in $\chi(M^2)$ such that for any $Y \in N$, there exists a homeomorphism $\rho: M^2 \to M^2$ which maps any orbit of X to an orbit Y.

The following theorem due to Peixoto [24] gives a characterization of structurally stable vector fields.

Theorem 2.3 A vector field $X \in \chi(M^2)$ is structurally stable if and only if it satisfies the following conditions:

- there are only a finite number of critical points and all are hyperbolic,
- there are only a finite number of closed orbits and all are hyperbolic,
- the ω -limit sets and α -limit sets of any orbit consist only of critical points or closed orbits,
- there are no saddle-saddle connections.

Since both eigenvalues of $X_s(U_L, U)$ are real, we have

Proposition 2.2 The vector field $X_s(U_L, U)$ has no closed orbits, nor singular closed orbit, nor ω -limit sets, nor α -limit sets.

The most unstable connection is clearly saddle-saddle connection. We will show in the next section that there are no saddle-saddle connections on the complement of $M_1 \cup M_3$ in Case II.

3 Saddle-Saddle Connections

The aim of this section is to show that there is no crossing shock on the complement of $M_1 \cup M_3$ in the Case II.

Theorem 3.1 A crossing shock has a viscous profile if and only if this profile comes from a saddle-saddle connection which is a straight line on the median $M_j = \{U = {}^t(u, v); v = \mu_j u\} (j = 1, 2, 3).$

Proof. Suppose that there is a crossing shock. It is obvious, from Proposition 2.1 and its following remark, that the existence of a crossing shock is equivalent to the existence of a S-S connection. The next lemma is due to Chicone [6].

Lemma 3.1 Let $X = {}^{t}(\Psi, \Xi)$ be a quadratic vector field on the plane where Ψ and Ξ are relatively prime polynomials. Then every saddle-saddle connection lies on a straight line.

To accomplish the proof of the theorem, we make of a use of a strategy of Gomes [9]. Let U_L and U_R be two saddle points connected by an straight orbit $L: U = {}^t(1,k)t + U_L$. Owing to the fact that the segment \tilde{L} from U_L to U_R is invariant under the vector field X_s , we have $(X_s|_{\tilde{L}}, {}^t(-k, 1)) = 0$.

Denoting $U = {}^{t}(u, v)$ and $U_{L} = {}^{t}(u_{L}, v_{L})$, we have, from the above equation,

$$F_2(U) - F_2(U_L) = k \left(F_1(U) - F_1(U_L) \right), \tag{21}$$

i.e. $(kF_1(1,k) - F_2(1,k))u^2 = 0$ modulo polynomial of u of degree ≤ 1 . It implies that

$$kF_1(1,k) - F_2(1,k) (= \Phi(k)) = \mathbf{0}, \tag{22}$$

then $k = \mu_j$ (j = 1, 2 or 3). Substituting $k = \mu_j$ into (21), we obtain

$$k^{2}(bu_{L}+v_{L})+k\left((a-1)u_{L}+bv_{L}\right)-(bu_{L}+v_{L})=0.$$
(23)

 $(22) \times u_L - (23)$ gives us $(k^2 + bk - 1)(ku_L - v_L) = 0$. Because clearly $k^2 + bk - 1 \neq 0$, we have $ku_L = v_L$. Then L is on a median.

Therefore the straight orbit lies on the medians and every median is invariant of the vector field X_s , which proves the assertion. The converse is quite clear.

In the context of the above proof, we showed

Corollary 3.1 i) Every median M_j is invariant under the vector field X_s and every straight line orbit lies on a median. ii) The orbit of any saddle-saddle connection lies on a median.

