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0Introduction
The subject of this report is the semiclassical distribution of eigenvalues for
the Schr\"odinger equation

$-h^{2}\Delta u+V(x)u=Eu$.

“Semiclassical distribution” means the asymptotics with respect to $h$ as $h$

tends to 0, while the energy $E$ is restrained in aneighborhood of afixed real
energy $E_{0}$ .

In this report, we restrict ourselves to the $\mathrm{I}_{-}^{\mathfrak{n}}.\mathrm{o}\mathrm{s}\mathrm{t}$ fundamental problem of
asimple well potential in one dimension:

$-h^{2} \frac{d^{2}u}{dx^{2}}+V(x)u=Eu$, (0.1)

where the potential $V(x)$ is areal-valued analytic function on $\mathbb{R}$ and the
classically allowed region $\{x\in \mathbb{R};V(x)\leq E_{0}\}$ is aconnected interval $[\alpha, \beta]$

$(-\infty<\alpha<\beta<+\infty)$ . We assume moreover that $V’(\alpha)<0$ , $V’(\beta)>0$ . For
$E\in(E_{0}-\epsilon, E_{0}+\epsilon)$ with sufficiently small $\epsilon$ , the classically allowed region
is still connected interval $[\alpha(E), \beta(E)]$ .

It is well known that the eigenvalues near $E_{0}$ are given by the s0-called
Bohr-Sommerfeld quantization condition:

$C(E)=(2n+1)\mathrm{n}\mathrm{h}+O(h^{2})$ , $n\in \mathrm{N}=\{0,1,2, \ldots\}$ , (0.1)
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where the function $C(E)$ is the action defined by

$C(E)=2 \int_{\alpha(E)}^{\beta(E)}\sqrt{E-V(x)}dx$ . (0.3)

In the case of the harmonic oscillator $V(x)=x^{2}$ , $C(E)=\pi E$ .
In the following, we shall show how to derive the Bohr-Sommerfeld quan-

tization condition (0.2) by using the WKB method in amicrolocal way.
This technique was used in [G\’e-Sj] in multi-dimensional case for the quanti-
zation condition of resonances created by ahyperbolic closed trajectory.

The microlocal way is based on the FBI transformation. Roughly
speaking, the FBI transformation is aFourier integral operator with complex
phase, and the associated canonical transformation maps the phase space $\mathbb{R}_{x,\xi}^{2}$

to an $I$-Lagrangian manifold $\mathrm{A}\subset \mathbb{C}^{2}$ whose projection on $\mathbb{C}_{x}$ is bijective. This
enables us to have the phase space geometry on the complex base space and
to avoid the problem of the caustics (or equivalently the connection problem
at turning points in the one-dimensional case).

1FBI transformation
In this section, we review some elements of the microlocal and semiclassical
analysis. For proofs and more details, see [Ma].

For $u\in L^{2}(\mathbb{R}^{n})$ , we define the $FBI$ transform by

(Tu)(z; $h$) $= \int_{\mathrm{R}^{n}}e^{-(z-y)^{2}/2h}u(y)dy$

$=e^{\xi^{2}/2h} \int_{\mathrm{R}^{n}}e^{i(x-y)\cdot\xi/h-(x-y)^{2}/2h}u(y)dy$,

where $z=x-i\xi$ . Define also

$\tilde{T}(x, \xi;h)=c_{n,h}\int_{\mathrm{R}^{n}}e\dot{.}-y)\cdot\xi/h-(x-y)^{2}/2hu(x(y)dy, \mathrm{c}_{n,h}=2^{-n/2}(\pi h)^{-3n/4}$ .

We easily see the following properties:

Proposition 1.1

(1) (Tu)(z; $h$) is an entire function with respect to $z$ .
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(2) $\tilde{T}$ is unitary from $L^{2}(\mathbb{R}^{n})$ to $L^{2}(\mathbb{R}^{2n})$ , that is,

$||\tilde{T}u||_{L^{2}(\mathrm{R}_{x,\xi}^{2n})}=||u||_{L^{2}(\mathrm{R}_{x}^{n})}$ .

