
Targeting Debt: Some Implications for Growth and Inflation’

Noritaka Kudoh\dagger

Faculty of Economics, Kansai University

November, 2002

1lntroduction

The fiscal authority determines the total quantity of the government’s liabilities by issuing bonds, whereas the

role of the monetary authority is to determine the composition of the liabilities via open market operations.

In the literature, most research focuses on how monetary policy actions -changes in the composition of the

government’s liabilities -affect the real economy and the rate of inflation. This paper is intended to add

some new insights into the interaction between debt, growth, and inflation. To do so, this paper takes a

monetary endogenous growth model and considers arather unusual policy tool: control of the public debt.

The conventional wisdom is that the fiscal authority affects the government’ total liabilities and all the

monetary variables such as the nominal interest rate and the inflation rate are under complete control of

the monetary authority. Such aconventional view has been challenged by Sargent and Wallace’s (1981)

“some unpleasant monetarist arithmetic” and more recently by the school of the “fiscal theory of the price

level.” Their main message is that the monetary policy alone cannot control inflation because fiscal and

monetary policies are connected by asingle government’s budget constraint so the fiscal authority’s actions

limit the monetary authority’s degree of freedom. This paper takes this view further and asks: can the

fiscal authority control inflation by targeting the quantity of bonds it issues? In abroad sense it studies

implications of debt targeting for growth and inflation.

The analytical framework is an extension of Kudoh (2002), who presents aone-sector endogenous growth

model with money and bonds. The model is in principle an endogenous growth version of Sargent and
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Wallace’s (1981) overlapping generations economy. Iadopt aquick way to endogenize the output growth rate.

Namely, Ifollow Smith (1991) and more recently Espinosa and Yip (1999) to assume that the production

technology exhibits some degree of externality so that the aggregate production function is of AK type.

Iadopt Lucas and Stokey’s (1983) cash-in-advance formulation to introduce money that is demanded

even when it is dominated by other assets in rates of return. One of the reasons why Iavoid the money-

in-the utility-function (MIUF) formulation, which is another famous (and tractable) short-cut method of

modeling return-dominated money, is that model builders must take extra care of the issue of the timing

of trades, as pointed out by Carlstrom and Fuerst (2001). In the standard MIUF model, the real money

balance after all transactions took place enters the utility function. Carlstrom and Fuerst (2001) named this

situation “cash-when-I’$\mathrm{m}$-done timing.” It will be shown that Lucas and Stokey’s (1983) cash-in-advance

formulation gives rise to awell-defined money demand function that is decreasing in the nominal interest

rate.

Using the ffamework, Ifirst study amodel with debt targeting and interest rate pegging. Because of

the presence of budget deficits, there are two distinct balanced growth equilibria. As pointed out by Evans

et al. (1998), the standard stability analysis does not apply to such amodel because the model’s initial

condition (stated as alevel of capital stock) does not pin down atime path of capital stock. For this reason,

Iutilize an adaptive learning scheme as an equilibrium selection device. The basic idea of adaptive learning

adopted in this paper is to describe behaviors of agents outside of equilibria under aparticular adaptive

learning mechanism, and find amapping that maps from the PLM (perceived law of motion) to the ALM

(actual law of motion). Aperfect-foresight equilibrium is said to be $\mathrm{E}$-stable(expectationally stable) if such

alearning scheme converges to that equilibrium.

Aprimary finding regarding stability is that it is the low-growth equilibrium that is E–stable. The

high-growth equilbrium is either $\mathrm{B}$-stable or $\mathrm{B}$-unstable, depending on the level of primary deficit and the

targeted debt-GDP ratio. If the level of primary deficit is low or the targeted debt-GDP ratio is high,

then both equilbria become E–stable, causing xpectational indeterminacy, the possibility raised in Kudoh

(2002).

It is well-known in the literature that sunspot equilibria of various forms exist in amodel with multiplicity

or indeterminacy. Recently Evan and Honkapohja $(1994, 2001\mathrm{b})$ addressed the issue of stability, rather

than existence, of sunspot equilibria using the technique of adaptive learning. In the spirit of Evan and

Honkapohja $(1994, 2001\mathrm{b})$ , this paper takes up the issue of stability of possible sunspot equilibria of the

model. In the model with nominal interest rate pegging, sunspots around the two distinct balanced growth
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equilibria exist, but the sunspots are not stable under learning.