Let us investigate the structure of orbits on the medians. Let $U_L = {}^t(u_L, v_L)$ be a point on a median $M = \{U = {}^t(u, v); v = \mu u\}$ where $\mu = \mu_j (1 \le j \le 3)$. Owing to Corollary 3.1, the orbit through U_L lies on the median M. Then we have

$$X_s(U, U_L) = \{(a + 2b\mu + \mu^2)(u^2 - u_L^2) - s(u - u_L)\} \begin{pmatrix} 1\\ \mu \end{pmatrix}.$$
 (24)

Let $U_1 = {}^t(u_1, v_1)$ be a point $X_s(U_1, U_L) = 0$ $(U_1 \neq U_L)$. Then we have $v_1 = \mu u_1$ and

$$u_1 = -u_L + \frac{\mu}{b + 2\mu} s.$$
 (25)

If $u_1 < u_L$ i.e. $u_L > \frac{\mu}{2(b+2\mu)}s$, then both components of $X_s(U, U_L)$ are negative for $u_1 < u < u_L$ and positive for $u < u_1$ and for $u > u_L$. Hence there is an orbit from U_L to U_1 .

there is an orbit from U_L to U_1 . If $u_1 > u_L$ i.e. $u_L < \frac{\mu}{2(b+2\mu)}s$, then both components of $X_s(U, U_L)$ are negative for $u_L < u < u_1$ and positive for $u < u_L$ and for $u > u_1$. Hence there is an orbit from U_1 to U_L .

In any case, there is an orbit between U_L and U_1 . Therefore we have

Theorem 3.2 Any point U_L on a median M_j $(1 \le j \le 3)$ can be connected via one shock to a point U_1 on the common median M_j and this shock has a viscous profile.

Furthermore the character of shock waves on the median M_j $(1 \le j \le 3)$ can be determined in Case II by the following two propositions

Proposition 3.1 Let $b \ge 0$. On the median M_2 , there is no crossing shock in Case II.

Proof. On the median $M_2 = \{t(u, v); v = \mu_2 u\}$, the system (1) is reduced to the equation

$$v_t + \left(\frac{b}{\mu_2^2} + \frac{2}{\mu_2}\right) \left(\frac{v^2}{2}\right)_x = 0.$$
 (26)

Then the speed of shock wave joining $U_+ = {}^t(u_+.v_+)$ and $U_- = {}^t(u_-.v_-)$ is $s(U_+, U_-) = \frac{b + 2\mu_2}{2\mu_2^2}(v_+ + v_-)$. The Jacobian matrix F'(U) on the median M_2 is

$$F'(U) = \begin{pmatrix} au+bv & bu+v \\ bu+v & u \end{pmatrix} = \frac{1}{\mu_2} \begin{pmatrix} a+b\mu_2 & b+\mu_2 \\ b+\mu_2 & 1 \end{pmatrix} v.$$

As we have already seen in Proposition 5.1 [3], the eigenvalues of F'(U) are

$$\lambda(U) = \left(\frac{a}{\mu_2} + 2b + \mu_2\right)v = \frac{b + 2\mu_2}{\mu_2^2}v \text{ and } \lambda^{\perp}(U) = \left(\frac{1}{\mu_2} - b - \mu_2\right)v$$

and its eigenvectors are ${}^{t}(v, \mu_2 v)$ and ${}^{t}(-\mu_2 v, v)$ respectively. We can determine $\lambda_1(U)$ and $\lambda_2(U)$ according to the sign of v (or u). In fact, we have

$$\lambda(U) - \lambda^{\perp}(U) = \frac{v}{\mu_2^2} (1 + \mu_2^2)(\mu_2 + b).$$
(27)

On the median M_2 , taking into account of (18), for v > 0, $\lambda_1(U) = \lambda^{\perp}(U)$, $\lambda_2(U) = \lambda(U)$ and, for v < 0, $\lambda_1(U) = \lambda(U)$, $\lambda_2(U) = \lambda^{\perp}(U)$.