(3) The image of $L^{2}(\mathbb{R}^{n})$ by $\tilde{T}$ is $e^{-\xi^{2}/2h}H(\mathbb{C}_{z}^{n})\cap L^{2}(\mathbb{R}_{x,\xi}^{2n})$ and the adjoint
is given by

$( \tilde{T}^{*}v)(y)=c_{n,h}\iint e^{-i(x-y)\cdot\xi/h-(x-y)^{2}/2h}v(x, \xi)dxd\xi$.

(4) Let $P$ and $Q$ be the $pseud_{\vee}\neg$-differential operators whose Weyl symbols
are $p(x, \xi)$ and $q(z, \zeta)$ respectively. Then

$T\mathrm{o}P=Q\circ T$

if and only if
$q(z, \zeta)=p(z+i\zeta, \zeta)$ .

An advantage of the FBI transformation is that it enables us to localise
the functions in $x$ and $\xi$ simultaneously. We define the notion of microsup-
$po\hslash.\cdot$

Definition 1.2 For $u\in S’(\mathbb{R}^{n})$ ( $h$-dependent)and $(x_{0}, \xi_{0})\in \mathbb{R}^{2n}$ , one says
that $u$ is microlocally exponentially small near $(x_{0}, \xi_{0})$ if and only if there
exists $\delta>0$ such that

$\tilde{T}u(x, \xi;h)=O(e^{-\delta/h})$

uniformly for $(x, \xi)$ in aneighbourhood of $(x_{0}, \xi_{0})$ and sufficiently small $h>$
$0$ . The complement of such points $(x_{0}, \xi_{0})$ is called microsupport of $u$ and
denoted by $MS(u)$ .

Proposition 1.3 If $Pu=0$ and $||u||=1$ , where $||\cdot||$ is the $L^{2}$ norm,
then $MS(u)\subset \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}$ $(P))$ where Char $(P)=\{(x, \xi);p(x, \xi)=0\}$ and $p$ is the
principal symbol of $P$ .

Proposition 1.4 If $u(x;h)=a(x, h)\exp(i\phi_{\backslash }^{(\tau}.)/h)$ and $||u||=1$ , where $a$

is an analytic symbol, then $MS(u)\subset\{(x, \xi);\xi=\partial_{x}\phi(x)\}$ .
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2 Derivation of the Bohr-Sommerfeld quan-
tization condition

Let $p(x, \xi)=\xi^{2}+V(x)$ be the Weyl symbol of the Schrodinger operator.
By the change of the dependent variable $v(z, ()$ $=Tu$ , the equation (0.1) is
reduced to the equation

$Qv=Ev$ , (2.1)

where $Q$ is the pseud0- ifferential operator whose Weyl symbol is

$q(z, \zeta)=p(z+i\zeta, \zeta)$ .

(see Proposition 1.1 (4)). This can be written as $q=p\circ\kappa^{-1}$ with the
canonical transformation

$\kappa:(x, \xi)\mapsto(z, \zeta)=(x-i\xi, \xi)$ .

The new symbol $q(z, \zeta)$ is defined on the $I$-Lagrangian manifold $\mathrm{A}=\{(z, \zeta)\in$

$\mathbb{C}^{2n};{\rm Re}$ ($;=-{\rm Im} z$ , ${\rm Im}\zeta=0\}$ . The point is that the projection $\pi$ of Aon $\mathbb{C}_{z}$

is bijective.
The Hamiltonian flow $(z(t), \zeta(t))$ of $q$ defined on Aby the canonical sys-

tem

$\{$

$\dot{z}=\partial_{\zeta}q(z, \zeta)$ ,

$\dot{\zeta}=-\partial_{z}q(z, \zeta)$ ,
(2.2)

is the image by $\kappa$ of the Hamiltonian flow $(x(t), \xi(t))$ of $p$ :

$(z(t), \zeta(t))=\kappa(x(t), \xi(t))$ .

It is acurve on the energy plane $q^{-1}(E)=\{(z, \langle)\in\Lambda;q(z, \zeta)=E\}$ for a
fixed energy $E$ .