Iextend the basic model to consider asomewhat extreme issue: can the fiscal authority control inflation

without an active central bank? The answer seems affirmative in the sense that there is aunique balanced

growth equilibrium in amodel in which the central bank lets all the monetary variables –the nominal

interest rate and the inflation rate -be determined by the market. It will be shown that there is aunique

balanced growth equilibrium, and that it is stable under learning. This suggests that it is possible that

the fiscal authority’s actions alone determine the long-run rates of growth and inflation. This would add

another support for the view that the fiscal authority’s coordinated actions are required for price (and

output) stability.

Recently Evan and Honkapohja $(1994, 2001\mathrm{b})$ consider existence and stability of sunspot equilibria near

a single indete rminate steady state. Their results imply that although uniqueness obtains, the economy

without an active monetary authority can be subject to adaptively stable sunspot fluctuations.
The rest of the paper is organized as follows. Section 2describes the model economy. Section 3presents

equilibria under debt targeting and interest rate pegging. Section 4asks whether the fiscal authority can

control inflation by targeting debt. Section 5concludes.

2The Model

2.1 Environment

Consider agrowing economy consisting of an infinite sequence of two period lived overlapping generations,

an initial old generation, and an infinitely-lived government. Let $t=1,2$ , $\ldots$ index time. At each date $t$ , a

new generation comprised of $N_{t}$ identical members appears where Inormalize $N_{t}=1$ for all $t$ . Each agent

is endowed with one unit of labor when young and is retired when old. In addition, the initial old agents

are endowed with $M_{0}>0$ units of fiat currency and $K_{1}>0$ units of capital.

There is asingle final good produced using the production function $\mathrm{Y}_{t}=A\overline{K}_{t}^{1-\alpha}K_{t}^{\alpha}L_{t}^{1-\alpha}$, where $A>1$

is aconstant, $\alpha\in(0,1)$ is the capital’s share, $\overline{K}_{t}$ is the aggregate capital stock, $K_{t}$ denotes the capital input,

and $L_{t}$ denotes the labor input at $t$ . The aggregate capital stock enters the production function because of

externality; the labor productivity rises as the society accumulates capital stock. Note that $\overline{K}_{t}=K_{t}$ holds

in equilibrium. In addition, capital is assumed to depreciate 100% between periods
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2.2 Factor Markets

Factor markets are perfectly competitive. Thus, factors of production receive their marginal product. Young

agents supply their labor endowment inelastically in the labor market. Thus, $L_{t}=1$ in equilibrium. When

make decisions, firms take the stock of aggregate capital, $\overline{K}_{t}$ , as given. Then the gross return on capital,

$r_{t+1}$ , and the real wage rate, $w_{t}$ , are given by

$r_{t}$ $=$ $\alpha A\overline{K}_{t}^{1-\alpha}K_{t}^{\alpha-1}L_{t}^{1-\alpha}=\alpha A$, (1)

$w_{t}$ $=$ $(1-\alpha)A\overline{K}_{t}^{1-\alpha}K_{t}^{\alpha}L_{t}^{-\alpha}=(1-\alpha)AK_{t}=(1-\alpha)$Y6. (2)

2.3 Consumers

Let $c_{1t}(c_{2t})$ denote the consumption of the final good by ayoung (old) agent born at date $t$ . In order

to simplify the analysis as much as possible, Iassume that agents care consumption only when old. This

immediately follows that $c_{1t}=0$ for all $t$ so all income will be saved.

