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0Introduction
Let us consider the Cauchy problem for the free Schrodinger equation:

$\{$

$\frac{\partial}{\partial t}u(t, x)=i\triangle u(t, x)$

$u(0, x)=u_{0}(x)$ ,
(1)

where $u$ is acomplex-valued unknown function of $(t, x)\in[0, \infty)\mathrm{x}$ $\mathrm{R}^{n}$ , $i=$

$\sqrt{-1}$ and $\triangle$ is the Laplacian in $\mathrm{R}^{n}$ defined by

$\triangle=\sum_{j=1}^{n}\frac{\partial^{2}}{\partial x_{j}^{2}}$ . (2)

In this Cauchy problem, it is interesting how the solution $u$ behaves as
$tarrow \mathrm{o}\mathrm{o}$ in virtue of given initial data $u_{0}$ . In general, the initial data $u_{0}$

provide all of properties of the solution $u$ to the Cauchy problem.
For example, if $u_{0}\in L^{1}(\mathrm{R}^{n})$ then we can solve the Cauchy problem

explicitly by the expression

$u(t, x)= \frac{1}{(4\pi it)^{\frac{n}{2}}}\int_{\mathrm{R}^{n}}e^{:\frac{\mathrm{r}-}{4}\not\simeq\llcorner^{2}}tu_{0}(y)dy$ . (3)

This implies the estimate

$|u(t, x)|\leqq c||u_{0}||_{L^{1}}t^{-\simeq}2$ (4)
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with positive constant $c=(4\pi)^{-\frac{n}{2}}$ . This example shows that $u$ decays at
most polynomial order in respect of $t$ , but there are no information at which
order $u$ decays as $tarrow\infty$ .

To investigate the decay order more concretely, we see the next example.
If

$u_{0}(x)=e^{-|oe|^{2}}$ , (5)

then we can solve the Cauchy problem more explicitly by the expression

$u(t, x)=(1+4it)^{-\frac{n}{2}}e^{-\frac{1\varpi 1^{2}}{\mathrm{R}u}}\overline{.}$ . (6)

This concrete solution has our desired information at which order $u$ decays
as $tarrow\infty$ . Prom the expression, we can immediately estimate the solution $u$

by

$c_{0}t^{-\frac{n}{2}}\leqq|u(t, x)|\leqq c_{1}t^{-\tau}n$ (7)

for some positive constants $c_{0}$ and $c_{1}$ which may depend on $x$ , but indepen-
dent of $t$ . The estimate from both and lower shows that the solution $u$ decays
at the rate of $t^{-I}n$ as $tarrow\infty$ , at the $x$ to be fixed.

The second example contains much more information. It seems that
solutions cannot decay more rapidly than polynomial order in $t$ , even if initial
value $u_{0}$ is smooth, or $u_{0}$ decays rapidly in the $x$ direction. In fact, $u_{0}(x)=$

$e^{-|x|^{2}}$ is one of the rapidly decreasing functions with good character.
In spite of our examples in Schr\"odinger equation, we can easily find alot

of examples of the solution decaying at the rate of exponential order in wave
equation. For example in $n=1$ ,

$\{$

$\frac{\partial^{2}}{\partial t^{2}}u(t, x)=\frac{\partial^{2}}{\partial x^{2}}u(t, x)$

$u(0, x)=e^{-a^{2}}$ , $\frac{\partial}{\partial t}u(0, x)=0$

(8)

has the solution

$u(t, x)= \frac{1}{2}(e^{-(x+t)^{2}}+e^{-(x-t)^{2}})$ (9)

which decays at the rate of $e^{-t}$ as $tarrow\infty$ at every fixed point $x$ .
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Are there solutions in Schrodinger equation which decay at the rate of
exponential order in $t$?If there are, to what function space do initial data
belong7 These problems are not so trivial.