Suppose that there is a crossing shock on the median M_2 . We have four cases: $i v_+ \ge 0, v_- > 0, ii v_+ > 0, v_- \le 0, iii v_+ < 0, v_- \ge 0, iv v_+ \le 0, v_- < 0$. In case i, we would have

$$s(U_+, U_-) - \lambda_2(U_+) = \frac{2\mu_j + b}{\mu_j^2}(v_- - v_+) < 0,$$

$$s(U_+, U_-) - \lambda_2(U_-) = \frac{2\mu_j + b}{\mu_j^2}(v_+ - v_-) < 0$$

which is not possible to realize. In case ii), we would have

$$s(U_+, U_-) - \lambda_1(U_-) = rac{2\mu_j + b}{2\mu_j^2}(v_+ - v_-) > 0 ext{ then } v_+ < v_-$$

which is not possible to realize. In case *iii*), we would have

$$s(U_+, U_-) - \lambda_1(U_+) = rac{2\mu_j + b}{2\mu_j^2}(v_- - v_+) > 0 ext{ then } v_- < v_+$$

which is not possible to realize. In case iv), we would have

$$s(U_{+}, U_{-}) - \lambda_{1}(U_{+}) = \frac{2\mu_{j} + b}{\mu_{j}^{2}}(v_{-} - v_{+}) < 0,$$

$$s(U_{+}, U_{-}) - \lambda_{1}(U_{-}) = \frac{2\mu_{j} + b}{\mu_{j}^{2}}(v_{+} - v_{-}) < 0$$

which is not possible to realize.

Therefore there is no crossing shock on the median M_2 .

Proposition 3.2 Let $b \ge 0$. Suppose that (a, b) belongs to Case II. On the median M_1 , there is a saddle-saddle connection from U_- to U_+ if and only if $v_- < 0 < v_+$. On the median M_3 , there is a saddle-saddle connection from U_- to U_+ if and only if $v_+ < 0 < v_-$.

We can prove this proposition using a similar strategy as Proposition 3.1. Combining Corollary 3.1, Proposition 3.1 and Proposition 3.2, we have

Theorem 3.3 There is no saddle-saddle connection nor crossing shock with viscous profile on the complement of $M_1 \cup M_3$ in Case II.

The relation $X_s(U, U_L) = 0$ is the intersection of two quadratic equations $F_1(U) - F_1(U_L) - s(u - u_L) = 0$ and $F_2(U) - F_2(U_L) - s(v - v_L) = 0$. Then it consists of at most four points including U_L and U_1 . In fact, the others are two saddle points. More precisely

Proposition 3.3 Let U_L be a point on a median M_j $(1 \le j \le 3)$. The set $X_s(U, U_L) = 0$ consists of at most four points. The others critical points than U_L and U_1 consist only of saddle points.

Proof. Let U_L be a point on a median M_j : $v_L = \mu_j u_L$. The equation $X_s(U, U_L) = 0$ implies that

$$F_1(U) - F_1(U_L) - s(u - u_L) = 0, \qquad (28)$$

$$F_2(U) - F_2(U_L) - s(v - v_L) = 0.$$
⁽²⁹⁾

 $(29) - (28) \times \mu_j$ implies that

$$(a\mu_j - b)u^2 + 2(b\mu_j - 1)uv + \mu_j v^2 - s\mu_j u + sv + \{F_2(U_L) - \mu_j F_1(U_L)\} = 0.$$

Here

$$F_{2}(U_{L}) - \mu_{j}F_{1}(U_{L}) = (b - a\mu_{j})u_{L}^{2} + 2(1 - b\mu_{j})u_{L}v_{L} - \mu_{j}v_{L}^{2}$$

$$= u_{L}^{2}\{(b - a\mu_{j}) + 2\mu_{j}(1 - b\mu_{j}) - \mu_{j}^{3}\}$$

$$= -u_{L}^{2}\{\mu_{j}^{3} + 2b\mu_{j}^{2} + (a - 2)\mu_{j} - b\}$$

$$= 0.$$

Hence we have

$$0 = (a\mu_j - b)u^2 + 2(b\mu_j - 1)uv + \mu_j v^2 - s\mu_j u + sv$$

= $(v - \mu_j u) \{\mu_j v - \frac{1}{\mu_j} (a\mu_j - b)u + s\}$
= $(v - \mu_j u) \{\mu_j v + (\mu_j^2 + 2b\mu_j - 2)u + s\}.$