Following Lucas and Stokey (1983) and more recently Woodford (1994), Iassume that consumption

goods are divided into two types: “cash goods” and “credit goods.” Cash goods must be purchased by cash,

so agents wishing to consume cash goods need cash in advance. On the other hand, agents do not need cash

to purchase credit goods. Ifollow Lucas and Stokey’s (1983) interpretation that at some stores an agent

is known to the producer so credit is available, while at other stores the agent is unknown to the seller so

cash must be used to make atransaction. Let $c_{mt}(cnt)$ denote the amount of cash (credit) goods consumed

when old. Then, $c_{2t}=c_{mt}+c_{nt}$ must hold. The cash-in-advance constraint is therefore

$p_{l+1}c_{mt}\leq M_{t}$ , (3)

where $p_{t}$ denotes the time $t$ price level and $M_{t}$ denotes the nominal money balance. According to (3), a

young agent must set aside cash in advance in order to purchase cash goods when old.

It is assumed that agents may hold money and non-monetary assets. The non-monetary assets, denoted

by $Z_{t}$ , are assumed to yield the gross nominal return of $I_{t+1}\geq 1$ in the next period. Iassume that agents

do not have access to any other storage technology. The budget constraint for ayoung agent born at date

$t$ is therefore

$M_{t}+Z_{t}\leq p_{t}w_{t}-T_{t}$ , (4)

where $T_{t}$ is the amount of tax paid. (4) states that ayoung agent of generation t receives nominal wage

income and allocates all disposable income to monetary and non-monetary assets (because no one consumae
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when young). Throughout, Iconsider only symmetric equilibria in which all agents of the same generation

have the same amount of assets. Since the nominal interest rate on money is zero, the budget constraint

when old is

$p_{t+1}c_{2t}\leq M_{t}+I_{t+1}Z_{t}$ . (5)

The cash-in-advance constraint binds if and only if money is dominated by non-monetary assets in rates

of return. In other words, the cash-in-advance constraint binds as long as the net nominal interest rate is

non-negative, or equivalently, $I_{t+1}\geq 1$ . Under the biding cash-in-advance constraint, $c_{mt}=M_{t}/p_{t+1}$ and

$c_{nt}=I_{t+1}Z_{t}/p_{t+1}$ .
Following Chari et al. (1991), Ispecify the utility function $\mathrm{a}s^{1}$

$U(\mathrm{q}_{nt}, c_{nt})=\ln(1-\sigma)c_{mt}^{1-\rho}+\sigma c_{nt}^{1-\rho}|h_{\mathrm{h}\mathrm{i}_{\frac{1}{\mathrm{T}-\rho}}}\%$

, (6)

where $0<\sigma<1$ and $0<\rho<1$ . Each young agent chooses $Cmt$ and $c_{nt}$ to maximize (6) subject to

$c_{mt}=M_{t}/p_{t+1}$ , $c_{nt}=I_{t+1}Z_{t}/\mathrm{P}t+1$ , and $M_{t}+Z_{t}=p_{t}w_{t}-T_{t}$ . The first order necessary condition for the

maximization problem gives the real money demand function,

$\frac{M_{t}}{p_{t}}=\gamma(I_{t+1})w_{t}-\frac{T_{t}}{p_{t}}\mu\eta$ , (7)

where
$\cup$ $\eta_{1,\rho}$,

$\#_{-1}$

$\gamma(I)\equiv$ $1+$ $\frac{\sigma}{1-\sigma}$

$I^{\frac{1-}{\rho}A}$ (8)

It is important to check the properties of the money demand function just derived.

Lemma 17(/) satisfies (a) 7’ $(/)<0$ for $0<\rho<1$ , (b) $\mathrm{l}\mathrm{i}\mathrm{m}tarrow\infty\gamma(I)=0$ for $0<\rho<1$ , (c) $0<\gamma(I)<1$ ,

and (d) $I\gamma’(I)/\gamma(I)=-[1-\gamma(I)](1-\rho)/\rho$.