In the present paper, we will construct the example of the solution which
decay at the rate of exponential order in $t$ , and then discuss the function
space to which the solutions belong.

1Exponential Time Decay

First of all, we give adefinition of terminology “exponential time decay”. The
solution $u$ is said to decay exponentially in time, or have exponential time
decay property, if for any compact set $K$ in $\mathrm{R}^{n}$ there are positive constants
$C$ and $\epsilon$ independent of $t$ such that

$\sup_{x\in K}|u(t, x)|\leqq Ce$

$-\epsilon t$ (10)

for any $t\in[0, \infty)$ .
The purpose of this section is to construct the solutions with exponential

time decay property.
The function space to which the solution belongs for each time $t$ , is defined

by

$H_{\delta}^{s}=\{u\in L_{1\mathrm{o}\mathrm{c}}^{2}(\mathrm{R}^{n});e^{\delta\langle x\rangle}u(x)\in H^{\epsilon}\}$ (10)

for anegative constant $\delta$ , where $L_{1\mathrm{o}\mathrm{c}}^{2}(\mathrm{R}^{n})$ denotes the set of all locally square-
integrable functions, and $H^{\epsilon}$ denotes the usual Sobolev space with regularity
$s$ . It is trivial from the definition that $H_{\delta}^{\epsilon}$ contains the usual Sobolev space
$H^{s}$ as aproper subset when $\delta$ is negative. We call $H_{\delta}^{\epsilon}$ weighted Sobolev
spaces.

Let $\psi$ be afunction in $H^{[_{7}^{n}]+1}$ . Denote aphase function by

$\varphi(x, \xi)=x\cdot(\xi-\frac{i\propto}{|\xi|})$ (12)

for acomplex number $\mu\in \mathbb{C}$ , and define

$I_{\varphi}(x, D) \psi(x)=\frac{1}{(2\pi)^{\frac{n}{2}}}\int_{\mathrm{R}^{n}}e^{\iota\varphi(x,\xi)}\hat{\psi}(\xi)d\xi|$ (13)
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where $\hat{\psi}$ stands for the Fourier transform of $\psi$ . Then, $u_{0}=I_{\varphi}(x, D)\psi$ belongs

$\mathrm{W}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{t}i|{\rm Re}_{\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}1\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a}u_{0}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{e}}^{\mathrm{e}\mu|+\delta)}\mathrm{t}\mathrm{o}H_{-}^{[_{\mathrm{F}}^{n}]+1}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{y}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\delta,$

$\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ $u$ to the Cauchy problem (1)

$|u(t, x)|\leqq Ce^{-2\mathrm{f}\mathrm{f}\mathrm{i}\mu 1\mathrm{m}\mu t+\delta_{0}\langle x)}$ (14)

for some $C>0$ and $0<{\rm Re}\mu<\delta_{0}={\rm Re}\mu+\delta$. This estimate shows that
the solution decays exponentially with respect to time $t$ , when both ${\rm Re}\mu$ and
Imp are positive. See $[1, 2]$ for the proof in detail.

THEOREM 1. Let $\psi\in H^{[_{\mathrm{F}}^{n}]+1}$ and $\varphi(x,\xi)=x\cdot$ $( \xi-\frac{i\mu\xi}{|\xi|})$ for $\mu\in C$ . If
$Rep>0$ , $Imp>0$ and $u_{0}(x)=I_{\varphi}(x, D)\psi(x)$ , then the solution $u$ to the
Cauchy problem (1) is estimated by

$|u(t,x)|\leqq Ce^{-2Re\mu Im\mu t+(Re\mu+\delta)(x\rangle}$ (15)

for any $\delta>0$ and $(t, x)\in[0, \infty)\mathrm{x}\mathrm{R}^{n}$ .
As an example, we can take afunction $\psi(x)=e^{-|x|^{2}}$ when $n=1$ . After

the calculation of $I_{\varphi}(x, D)\psi(x)$ , we have

$\mathrm{u}\mathrm{o}(\mathrm{x})=\frac{1}{2}e^{-ox^{2}}\{e^{+\mu x}+e^{-\mu x}+\frac{i}{\sqrt{2\pi}}(e^{+\mu x}-e^{-\mu x})\int_{0}^{x}e^{\oint}dy\}$ (16)

which increase exponentially in $x$ , but decrease exponentially in $t!$

The proof of the THEOREM 1is based on the following lemma.