Therefore we have $v = \mu_j u$ and

$$= \frac{1}{\mu_j^2} (a\mu_j - b)u - \frac{s}{\mu_j}$$
(30)

or equivalently
$$v = \left(-\mu_j - 2b + \frac{2}{\mu_j}\right)u - \frac{s}{\mu_j}.$$
 (31)

Substituting $v = \mu_j u$ into $X_s(U, U_L) = 0$, we obtain as above $U = U_L, U_1$. Similarly substituting $v = \left(-\mu_j - 2b + \frac{2}{\mu_j}\right)u - \frac{s}{\mu_j}$ into $X_s(U, U_L)$, we obtain

v

$$X_s(U, U_L) = x_s^1(U, U_L) \begin{pmatrix} 1 \\ \mu_j \end{pmatrix}$$
(32)

where
$$x_s^1(U, U_L) = \left(-3b - 2\mu_j + \frac{4}{\mu_j}\right) u^2 + s\left(2b + \mu_j - \frac{4}{\mu_j}\right) u$$
 (33)

$$+\frac{s^{2}}{\mu_{j}}-(b+2\mu_{j})u_{L}^{2}+s\mu_{j}u_{L}.$$
(34)

Therefore on the line $v = \left(-\mu_j - 2b + \frac{2}{\mu_j}\right)u - \frac{s}{\mu_j}$, the vector field $X_s(U, U_L)$ has the constant direction $\pm^t(1, \mu_j)$ and passing through the critical point, $X_s(U, U_L)$ changes the sign. It occurs only in the case of saddle points, which proves the proposition.

4 Structural Stability

Applying Theorem 3.3 and Proposition 2.2 to Theorem 2.3, a vector field $X_s(U_L, U)$ is structurally stable on the complement of $M_1 \cup M_3$ if and only if there are only a finite number of singularities and all are hyperbolic. Even if there are many variations of critical points as stated in Theorem 2.2, in any case, a vector field $X_s(U_L, U)$ has at most four critical points in bounded region and six critical points at infinity of U-plane and all of these are hyperbolic. Therefore we have

Theorem 4.1 A vector field $X_s(U_L, U)$ is structurally stable on the complement of $M_1 \cup M_3$ in Case II.

References

- A. V. Azevedo-D. Marchesin-B. Plohr-K. Zumbrum, Bifurcation of Nonclassical Viscous Shock Profiles from the Constant State, Comm. Math. Phys., 202 (1999), 267–290.
- [2] A. A. Andronov-E. A. Leontovich-I. I. Gordon-A. G. Maier, Qualitative Theory of Second-Order Dynamics Systems, Wiley New York, 1966.
- [3] F. Asakura-M. Yamazaki, Geometry of Hugoniot curves in 2×2 systems of hyperbolic conservation laws with quadratic flux functions. preprint.
- [4] S. Čanić-B. J. Plohr, Shock Wave Admissibility for Quadratic Conservation Laws, J. Differential Equations, 118 (1995), 293–335.
- [5] G.-Q. Chen-P. T. Kan, Hyperbolic Conservation Laws with Umbilic Degeneracy, I, Arch. Rational Mech. Anal., 130 (1995), 231–276.
- [6] C. Chicone, Quadratic gradients on the plane are generically Morse-Smale, J. Differential Equations, 33(1979), 159–166.
- [7] G. Darboux, Sur la forme des lignes de courbure dans le voisinage d'un omblic, Leçon sur la Théorie Générale des Surfaces, quatrième partie, Note VII, 448-465, Gauthier-Villars, Paris, 1896 (Chelsea, New York, 1972).
- [8] I. M. Gelfand, Some problems in the theory of quasilinear equations, Uspekhi mat. Nauk. 14 (1959) 87–158. English transl: Amer. Math. Soc. Trans. Ser. 2 No 29 (1963).
- [9] M. E. S. Gomes, Riemann problems requiring a viscous profile entropy condition, Adv. Appl. Math. 10 (1989), 285–323.
- [10] E. Isaacson-D. Marchesin-B. Plohr-B. Temple, The Riemann Problem near a hyperbolic singularity: The classification of solutions of quadratic Riemann problems I, SIAM J, Appl. Math. 48 (1988), 1009–1032.
- [11] E. Isaacson-D. Marchesin-B. Plohr, Transitional waves for conservation laws, SIAM J, Math. Anal. 21 (1990), 837–866.
- [12] E. Isaacson-D. Marchesin-C. Palmeira-B. Plohr, A global formalism for nonlinear waves in conservation laws, Comm. Math. Phys. 146 (1992), 505-552.