Proof, (a) From (8),
,1

$\eta_{1,\rho}$, $\underline{7}-A\#_{-2}\cup$
$\eta_{1}$

$\gamma’(I)=-$
$1+ \frac{\sigma}{1-\sigma}\cup$ I $\rho$ $\frac{\sigma}{1-\sigma}$ $\rho\frac{1-\rho}{\rho}I^{\underline{1}-A}p-1$ . (9)

It is then easy to check that $\gamma’(I)<0$ for $0<\rho<1$ . (b) Immediate from (8). (c) Obvious from (b). (d)

Straightforward from (9). $\blacksquare$

Lemma 1(a) states the condition under which the real money demand is decreasing in the nominal

interest rate. As the nominal interest rate increases, the household substitutes away from money, which
According to Chari et al. (1991), $\sigma=0.57$ , $\rho=0.17$ for the $\mathrm{U}.\mathrm{S}$ . economy. Note, however, that the parameter values are

for their model economy in which there is an infinitely lived agent, rather than aseries of overlapping generations
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reduces money demand. An increase in the nominal rates, at the same time, raises earning from bond

holding, which raises money demand through income effect. The former dominates the latter if $0<\rho<1$ ,

which Iassume to hold throughout. In addition, Iassume that $(1-\rho)I<1$ holds, which is plausible and

easily satisfied.

2.4 The Government

The government’s flow budget constraint is

$G_{t}=T_{t}+B_{t}-ItBt-i+Mt-Mt-1$ (10)

for $t\geq 2$ and $G_{1}+M_{0}=T_{1}+M_{1}+B_{1}$ for $t=1$ , where the initial stock of bonds is assumed to be zero. I

assume that the government simply consumes $G_{t}$ and that it does not affect utility of any generation or the

production process at any date. In order to simplify the analysis, divide (10) by $p_{t}\mathrm{Y}_{t}$ to obtain

$g_{t}= \tau_{t}+b_{t}-\frac{R_{t}}{\theta_{t}}b_{t-1}+m_{t}-\frac{p_{t-1}}{p_{t}}\frac{1}{\theta_{t}}m_{t-1}$ , (11)

where $\theta_{t}\equiv \mathrm{Y}_{t}/\mathrm{Y}_{t-1}$ , $g_{t}\equiv Gt/\{ptYt$ ) $y$
$\tau_{t}\equiv T_{t}/(p_{t}\mathrm{Y}_{t})$ , $b_{t}\equiv Tt/(ptYt)$ , $m_{t}\equiv M_{t}/(p_{t}\mathrm{Y}_{t})$ . Throughout, Iassume

that the government spending per GDP is constant over time, or, $g_{t}=g\in[0,1)$ for all $t$ .

3Equilibria with Debt Targeting and Interest Rate Pegging

3.1 Characterization

This section considers ascenario in which the fiscal authority targets the debt-GDP ratio and the central

bank pegs the nominal interest rate. Let $\overline{b}$ denote the targeted debt-GDP ratio where $0\leq\overline{b}<\infty$ . It follows

therefore that $b_{t}=\overline{b}$ and $I_{t}=I$ for all $t$ . Thus, the tax rate, $\tau_{t}$ , is endogenous. Before proceeding, note

that $\tau_{t}<1-\alpha$ is imposed to ensure $T_{t}<w_{t}=(1-\alpha)\mathrm{Y}_{t}$ , otherwise the household will be bankrupted by

taxes.

Amonetary equilibrium is defined as aset of sequences for allocations $\{m_{t}\}$ , $\{z_{t}\}$ , $\{k_{t}\}$ , $\{b_{t}\}$ , prices $\{r_{t}\}$ ,

$\{\mathrm{z}\mathrm{t}\}$ , {Pt}, and the initial conditions $M_{0}>0$ , $K_{1}>0$ , $B_{0}=0$ such that (a) the factor markets clear, $i.e.$ ,

(1) and (2) hold, (b) the asset market clears: $K_{t+1}+B_{t}/p_{t}=Zt/pu$ $(\mathrm{c})$ the allocations solve agents’ utility

maximization problem, (d) the cash-in-advance constraint (3) binds, or equivalently, $I_{t}>1$ holds, (e) the

government’s budget constraints, $pig+M_{0}=M_{1}+B_{1}$ for $t=1$ and (10) for $t>1$ , hold, (f) $I_{t}=I$ and

$g_{t}=g$ for all $t$ , and (g) $b_{t}=\overline{b}$ for all $t$ .
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The money market equilibrium requires that

$\frac{M_{t}}{p_{t}}=\gamma(I)w_{t}-\frac{T_{t}}{p_{t}}[\lrcorner\eta$
$=(1-\alpha-\tau_{t})\gamma(I)Y_{t}$ . (12)

