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Traveling waves in heterogeneous media are gaining more and more attention
in various fields of science such as ecology ([8]), epidemiology, physiology and
combustion theory (see the comprehensive survey [9] and references therein).
They have also become an important subject of mathematical studies in the
past decade. However, most of those theoretical studies have been focused on
spatially periodic cases, and little is known about the nature of traveling waves
in aperiodically varying media. (This is in marked contrast with the case of
temporally varying –but spatially homogeneous –media, for which much is
known; see [7].)

In this lecture Iwill introduce the precise notion of traveling waves in spatially
recurrent diffusive media -including quasi-periodic and almost periodic ones as
special cases-as anatural extension of the conventional notion of traveling waves.
Iwill then discuss the existence, uniqueness and stability of such traveling waves
mainly for equations with bistable nonlinearity.

51. Preliminaries: recurrence and almost periodicity

In order to give aprecise definition of traveling waves, let us briefly recall the
notion of recurrent functions and almost periodic functions.

Acontinuous function $b(x)$ : $\mathbb{R}arrow \mathbb{R}$ is called alSnost periodic (in the sense of
Bohr) if for any sequence of real numbers $\ell_{1}$ , $\ell_{2}$ , $\ell_{3}$ , $\cdots$ the sequence of functions
$b(x+\ell_{1})$ , $b(x+\ell_{2})$ , $b(x+\ell_{3})$ , $\cdots$ has auniformly convergent subsequence. In
other words, $b(x)$ is almost periodic if its hull

$\mathcal{H}_{b}:=\overline{\{\sigma_{\ell}b|f\in \mathrm{R}\}}^{L^{\infty}(\mathrm{R})}$

is acompact set, where $\sigma_{\ell}$ denotes the shift operator $g(x)\vdash i$ $g(x+\ell)$ . For exam-
ple, if $b(x)$ is periodic (resp. quasi-periodic), then its hull $\mathcal{H}_{b}$ is homeomorphic
to acircle (resp. torus).

The notion of recurrent functions is similar to but wider than that of almost
periodic functions. The main difference is that it uses the topology of locally
uniform convergence, rather than uniform one. Acontinuous function $b(x)$ :
$\mathbb{R}arrow \mathrm{R}$ is called recurrent if the set

$\overline{\mathcal{H}}_{b}:=\overline{\{\sigma_{\ell}b|\ell\in \mathrm{R}\}}^{L_{loe}^{\infty}(\mathrm{R})}$

is compact and if
$\overline{7t}_{b^{\mathrm{r}}}=\overline{\mathcal{H}}_{b}$ for any $b^{*}\in\overline{\mathcal{H}}_{b}$ .

This second condition means that if $b(x+\ell_{1})$ , $b(x\sim+\ell_{2})$ , $b(x+\ell_{3})$ , $\cdots$ converge
locally uniformly to $b^{*}(x)$ , then one can find $\ell_{1},\tilde{\ell}_{2},\tilde{\ell}_{3}$ , $\cdots$ such that $b^{*}(x+$
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$\tilde{\ell}_{1})$ , $b^{*}(x+\tilde{\ell}_{2})$ , $b^{*}(x+\tilde{\ell}_{3})$ , $\cdots$ converge locally uniformly to $b(x)$ . (Note that
this second condition is automatically fulfilled if we use the topology of uniform
convergence; theorefore almost periodicity defined above implies recurrence.) It
is easily seen that any recurrent or almost periodic function is bounded and
uniformly continuous on R.

We can also define the notion of almost periodicity or recurrence for multi-
variable functions. Afunction $b(x_{1}, x_{2}, \cdots, x_{N})$ is called almost periodic in the
direction $x_{N}$ if for any sequence of real numbers $\ell_{1}$ , $\ell_{2}$ , $\ell_{3}$ , $\cdots$ the sequence of
functions $b(x+\ell_{1}e_{N})$ , $b(x+\ell_{2}e_{N})$ , $b(x+\ell_{3}e_{N})$ , $\cdots$ has auniformly convergent
subsequence, where $e_{N}$ denotes the unit vector in the $x_{N}$ direction. We define
the hull $\mathcal{H}_{b}$ in the same way as above.