- [13] E. Isaacson-B. Temple, The Riemann Problem near the hyperbolic singularity II, SIAM J, Appl. Math. 48 (1988), 1287–1301.
- [14] E. Isaacson-B. Temple, The Riemann Problem near the hyperbolic singularity III, SIAM J, Appl. Math. 48 (1988), 1302–1318.
- [15] B. Keyfitz-H. Kranzer, Existence and uniqueness of entropy solutions to the Riemann problem for hyperbolic systems of two conservation laws, J. Differential Equations, 27 (1978), 444–476.
- [16] P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537–566.
- [17] P. D. Lax, Shock waves and entropy. E. Zarantonello (ed.), Contributions to nonlinear Functional Analysis, Academic Press, New York, 1971, 603-634.
- [18] T.-P. Liu, The Riemann problem for general 2×2 conservation laws, Trans. Amer. Math. Soc. 199 (1974), 89–112.
- [19] T.-P. Liu, Existence and uniqueness theorems for Riemann problems, Trans. Amer. Math. Soc. 212 (1975), 375–382.
- [20] T.-P. Liu, The Riemann problem for general systems of conservation laws, J. Differential Equations, 18 (1975), 218–234.
- [21] A. Majda-R. Pego, Stable Viscosity Matrices fo Systems of Conservation Laws, J. Diff. Eq. 56 (1985), 229–262.
- [22] J. W. Milnor, Topology from the Differentiable View Point, The University Press of Virginia, Charlottesville, 1965.
- [23] O. Oleĭnik, Discontinuous solutions of nonlinear differential equations, Usp. Mat. Nauk, 12, 1957, 3–73 (Amer. Math. Soc. Transl. Ser. 2, 26, 1957, 95–172).
- [24] M.-M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101-120.
- [25] D. Schaeffer-M. Shearer, The classification of 2×2 systems of non-strictly hyperbolic conservation laws, with applications to oil recovery, Comm. Pure Appl. Math., 40 (1987), 141–178.
- [26] D. Schaeffer-M. Shearer, The Riemann problem for nonstrictly hyperbolic 2×2 systems of conservation laws, Trans. Amer. Math. Soc., 304 (1987), 267–306.

- [27] S. Schecter-M. Shearer, Undercompressive shocks for nonstrictly hyperbolic conservation laws, J. Dyn. Diff. Equations 3 (1991), 199–271.
- [28] D. Serre, Systèmes de lois de conservation I et II, Diderot Editeur, Arts et Sciences, Paris, 1996 (Systemes of conservation laws I & II, Cambridge University Press, Cambridge, 1999).
- [29] M. Shearer, The Riemann problem for 2×2 systems of hyperbolic conservation laws with case I quadratic nonlinearities, J. Diff. Equations, 80 (1989), 343-363.
- [30] M. Shearer-D. Schaeffer-D. Marchesin-P. L. Paes-Leme, Solution of the Riemann problem for a prototype 2 × 2 system of nonstrictly hyperbolic conservation laws, Arch. Rational Mech. Anal., 97 (1987), 299-320.
- [31] J. Smoller, Shock Waves and Reaction-Diffusion Equations (2nd ed.), Springer Verlag, New York, 1994.
- [32] B. Wendroff, The Riemann problem for materials with nonconvex equations of state II: General flow, J. Math. Anal. Appl., 38 (1972), 640–658.