Divide (12) by $\mathrm{Y}_{t}$ to obtain

$m_{t}=(1-\alpha-\tau_{t})\gamma(I)$ (13)

Since all income is saved, the asset market equilibrium requires that

$K_{t+1}+ \frac{B_{t}}{p_{t}}=w_{t}-\frac{T_{t}}{p_{t}}-\frac{M_{t}}{p_{t}}=(1-\alpha-\tau_{t})[1-\gamma(I)]Y_{t}$ . (14)

Divide (14) by $\mathrm{Y}_{t}$ and substitute $b_{t}=\overline{b}$ to obtain

$\theta_{t+1}=A(1-\alpha-\tau_{t})[1-$ $(\mathrm{I})\}-A\overline{b}$ . (13)

(15) immediately implies that at any equilibrium $\theta_{t+1}$ and $\tau_{t}$ are negatively related. In addition, the

condition $\tau_{t}<1-\alpha$ , combined with (15), requires that $\theta_{t+1}+A\overline{b}>0$. Substitute $R_{t}=\alpha A$, $b_{t}=\overline{b}$, (13),

and the Fisher equation into (11) to obtain

$g= \tau_{t}+\overline{b}-\frac{\alpha A}{\theta_{t}}\overline{b}+(1-\alpha-\tau_{t})\gamma(I)-\frac{\alpha A}{I}\frac{1}{\theta_{t}}(1-\alpha-\tau_{t-1})\gamma(I)$ . (16)

Substitute (15) into (16) and solve it for $\theta_{t+1}$ as afunction of $\theta_{t}$ alone as

$\theta_{t+1}=[1-g-\alpha H(I)]A-\frac{\alpha A^{2}\overline{b}H(I)}{\theta_{t}}\equiv\Omega(\theta_{t})$, (17)

where

$H(I) \equiv\frac{1-\gamma(I)+\gamma(I)/I}{1-\gamma(I)}=1+\frac{\gamma(I)/I}{1-\gamma(I)}>1$ . (18)

Equation (17) describes the equilibrium law of motion of the output growth rate. It will be helpful to study

some properties of the function $H$ .

Lemma 2The function $H$ satisfies $a$) $H’(I)<0$, and $b$) $H(1)=1+\mathrm{i}_{\frac{1-\sigma}{\sigma}\rho}^{\mathrm{t}_{1}}$ .

3.2 Balanced Growth Equilibria

At any balanced growth equilibrium, $\theta_{t}=\theta$ and $\tau_{t}=\tau<1-\alpha$ for all $t$ . Thus, abalanced growth equilibrium

solves
$\theta=[1-g-\alpha H(I)]A-\frac{\alpha A^{2}\overline{b}H(I)}{\theta}\equiv\Omega(\theta)$ . (19)

Lemma 3The function $\Omega$ satisfies (a) $\Omega’(\theta)>0$, (b) $\lim_{\thetaarrow 0}\Omega’(\theta)=\infty$ , (c) $\lim_{\thetaarrow\infty}\Omega’(\theta)=0$ , and (d)

$\lim_{\thetaarrow\infty}\Omega(\theta)=[1-g-\alpha H(I)]A$.
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Proof. From (19), it is easy to compute

$\Omega’(\theta)=\frac{\alpha A^{2}\overline{b}H(I)}{\theta^{2}}>0$ , and $\Omega’(\theta)=-\frac{2\alpha A^{2}\overline{b}H(I)}{\theta^{3}}<0$.

The rest of the proof is immediate. @

Proposition 4(a) There exist two distinct balanced growth equilibria if $[1-g-\alpha H(I)]^{2}/[4\alpha H(I)]\geq\overline{b}$ ,

(b) there exists a unique balanced growth equilibrium if $[1-g-\alpha H(I)]^{2}/[4\alpha H(I)]=\overline{b}$ , and (c) there exists

no balanced growth equilibrium if [l-g $-\alpha H(I)]^{2}/[4\mathrm{a}\mathrm{H}(I)]\leq\overline{b}$.