\S 2. Definition of traveling waves

To clarify the underlying idea, we begin with asimple example. Consider a
one-dimensional diffusion equation of the form

$u_{t}=u_{xx}+b(x)f(u)$ $(x\in \mathbb{R}, t>0)$ , (1)

where
$f(0)=f(1)=0$

and $b(x)$ is an almost periodic function on R. We will discuss traveling front
solutions that connects the state $u=0$ and $u=1$ . More precisely, we will
$.\mathrm{c}$onsider traveling waves $u(x, t)$ satisfying the following conditions at infinity:

$u(x,t)arrow\{$
1as $xarrow-\infty$ ,
0as $xarrow+\infty$ . (l)

In the homogeneous case, namely the case where $b(x)$ is constant, atraveling
wave is defined to be asolution of the form

$u(x, t)=v(x-ct)$ . (2)

Here $c$ is aconstant which represents the propagation speed, and the function
$v(z)$ , $-\infty<z<\infty$ , is called the profile. Traveling waves in the homogeneous
case have two characteristic features:

the profile remains unchanged;

the front propagates at aconstant speed.

Clearly neither of these properties holds in the inhomogeneous case, as the front
encounters varying environments.

In order to cope with varying environments, it is convenient to introduce the
notion of “landscape”. Let $x=\xi(t)$ denote the position of the front at time $t$ .
(The meaning of “front” is vague at this stage, but let’s pretend that it is well-
defined somehow. Such vagueness will not matter at all in our later argument.
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We define

current landscape $=b(x+\xi(t))(=\sigma_{\xi(t)}b)$ ,
current profile $=u(x+\zeta(t),$t).

The current landscape tells the shape of the graph of $b(x)$ viewed from the
position of the front, and the current profile tells the shape of the solution viewed
from that position. We can regard the current landscape $\sigma_{\xi(t)}b$ as apoint on the
hull $\mathcal{H}_{b}$ . In other words, $\mathcal{H}_{b}$ is the set landscapes which the front encounters as
it proceeds. $\mathcal{H}_{b}$ also contains all the “virtual” landscapes obtained as the limit of
sequences of real landscapes $\sigma_{\xi(t)}b$ . Hereafter we call $\mathcal{H}_{b}$ the configuration space
for equation (1).

Note that there is no distinction between the “real” and “virtual” landscapes if
$b(x)$ is either constant or periodic. However, they can be different in non-periodic
cases, and it is important to consider virtual landscapes as well as real ones when
we discuss the nature of traveling waves.

If $b(x)$ is periodic, traveling waves can be characterized as follows:
the current profile restores its original shape each time
the front encounters the same landscape.

In the non-periodic case, however, the above characterization does not make
sense, as the same landscape is never repeated. Nonetheless, similar landscapes
appear again and again, since $\sigma_{\xi(t)}b$ forms adense orbit in the configuration space
$7t_{b}$ . Thus we are led to the following characterization of traveling waves, which
is anatural extension of Properties Aand A’:

:the current profile depends continuously
on the current landscape.

This property means that the profile restores asimilar shape each time the
front encouters asimilar landscape. Mathematically the above property can be
stated as follows:
Denifition 2.1 Asolution $u(x, t)$ of (1) satisying (l) is called atraveling wave
if there exists acontinuous map

$w(z, s)$ : $\mathcal{H}_{b}\cross \mathbb{R}arrow \mathbb{R}$

and afunction $\xi(t)$ : $\mathbb{R}$ $arrow \mathbb{R}$ such that
$u(x+\xi(t), t)=w(\sigma_{\xi(t)}b, x)$ $(x\in \mathbb{R}, t\in \mathrm{R})$ ,

$w(z, s)arrow\{$
1as $sarrow-\infty$

0as $sarrow+\infty$
uniformly in $z\in H_{b}$ .

The above expression can be rewritten as follows:
$u(x, t)=w(\sigma_{\xi(t)}b, x-\xi(t))$ . (3)
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It is easily seen that this expression agrees with the existing definition of traveling
waves for the homogeneous and the periodic cases. We also remark that an
analogue of Property $\mathrm{B}$ also follows from Property $\mathrm{A}$”if $b(x)$ is almost periodic.
In fact, we have the following:

Proposition 2.2 Let $b(x)$ be almost periodic, and let $u(x, t)=w(\sigma_{\xi(t)}b, x-\xi(t))$

be atraveling wave. Then $\xi(t)$ has an average speed in the sense that

$\frac{\xi(t+T)-\xi(t)}{T}arrow c$ as $Tarrow \mathrm{o}\mathrm{o}$ uniformly in $t\in \mathrm{R}$.