LEMMA 1.1. Let $s$ be a non-negative integer. If $\varphi$ is as in THEOREM 1,
then $I_{\varphi}(x, D)$ operates continuously $fmm$ $H^{s}$ to $H_{-(|Re\mu|+\delta)}^{s}$ for any $\delta>0$ .

LEMMA 1.1 claims that there is $C>0$ such that

$||I_{\varphi}(x, D)\psi||_{H_{-(|\mathrm{R}\epsilon\mu|+\delta)}^{l}}\leqq C||\psi||_{H^{\epsilon}}$ (17)

for any $\psi$ $\in H8$ . According to the definition of $I_{\varphi}(x, D)$ , the estimate of

$e^{-(|{\rm Re}\mu|+\delta)(ox\}}I_{\varphi}(x, D)\psi(x)$ (18)

proves LEMMA 1.1. In the estimate, we have to face the pseud0-differential
operator

$\int_{\mathrm{R}^{n}}e^{\dot{m}\cdot\xi}p(x,\xi)\hat{\psi}(\xi)d\xi$ (19)
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where $p(x, \xi)=\exp[\mu\frac{x\cdot\xi}{|\xi|}]$ . Because $p(x,\xi)$ has singularity at $\xi=0$ , it is

delicate to treat near the origin.
So, we make partition of integral region, such as $|\xi|\leqq 1$ and $|\xi|\geqq 1$ . More

precise, taking $\chi\in C_{0}^{\infty}(\mathrm{R}^{n})$ such that $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\chi\subset S^{n-1}=\{\xi\in \mathrm{R}^{n};|\xi|\leqq 1\}$ ,
$0\leqq\chi(\xi)\leqq 1$ for all $\xi$ $\in \mathrm{R}^{n}$ and $\chi(\xi)=1$ in some neighborhood of $\xi=0$ , then
we decompose $p(x,\xi)$ into $p(x,\xi)\chi(\xi)$ and $p(x, \xi)(1-\chi(\xi))$ . Consideration
on the compact set $|\xi|\leqq 1$ near $\xi$ $=0$ becomes our discussion much easier,
because 4can only move in the compact set.

On the other hand, when $|\xi|\geqq 1$ , we conclude the estimate from the
behavoir of $p(x,\xi)$ . That is, $p(x,\xi)(1-\chi(\xi))$ belongs to the symbol class
$S_{1,0}^{0}$ (H\"omander’s notation) Therefore, we conclude LEMMA 1.1 by the $L^{2}$

boundedness theorem for pseud0-differential operators.
To prove THEOREM 1, we use the solution to the Cauchy problem

$\{$

$\frac{\partial}{\partial t}v(t, x)=-i(|D|-i\mu)^{2}v(t, x)$

$v(0, x)=v_{0}(x)$ ,
(21)

when we give the initial data $v_{0}$ in the function space $H^{[_{\mathrm{F}}^{n}]+1}$ . The solution
is expressed by

$v(t, x)= \frac{1}{(2\pi)^{\frac{n}{2}}}\int_{\mathrm{R}^{n}}e^{ix\cdot\xi}e^{-|(|\xi|-|\mu)^{2}}..{}^{t}\hat{v}_{0}(\xi)d\xi$ , (21)

so that if we give $u$ by the relation

$u(t, x)=I_{\varphi}(x, D)v(t, x)$ , (22)

then it is concluded that $u$ solves the Cauchy problem (1), and that $u$ has
exponential time decay property The regularity of $u$ , that is $[ \frac{n}{2}]+1$ , is
neccesary for the estimate when we use Sobolev’s lemma;