Proof. Rewrite (19) as the following quadratic form,

$\theta^{2}-[1-g-\alpha H(I)]A\theta+\alpha A^{2}\overline{b}H(I)=0$ ,

which has the roots

$\theta=\frac{[1-g-\alpha H(I)]A\pm A\overline{[1-g-\alpha H(I)]^{2}-4\alpha\overline{b}H(I)}\mathrm{q}}{2}$ . (20)

Thus, the roots are real if and only if $[1-g-\alpha H(I)]^{2}\geq 4\alpha\overline{b}H(I)$ . $\blacksquare$

Figure 1shows equilibria of the model. As is shown in the figure, there are normally two balanced growth

equilibria, the high-growth equilibrium, denoted by $\theta_{H}$ , and the low-growth equilibrium, $\theta_{L}$ . Obviously,

0’ (OH) $>1$ and $\Omega’(\mathrm{O}\mathrm{L})<1$ . It is important to check whether the condition $\tau<1-\alpha$ is ever violated.

Notice that, in this economy, the targeted public debt must be large enough for agiven level of the fiscal

deficits.

119



Example 5 Let $A=3$ , $\alpha=0.33$ , $\rho=0.2$ , $\sigma=0.6$ , $g=0.02$ , $I=1.03$, and $\overline{b}=0.25$ . The $co$ spending

inflation rate $\iota s$ $\Pi=1.04$ . Under this specification, there are two balanced growth equilibria with $\theta=0.79$

and $\theta=1.05$ .

Proposition 6(a) An increase in the nominal interest rate reduces (raises) the output growth rate at the

low-growth (high-growth equilibrium, (b) An increase in the targeted debt $GDP$ ratio raises (reduces) the

output growth rate at the low-growth (high-growth) equilibrium, (c) An increase in the fiscal spending per

$GDP$ raises (reduces) the output growth rate at the lowgrowth (high-grow th equilibrium.

Proof. Prom (19) it is easy to compute

$\frac{d\theta}{dI}=\frac{-1-A\overline{b}/\theta}{1-\Omega’(\theta)}\alpha AH’(I)$ ,

where 0’ $(9\mathrm{H})>1$ and $\Omega’(\theta_{L})<1$ . Since $H’(I)<0$ , the 0locus shifts up. The rest is immediate, (b)

Prom (19) it is easy to compute

$\frac{d\theta}{d\overline{b}}=-\frac{\alpha A^{2}H(I)/\theta}{1-\Omega(\theta)},$.

The rest is immediate, (c) Omitted. $\blacksquare$

3.3 Stability under Learning

This subsection studies dynamic properties of equilibria. As is pointed out by Evans et al. (1998), one cannot

apply the standard stability analysis to the model. The reason is because the model’s initial condition, $K_{1}$ ,

does not pin down the next-period’s capital stock in this model. Thus, Ifollow Evans et al. (1998) to use

an adaptive learning scheme as an equilibrium selection $\mathrm{d}\mathrm{e}\mathrm{v}\mathrm{i}\mathrm{c}\mathrm{e}.2$ The basic idea is to consider behavior of

the economy outside of the perfect-foresight equilibria and to ask to which equilibrium agents’ expectations

converge.

Consider the following adaptive learning scheme,

$\theta_{t+1}^{e}=\theta_{t}^{\mathrm{e}}+\delta_{t+1}(\theta_{t-1}-\theta_{t}^{\mathrm{e}})$ , (21)

where $\theta_{t+1}^{\mathrm{e}}$ is apoint expectation of the output growth rate and $\delta_{t}=\delta/t$ is called the gain sequence. It is

said in the learning literature that information is lagged if the adaptive learning scheme is described by (21).

Alternatively, one could replace the learning rule with $\theta_{t+1}^{\mathrm{e}}=\theta_{t}^{e}+\delta_{t+1}(\theta_{t}-\theta_{t}^{e})$, which corresponds to the
$2\mathrm{G}\mathrm{o}\mathrm{o}\mathrm{d}$ discussions on learning as an equilibrium selection device can be found in Evans and Honkapohja (2001) and Lettau

and Van Zandt (forthcoming). See also Kudoh (2002)
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case in which information is current. Lettau and Van Zandt (forthcoming) point out that the use of current

information in the learning process could drastically change stability. Iadopt here the standard assumption

that information is lagged.