By the simple well assumption on the potential $V(x)$ (see Introduction),

the Hamiltonian flow of $p$ on $p^{-1}(E)$ , $E\in(E_{0}-\epsilon, E_{0}+\epsilon)$ is asimple periodic
curve $\gamma(E)$ , and so is the Hamiltonian flow $\kappa$ $0\gamma(E)$ of $q$ on $q^{-1}(E)$ . The

action $C(E)= \int\xi dx$ (see (0.3)) and the period $T(E)$ are also invariant by
$\kappa$ :

$C(E)=$
xOx07(E|)

$\zeta dz$ , $T(E)=C’(E)= \int_{a(E)}^{\beta(E)}\frac{dx}{\sqrt{E-V(x)}}$ .
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It is important to remark $\tau \mathrm{i}_{1}\mathrm{a}\mathrm{t}$ the true solution $v(z;E, h)$ of (2.1) is
not necessarily single-valued on Cz. By Proposition 1.1 (3), we know that
the quantization condition of the original equation (0.1) is equivalent to the
condition

$v(z;E, h)\in \mathcal{H}(\mathbb{C}_{z})\cap e^{\xi^{2}/2h}L^{2}(\mathbb{R}_{x,\xi}^{2})$. (2.3)

On the other hand, we also know that the microsupport of $u$ is included
in $\gamma(E)$ by Propositions 1.3 or 1.4. Prom this point of view, it is natural to
modify the condition (2.3) as follows:

$(\mathrm{Q}_{2})$ The solution $v(z;E, h)$ of (2.1) is single-valued on $\pi\circ\kappa$ $\circ\gamma(E)$ .

Let us study the equation (2.1) by the WKB method. Put

$v(z;E, h)=a(z;E, h)e^{i\psi(z;E)/h}$ , $a(z;E, h) \sim\sum_{j=0}^{n}a_{j}(z;E)h^{j}$ . (2.4)

We then obtain the eikonal and the first transport equations:

$q(z;\psi’)=E$ , (2.5)

$\partial_{\zeta}q(z, \psi’)\frac{da_{0}}{dz}+\frac{1}{2}\{\partial_{\zeta}^{2}q(z, \psi’)\psi’+\partial_{z}\partial_{\zeta}q(z, \psi’)\}a_{0}=0$, (2.6)

where $’=d/dz$ . Note that

$\frac{d}{dz}\{\partial_{\zeta}q(z, \psi’(z))\}=\partial_{\zeta}^{2}q(z, \psi’)\psi’+\partial_{z}\partial_{\zeta}q(z, \psi’)$.

So one can solve the first transport equation (2.6) and gets

$a_{0}(z)=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.\{\partial_{\zeta}q(z, \psi’)\}^{-1/2}$ . (2.7)

Now to understand the condition (Q2), we continue the WKB solution
(2.4) along the closed trajectory $\pi\circ\kappa 0\gamma(E)$ .

First we have

$(Q_{2})\Leftrightarrow a(z(t), h)\exp(i\psi(z(t))/h)|_{t=0}^{T}=0$,

$\Leftrightarrow\frac{a(z(T),h)}{a(z(0),h)}\exp\{i(\psi(z(T))-\psi(z(0)))/h\}=1$ .
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On $\kappa\circ\gamma(E)$ , we have ( $=\psi’(z)$ by the eikonal equation (2.5), and so $\psi(z(T))-$

$\psi(z(0))=\int_{z(0)}^{z(T)}\psi’dz=\mathrm{C}(\mathrm{E})$ . Hence

$(Q_{2})\Leftrightarrow C(E)-ih\log M(E, h)=2n\pi h$ $(n\in \mathbb{Z})$ ,

where
$M(E, h)= \frac{a(z(T),h)}{a(z(0),h)}$ .

Next we replace $a$ by its principal term $a_{0}$ :

$M(E, h)= \frac{a_{0}(z(T))}{a_{0}(z(0))}(1+O(h))$ .

The solution $a_{0}$ of the first transport equation (2.6) is given by (2.7), and if
moreover $z=z(t)$ is on $\pi\circ\kappa \mathrm{o}\mathrm{C}(\mathrm{E})$ , then $\partial_{\zeta}q(z, \psi’)=\dot{z}$ by (2.2). On the
other hand, by the simple-well assumption, we have

$\dot{z}(T)=e^{-2\pi i}\dot{z}(0)$ , i.e. $\{\frac{\dot{z}(T)}{\dot{z}(0)}\}^{-1/2}=e^{-\pi i}$ .

Hence we have
$M(E, h)=e^{-\pi i}(1+O(h))$ .

Thus we obtain the Bohr-Sommerfeld condition from the condition (Q2);

$(Q_{2})\Leftrightarrow C(E)=(2n+1)\pi h+O(h^{2})$ .
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