$e^{-(|\mathrm{f}\mathrm{f}\mathrm{i}\mu|+\delta)(x)}|u(t, x)|$ $\leqq$ Const. $||e^{-(|{\rm Re}\mu|+\delta)(x)}u(t, x)||_{H^{s}}$

$=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.||u(t, x)||_{H_{-(\{\mathrm{R}\mathrm{o}\mu|+\delta)}^{\epsilon}}$

(23)
$=$ Const. $||I_{\varphi}(x, D)v(t, x)||_{H_{-(|\mathrm{f}\mathrm{f}\mathrm{i}\mu|+\delta)}^{*}}$

$\leqq$ $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.||v(t,x)||_{H}*$

Thus, we have just obtained exponential time decay solutions $u$ , by virtue of
$v$ which is constructed so as to have exponential time decay property.
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2Uniqueness Theorem
By the way, it is well known that the Cauchy problem (1) is wellposed in the
Sobolev space H8. The estimate (14) makes sense when the uniqueness of
the solution is assured, because the estimate (14) should be valid for all of
the solutions. That is, the discussion in the preceding section is essentially
based on the unique solution to the Cauchy problem (1). Consequently, we
are confronted with require to prove the uniqueness theorem in the Sobolev
space with the exponential weights.

THEOREM 2. Let $s$ be a non-negative integer. If $u_{0}=0$ and a solution $u$

to Cauchy problem (1) belongs to $C^{0}([0, \infty);H_{-\sigma}^{\epsilon})\cap C^{1}([0, \infty);H_{-\sigma}^{s-2})$ for $a$

fixed $\sigma>0$ , then $u=0$ .
The key idea in the proof is that existence of asolution to the adjoint

problem implies the uniqueness of asolution to the original Cauchy prob-
lem (1). The uniqueness statement maybe seems to be almost trivial, but
we need precise discussion because wellposedness is not always valid in the
weighted Sobolev spaces.
REMARK. THEOREM 2is not devoted to existence, but to uniqueness of the
solution. Although it is not clear whether the existence does hold or not,
THEOREM 1have constructed asolution by giving acertain condition to
initial data.

In the proof of THEOREM 2below, we use the estimate fo$\mathrm{r}$ $e^{\lambda(D\}}a(x)e^{-\lambda(D\}}$

where $a$ is analytic in the following sense.

DEFINITION. Let $a(x)$ be asmooth function which belongs to $C^{\infty}(\mathrm{R}^{n})$ .
We say that $a(x)$ is analytic in $\mathrm{R}^{n}$ if there exist $\rho_{0}>0$ and $C_{0}>0$ such that

$\sup_{x\in \mathrm{R}^{n}}|\partial_{x}^{\alpha}a(x)|\leqq C_{0}|\alpha|!\rho_{0}^{-|\alpha|}$ (24)

for any $\alpha\in \mathrm{N}^{n}$ .

The exact estimate for $e^{\lambda\langle D\rangle}a(x)e^{-\lambda(D\}}$ is given by the next lemma. See
[3] for the proof in detail.

LEMMA 2.1. Let $\lambda>0$ and $a(x)$ be analytic in $\mathrm{R}^{n}$ . Put

$\tilde{a}(x, D)=e^{\lambda\{D\rangle}a(x)e^{-\lambda\langle D\rangle}$ . (24)
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If Ais sufficiently small, ($\lambda<\rho$ for some $\rho$) then there exists a polynomial
$C(\lambda)$ on $[0, \infty)$ such that

$||\tilde{a}(x, D)u||_{L^{2}}\leqq C(\lambda)||u||_{L^{2}}$ (26)

and that

$C( \lambda)=\sum_{j=0}^{N_{0}}c_{j}\lambda^{j}$ (27)

for some $N_{0}\geqq 0$ and $c_{j}>0$ for $j=0,1$ , $\ldots$ , $N\circ\cdot$

The proof of THEOREM 2is given here.