Solve (15) for the tax-GDP ratio to obtain

$\tau_{t}=1-\alpha$ $- \frac{\theta_{t+1}^{e}+A\overline{b}}{A[1-\gamma(I)]}$ , (22)

where $\theta_{t+1}^{e}$ is apoint expectation of the output growth rate and $h(I)\equiv 1-\gamma(I)+\gamma(I)/I$ . Equation (22)

states that the real tax revenue is determined once apoint expectation on the future output growth rate is

formed. Substitute (22) into (16) and solve it for the actual output growth rate to obtain

$\theta_{t}=\frac{\alpha A}{1-\gamma(I)}\frac{h(I)A\overline{b}+\theta_{t}^{\mathrm{e}}\gamma(I)/I}{(1-\alpha-g)A-\theta_{t+1}^{\mathrm{e}}}\equiv\Phi\theta_{t+1}^{\epsilon}\mathrm{i}$, $\theta_{t}^{e}\mathrm{t}$ (23)

which defines an important function that maps from point expectations on the output growth rates, $\theta_{t+1}^{\mathrm{e}}$

and $\theta_{t}^{\mathrm{e}}$ , to the actual output growth. Agents revise expectations using (21). Under perfect foresight, (23)

implies (19).

Substitute (23) into (21) to obtain $\theta_{t+1}^{\mathrm{e}}=\theta_{t}^{e}+\delta_{t+1}\Phi\theta_{t}^{e},$

$\theta_{t-1}^{\epsilon}-\theta_{t}^{\mathrm{e}}\mathrm{i}|\mathrm{t}\mathrm{t}$ , which is a $\sec \mathrm{o}\mathrm{n}\mathrm{d}\triangleleft \mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}$ system

in the expectations. Rewrite it as $(\theta_{t+\Delta}^{\mathrm{e}}-\theta_{t}^{\epsilon})/\Delta=\Phi\theta_{t}^{e}\mathrm{i}$ , $\theta_{t-\Delta}^{e}-\theta_{t}^{e}$ , where $\mathrm{A}=\delta_{t+1}$ . Notice that
$\mathrm{t}$

$\lim_{tarrow\infty}\Delta=0$ . It follows therefore the differential equation $d9e/ds=\Gamma(\theta^{e})-\theta^{e}$ , where

$\Gamma(\theta^{\mathrm{e}})\equiv\lim_{tarrow\infty}\Phi\theta_{t}^{e}\mathrm{i}$ , $\theta_{t-1}^{\mathrm{e}}=\mathrm{t}\frac{\alpha A}{1-\gamma(I)}\frac{A\overline{b}h(I)+\theta^{e}\gamma(I)/I}{(1-\alpha-g)A-\theta^{\mathrm{e}}}$ . (24)

The mapping from the PLM (perceived law of motion) to the ALM (actual law of motion) is therefore given

by $\Gamma(\theta^{\epsilon})$ .

Lemma 7Let $\mathrm{b}$ $\equiv(1-\alpha-g)$ A. Then, $ike$ mapping $\Gamma$ satisfies (a) $\lim_{\thetaarrow \mathrm{b}}\Gamma’(\theta)=\infty$ , (b) $\lim_{\thetaarrow\infty}\Gamma’(\theta)=$

$0$ , and (c) $\Gamma’(\theta)>0$ for all $\theta$ if and only $if\overline{b}h(I)I/\gamma(I)+1-\alpha>g$ .

Proof. From (24), it is easy to show that

$\Gamma’(\theta)=\frac{\alpha A^{2}}{1-\gamma(I)}\frac{\overline{b}h(I)+(1-\alpha-g)\gamma(I)/I}{[(1-\alpha-g)A-\theta]^{2}}$ .