(Outline of Proof.) This proposition follows immediately by observing that
$\xi(t)$ satisfies adifferential equation of the form

$\dot{\xi}(t)=g(\xi(t))$ ,

where $g(y)$ is an almost periodic function. $\square$

The above definition of traveling waves can be adopted to equations of amore
general form with little modification. For example, consider the equation

$u_{t}=\{d(x,u)u_{x}\}_{x}+a(x, u)u_{x}+f(x, u)$ $(x\in \mathrm{R}, t>0)$ ,

where $d(x, u)$ , $a(x, u)$ , $f(x, u)$ are recurrent in $x\in \mathrm{R}$ and have bounded deriva-
tives. In this case, we consider the triplet $(d(x, u)$ , $a(x, u)$ , $f(x, u))$ and define
the configuration space as the closure of the entire set of translations $(d(x+$
$\ell$ , $u)$ , $a(x+\ell,u)$ , $f(x+\ell, u))$ , $\ell\in \mathbb{R}$

The same argument applies to higher dimensional problems such as
$u_{t}=\nabla\cdot$ $(d(x, u)\nabla u)+a(x, u)\cdot$ $\nabla u+f(x, u)$ $(x\in\Omega, t>0)$ ,

where the domain 0, as well as the coefficients $a$ , $b$ , $f$ , is recurrent or almost pe-
riodic in some direction, say e#. Atypical example of such adomain $\Omega$ is a
cylinder with undulating boundary. We can also impose inhomogeneous bound-
ary conditions. In those cases, we pick up all the inhomogeneous quantities and
define the configuration space $\mathcal{H}$ as the closure of the entire set of translations of
those quantities as we have done before.

\S 3. Uniqueness and stability

Here and in what follows we only deal with bistable nonlinearity. The equation
we consider is of the form

$u_{t}=\nabla\cdot(d(x)\nabla u)+b(x)f(u)$ $(x\in\Omega, t>0)$ , (4)

where $\Omega$ is adomain in $\mathrm{R}^{N}$ and $d(x)$ , $b(x)$ are smooth functions on $\Omega$ such that
(Re) [recurrence] $d(x)$ , $b(x)$ , $\Omega$ are recurrent in the direction $e_{N}$ and there exists

aconstant $\eta>0$ such that $d(x)$ , $b(x)\geq \mathrm{t}7$ $(x\in\Omega)$ .
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(Bs) [bistability] $f(0)=f(\alpha)=\mathrm{f}(\mathrm{a})=0$ for some $\alpha\in(0,1)$ and
$f(u)<0(0<u<\alpha)$ , $f(u)>0(\alpha<u<1)$ ,

$f’(0)$ , $f’(1)<0$ , $\int_{0}^{1}f(u)$ $du>0$ .

The last condition in (Bs) means that the state $u=1$ has alower potential
energy than the state $u=0$;therefore any traveling wave connecting $u=0$ and
$u=1$ should move toward the direction that expands the region $u\approx 1$ .

Next we introduce acondition on the front size. Define
$I_{\delta}(t):=\{e_{N}\cdot x|x\in\Omega, \delta\leq u(x, t)\leq 1-\delta\}\subset \mathrm{R}$

(FS) front-size condition] For any $\delta$ $>0$

$\sup_{t\in \mathrm{R}}(\max I_{\delta}(t)-\min I_{\delta}(t))<\infty$ .

Theorem 1Let $\tilde{u}(x, t)$ be an entire solution of (4) (that is, asolution defined
for all $t\in \mathbb{R}$) satisfying (l) along with the front-size condition (FS) and that
$\tilde{u}_{t}(x, t)>0$ . Then

(i) $\tilde{u}$ is atraveling wave;
(ii) any traveling wave satisfying (l) coincides with $\overline{u}$ up to time shift;
(iii) for any solution $u(x, t)$ of (4) whose initial data satisfies

$\lim_{xarrow-}\inf_{\infty}u_{0}(x)>\alpha$ , $\lim_{xarrow+}\sup_{\infty}u_{0}(x)<\alpha$, (4)

there exists $\tau\in \mathrm{R}$ such that
$||u(\cdot, t)-\tilde{u}(\cdot, t+\tau)||_{L\infty(\Omega)}arrow 0$ as $tarrow\infty$ .

(Outline of proof.) The above theorem can be proved by the following steps:
Step 1(Liapunov stability) By constructing asuitable family of super- and

subsolutions one can show local stability of $\tilde{u}(x, t)$ in the topology of $L^{\infty}(\Omega)$ .
Step 2(asymptotic stability) By using an argument similar to that of PropO-

sition B2 in [6], one can show that stability of $\tilde{u}(x, t)$ implies its stability with
asymptotic phase (which proves (iii) ).

Step 3(uniqueness) Asymptotic stability implies uniqueness of such entire
solution up to time shift (which proves (ii) ).