Proof. When we would like to prove the uniqueness, it is sufficient to prove
that if $u\in C^{0}([0, T];H_{-\sigma}^{\epsilon})\cap C^{1}([0, T];H_{-\sigma}^{s-2})$ is asolution to the Cauchy
problem

$\{$

$\frac{\partial}{\partial t}u(t, x)=i\triangle u(t, x)$

$u(0, x)=0$,
(26)

then $u=0$ in the function space of $C^{0}($ [0, 0; $H_{-\sigma}^{\epsilon})\cap C^{1}([0, T];H_{-\sigma}^{s-2})$ . Change
unknown functions by putting $v=e^{-\sigma(x\rangle}u$, we have

$\{\frac{\partial}{v(\partial t}$$0,x)=0v(t, x)=i \sum_{j=1}^{n},$

$( \frac{\partial}{\partial x_{j}}+\sigma\frac{x_{j}}{\langle x\rangle})^{2}v(t, x)$

(29)

for $v\in C^{0}([0, T];H^{\epsilon})\cap C^{1}([0, T];H^{s-2})$ . This Cauchy problem cannot be
solved generally, because the imaginary part of the coefficients of the first-
order terms, that is $x_{j}\langle x\rangle^{-1}$ , do not satisfy the necessary condition to be
well-posed in $H^{\infty}$ . Let

$L= \frac{\partial}{\partial t}-i\sum_{j=1}^{n}(\frac{\partial}{\partial x_{j}}+\sigma\frac{x_{j}}{\langle x\rangle})^{2}$ , (30)

then the Cauchy problem (29) is equivalent to

$\{$

$Lv=0$ in $(0, T)$ $\mathrm{x}\mathrm{R}^{n}$

(31)
$v(0)=0$ on $\mathbb{R}^{n}$ .
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Putting

$L^{*}=- \frac{\partial}{\partial t}+i\triangle-\frac{2i\sigma}{\langle x\rangle}x\cdot$ $\nabla+ic(x)$ (32)

where $c(x)= \sigma^{2}-\frac{(n-1)\sigma}{\langle x\rangle}-\frac{\sigma^{2}}{\langle x\rangle^{2}}-\frac{\sigma}{\langle x\rangle^{3}}$ , and we will consider the adjoint

problem:

$\{$

$L^{*}w=0$ in $(0, T)$ $\mathrm{x}\mathbb{R}^{n}$

$w(T)=g$ on $\mathbb{R}^{n}$ . (33)

On the other hand, if $v$ is asolution to the Cauchy problem (31), we have

0 $=$ $\int_{0}^{T}(Lv(t), w(t))dt$ (34)

$=$ $\int_{0}^{T}(v(t), L^{*}w(t))dt+[(v(t),w(t))]_{0}^{T}$ (35)

$=$ $\int_{0}^{T}(v(t), L^{*}w(t))dt+(v(T), w(T))$ . (36)

Hence, in order that we obtain the uniqueness statement of the solution, it is
sufficient that the Cauchy problem (33) can be solved for acertain function
class, that is, there exists asolution to (33) for any $g\in L_{1}^{2}(\mathrm{R}^{n})$ , where

$L_{1}^{2}(\mathrm{R}^{n})=\{g\in L^{2}(\mathrm{R}^{n});e^{\delta_{0}(\xi\rangle}\hat{g}(\xi)\in L^{2}(\mathrm{R}_{\xi}^{n})\}$ (37)

is dense in $L^{2}(\mathrm{R}^{n})$ for apositive constant $\delta_{0}$ with $\delta_{0}<\frac{1}{n\nabla\overline{\epsilon n}}$ . In fact, if
there is $w$ satisfying (33) for any $g\in L_{1}^{2}(\mathrm{R}^{n})$ , then $(v(T), g)=0$ for any
$g\in L_{1}^{2}(\mathbb{R}^{n})$ , which implies $v(T)=0$ .

Here, we change variables $t$ to $\tau$ , such as $\tau=T-t$ , and we put $\tilde{w}(\tau)=$

$e^{\nu(T-\tau)\langle D\rangle}w(T-\tau)$ for gome $\nu>0$ , in order to make our later discussion
simpler. Hence, we obtain

$\{\tilde{w}(0)=e^{\nu T\langle D\rangle}g\frac{\partial}{\partial\tau}\tilde{w}(\tau)=i\triangle\tilde{w}(\tau)+(2\sigma\sum_{j=1}^{n}\tilde{b}_{j}(\tau;x, D)D_{j}-\nu\langle D\rangle)\tilde{w}(\tau)+i\tilde{c}(\tau;x, D)\tilde{w}(\tau)$
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where

$\{$

$\tilde{b}_{j}(\tau;x, D)=e^{\nu(T-\tau)\langle D\rangle}\frac{x_{j}}{\langle x\rangle}e^{-\nu(T-\tau)\langle D)}$

$\tilde{c}(\tau;x, D)=e^{\nu(T-\tau)\langle D\rangle}c(x)e^{-\nu(T-\tau)\langle D\}}$ .
(39)

It should be remarked that both $\dot{(}x.\rangle ox\lrcorner_{-}$ and $c(x)$ in the above operators are
analytic in Rn. We can find the solution $\tilde{w}\in C^{0}([0, T];H^{\epsilon})\cap C^{1}([0, T];H^{\epsilon-2})$

of this equation (38) if we give initial data $e^{\nu T\{D\rangle}g\in H^{\epsilon}$ .
For $j=1$ , $\ldots$ , rt

${\rm Re}(\tilde{b}_{j}(\tau;x, D)D_{j}\tilde{w},$ $w\sim)\leqq B_{j}(\nu,T)||\langle D\rangle^{\xi}\tilde{w}||_{L^{2}}^{2}$ , (40)

where $B_{j}(\nu, T)$ is apositive constant which depends on $\nu$ and $T$ , but is
independent of $\tau$ . Then, we obtain the energy estimate from the equation (38)
such as

$||\tilde{w}(\tau)||_{L^{2}}\leqq e^{C\tau}||e^{\nu T\langle D\}}g||_{L^{2}}$ $(0\leqq\tau\leqq T)$ (41)

for some positive constant $C$ which depends on $\nu$ , $T$ and $\sigma$ , when the con-

dition that $\nu(T-\tau)<\rho$ and $2 \sigma\sum_{j=1}^{n}B_{j}(\nu, T)\leqq\nu$ hold. Prom LEMMA 2.1,

where we make precise estimate of constant $B_{j}$ ,

$\sum_{j=1}^{n}B_{j}(\nu, T)\leqq C’(1+\nu T)^{N_{0}}$ (42)

holds for asufficiently large constant $C’>0$ , therefore when we choose $\nu$

and $T$ such that $\nu T=\delta_{0}$ and $2\sigma C’(1+\nu T)^{N\mathrm{o}}\leqq\nu$ at the beginning of our
discussion, then the proof has just completed. $\square$

3Vision for the future
The equation may be generalized to Schrodinger type equations

$\{\begin{array}{l}\frac{1}{i}\frac{\partial}{\partial t}u(t,x)nnu(0,x)==\sum_{j,k=1}D_{j}(a_{jk}(x)D_{k}u)(t,x)+\sum_{j=1}b_{j}(x)D_{j}u(t,x)+c(x)u(t,x)u_{0}(x)\end{array}$ (43)
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with some assumptions on ajfc, $b_{j}$ and $c$ . It is an issue whether or not we can
obtain similar result even in the generalized form.
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