$\underline{\mathrm{S}\mathrm{t}\mathrm{e}}-04$ (continuity) To prove that $\tilde{u}(x, t)$ is atraveling wave, it remains to show
that the current profile depends continuously on the current landscape. But this
is an easy consequence of the uniqueness result in Step 3and acompactness
argument. $\square$

Remark 3.1 Obviously, condition (FS) is saisfied by any traveling wave. TheO-
rem 1(i) shows that the converse is also true. Note that the converse does not
necessarily hold for the Fisher-KPP type equations (like $f(u)=u(1-u)$ ) even
in the homogeneous case. In fact, those equations have highly peculiar entire
solutions that satisfy both (l), (FS) and behave like atraveling wave with spee
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$c_{1}$ near $t=-\infty$ while behaving like atraveling wave with speed $c_{2}$ near $t=+\infty$

with $c_{1}<c_{2}$ (see [2]). Clearly such asolution is not atraveling wave as it does
not have Property $\mathrm{A}"$ .

The following theorem, which follows easily from Theorem 1, is useful in real
applications. To state this theorem, we need aweeker version of condition (FS):
$(\mathrm{F}\mathrm{S})_{+}$ For any $\delta>0$

$\lim_{tarrow}\sup_{\infty}(\max I_{\delta}(t)-\min I_{\delta}(t))<\infty$ .

Theorem 2Let $u(x, t)$ be asolution of (4) satisfying (4), $(\mathrm{F}\mathrm{S})_{+}$ and

$\lim_{tarrow\infty}u(x+ct, t)=1$ locally uniformly in 0

for some $c>0$ . Then atraveling wave exists for (4) and $u(x, t)$ converges to this
traveling wave (or its time-shift) as $\mathrm{t}$ $arrow\infty$ uniformly in Q.

\S 4. Exinstence in one space dimension

In this section we discuss the existence of traveling waves in one space dimen-
sion. Consider the equation

$u_{t}=\{d(x)u_{x}\}_{x}+b(x)f(u)$ $(x\in \mathbb{R}, t>0)$ , (5)

where we assume (Re), (Bs) with $\Omega=\mathrm{R}$.
By using comaprison arguments, it is not difficult to show that the front-size

condition $(\mathrm{F}\mathrm{S})_{+}$ holds for any solution of (5) whose initial data satisfies (4).
Combining this and Theorem 2, we obtain the following results:
Theorem 3(Existence criterion) Equation (5) has atraveling wave with condi-
tion (l) if and only if there is asubsolution of positive speed satisfying (l).

Corollary Atraveling wave with condition (l) exists for (5) if

$(\sqrt{b(x)d(x)})’\leq c_{0}b(x)-\delta$ $(x\in \mathbb{R})$ (6)

for some $\delta>0$ , where $c_{0}$ is the traveling wave speed for the homogeneous equation
$u_{t}=u_{xx}+f(u)$ .

(Proof) Let $\phi(z)$ be the profile of the traveling wave for the above homogeneous
equation. That is, $\phi(z)$ satisfies

$\phi"+c_{0}\phi’+f(\phi)=0$ $(z\in \mathrm{R})$

along with the condition $(*)$ . Then condition (6) implies that

$w(x, t)= \phi(\int_{ct}^{x}\sqrt{b(y)/d(y)})$

is asubsolution of speed $c$ provided that we choose $c>0$ sufficiently small. $\square$
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Remark 4.1 The above result is new even for the periodic case. Previously
the existence of traveling waves for abistable equation was known only in two
extreme cases: (Re) the nearly constant case (see Xin [9] and the references
therein) and (Bs) near the homogenization limit (see Heinze [3]). Their results
are both based on the implicit function theorem. On the other hand, our condition
(6) allows $b(x)d(x)$ to have rather alarge oscillation without coming close to the
homogenization limit.

Theorem 4(Classification of long-time behavior) Let $u(x, t)$ be asolution of (5)
whose initial data satisfies (4). Then one of the following three situations occurs
as $tarrow\infty$ :
(Re) $u(x, t)$ approaches atraveling wave satisfying (l);
(Bs) $u(x, t)$ converges to astationary solution satisfying (4) [blocking];

(c) $u(x, t)$ converges locally uniformly to 1, but its front travels at the average
speed 0[virtual blocking].

It is not difficult to show that the situation (Bs) or (c) occurs if and only if
there exists some $(d^{\mathrm{r}}, b^{*})\in?$? such that the following equation has astationary
solution satisfying (S):

$u_{t}=\{d^{*}(x)u_{x}\}_{x}+b^{*}(x)f(u)$ . (5’)

In other words, propagation is blocked (really or virtually) by the presence of
stationary fronts.
Remark 4.2 In the homogeneous or the periodic case, there is no distinction
between the real blocking and the virtual one. In other words, “zero average
speed” implies blocking. This can be shown by using the fact that any point
$(d^{*}, b^{*})\in \mathcal{H}$ is ashift of $(d, b)$ in the homogeneous or the periodic case.

The location of the stationary fronts that cause real or virtual blocking is
called blocking site. Ablocking site had better be understood as aposition in the
configuration space 7{ rather than one on the real line. That is to say, ablocking
site refers to the landscape viewed from the front of astationary solution of (5’).
This interpretation allows us to locate blocking sites even for avirtual blocking. In
the case of virtual blocking, the speed of the traveling front is significantly slowed
down each time the current landscape (that is, the position of the traveling front
in the configuration space) passes near ablocking site.

\S 5. Existence in higher space dimensions

In this section we consider equation (4) under the Neumann boundary condi-
than $\partial u/\partial n=0(x\in\partial\Omega, t>0)$ and assume (Re) and (Bs).

In higher dimensional problems, the front size condition $(\mathrm{F}\mathrm{S})_{+}$ does not always
hold and this makes the existence question more complicated and intriguing.
There are two types of situations that hinder full propagation of fronts
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$\bullet$ $\underline{\mathrm{B}1\mathrm{o}\mathrm{c}\mathrm{k}\mathrm{i}\mathrm{n}_{-}\mathrm{g}\cdot.}$ real or virtual, as in the one-dimensional case; the blocked solution
satisfies $(\mathrm{F}\mathrm{S})_{+}$ ;

$\bullet$ Front breakup: this means that the solution does not satisfy $(\mathrm{F}\mathrm{S})_{+}$ ; such a
situation happens when there is large regional imbalance within the cross-
section of 0.

To explain what the latter means, let us consider the case where $d(x)=1$ and
$\Omega$ is acylindrical domain whose cross-section is an $(N-1)$-dimensional dumbell-
shaped domain $D$ :

$\Omega=D\cross \mathrm{R}$, $D=D_{1}\cup R_{\epsilon}\cup D_{2}$ .
Here $D_{1}$ , $D_{2}$ are disjoint regions and $R_{\epsilon}$ is anarrow channel connecting $D_{1}$ and $D_{2}$ .
Now let $b(x)$ take constant values 61, $b_{2}$ on $D_{1}$ , $D_{2}$ , respectively, where $b_{1}>b_{2}$ . If
the channel $R_{\epsilon}$ is not present, then $\Omega$ consists of two disjoint cylindrical domains

$\Omega_{1}=D_{1}\cross \mathrm{R}$, $\Omega_{2}=D_{2}\mathrm{x}\mathrm{R}$,

and any solution with initial data satisfying (4) develops into planar traveling
waves with speed $C\sqrt{b_{1}}$ and $C\sqrt{b_{2}}$ , respectively in $\Omega_{1}$ and $\Omega_{2}$ , where $C$ is some
constant. Consequently no traveling wave with (4) exists in the combined region
$\Omega_{1}\cup\Omega_{2}$ , as the front-size condition $(\mathrm{F}\mathrm{S})_{+}$ is violated. Qualitatively the same
story holds if the connecting channel $R_{\epsilon}$ is present but very narrow. (One can
prove it rigorously by using comparison arguments similar to those in [5].) It
follows that no traveling wave satisfying (l) exists in 0. In the mean while, one
can also show that neither blocking nor virtual blocking happens, since the region
$\{u\approx 1\}$ expands at speeds not less than some positive constant.
Theorem 5Suppose that equation (4) possesses asolution satisfying (4) such
that $(\mathrm{F}\mathrm{S})_{+}$ does not hold. Then there exists astationary solution $v(x)$ of (4)
having the following properties:

(i) $0<v(x)<1$ for $x\in\Omega$ ;
(ii) $v(x)$ is recurrent in the direction $e_{N}$ ;
(iii) there exists an entire solution $\tilde{u}(x, t)$ of (4) such that $\tilde{u}_{t}>0$ and that

$\tilde{u}(x, t)arrow\{$

0as $tarrow-\infty$

$v(x)$ as $tarrow+\infty$ .

The situation described in Theorem 5may be called partial penetration. Partial
penetration can occur, for example, in acylindrical domain whose cross-section
is dumbeli-shaped, as we have discussed earlier in this section.

Thus, in order to prove the existence of atraveling wave, it suffices to show that
neither blocking (real or virtual) nor partial penetration occurs. This is aquestion
concerning the non-existence of stationary solutions having certain properties. In
this lecture, if Ihave time, Iwill discuss the existence and non-existence of such
stationary solution
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