The rest is immediate. $\blacksquare$

The condition for $\mathrm{E}$-stability is $\Gamma’(\theta^{\mathrm{e}})<1$ . Figures $2\mathrm{a}$ and $\mathrm{b}$ depict the map $\Gamma$ . As shown in these

figures, there are two distinct fixed points and the curve cuts the 45 degree line from above (below) at the

low-growth (high-growth) equilibrium if $g$ is small (large) relative to $\overline{b}$ . This establishes that $\Gamma’(\theta^{\mathrm{e}})<1$

$(>1)$ at the low-growth (high-growth) equilibrium. Formally

121



$F(\theta^{e})$

Figure 2a.

Proposition 8(a) The low-grouth equilibrium is $E$-stable, and (b) the high groeuth equilibrium is $E$ stable

if and only $\dot{\iota}f\overline{b}h(I)I/\gamma(I)+1-\alpha<g$ .

According to proposition 8, the low-growth equilibrium is selected as adaptively stable one. Further, the

high-growth equilibrium becomes stable if the deficit is small or the targeted debt-GDP ratio is high. An

important policy implication is that if the monetary authority pegs the nominal interest rate, then ther

122



arises the possibility of expectational indeterminacy in the sense of Evans et al. (1998). This proposition

also implies that such indeterminacy can be overcome by appropriately chosen fiscal parameters, $\overline{b}$ , and $g$ .

3.4 Stability of Sunspot Equilibrium

This subsection considers existence and stability of possible sunspot equilibria (SSEs) of the economy. In

order to make the model comparable to Evans and Honkapohja’s $(1994, 2001\mathrm{b})$ results, rewrite (17) as

$\theta_{t}=\Omega^{-1}(\theta_{t+1})=\frac{\alpha A^{2}\overline{b}H(I)}{[1-g-\alpha H(I)]A-\theta_{t+1}}\equiv F(\theta_{t})$ , (25)

which defines the temporary equilibrium map from expectations about the next period output growth rate

to the current one. Consider asunspot variable $s_{t}$ which follows aMarkov chain with transition probabilities

$\pi_{\dot{|}j}$ , which is the probability that the current state is $i$ and the next state is $j$ . For the case of a2-state

Markov chain, $\pi_{12}=1-\pi_{11}$ and $\pi_{21}=1-\pi_{22}$ . The following definitions are due to Evans and Honkapohja

(1994).

Definition 9 $(\theta_{1}, \theta_{2})$ is a $Z$-state Markov sunspot equilibrrium with transition probabilities $0<\pi_{\dot{|}\mathrm{j}}<1\dot{\iota}f$

$\theta_{1}=\pi_{11}F(\theta_{1})+(1-\pi_{11})F$ (B2) and $\theta_{2}=(1-\pi_{22})\mathrm{F}(9\mathrm{i})+\pi_{22}F(\theta_{2})$ .

Definition 10 Local animal spirits sunspots are stationary sunspot equilibria (SSEs) for which the two

states are near distinct rest points $\theta_{L}$ and $\theta_{H}$ , such that $\theta_{L}=F(\theta_{L})$ and $\theta_{H}=F(\theta_{H})$ .

According to Evans and Honkapohja (1994), the conditions for the existence of local animal spirits

sunspots are $F’(\mathrm{B}\mathrm{L})\neq 1$ and $F’(\theta_{H})\neq 1$ . Since 0’ $(\theta_{L})>1>\Omega’(\theta_{H})$ and $F’(\theta)=1/\mathrm{Q}’(\mathrm{B})$ hold in this

economy, it is easy to check that $F’$ (B1) $<1<F’(\mathrm{B}\mathrm{H})$ , which ensures $F’(\theta_{L})\neq 1$ and $F’(\theta_{H})\neq 1$ . Thus,

local animal spirits sunspots exist near the balanced growth equilibria $\theta_{L}$ and $\theta_{H}$ .

Proposition 11 (Evans and Honkapohja (1994)) Local animal $sp\dot{|}fits$ sunspots are (a) weakly E-stable

if and only if $F’(\mathrm{B}\mathrm{L})<1$ and $F’(\theta_{H})<1$ , and (b) strongly $E$-stable $l\dot{f}$ and only $\dot{.}f|F’(\mathrm{B}\mathrm{L})<1$ ated

$|F’(\theta_{H})|<1$ .

Proof. See Evans and Honkapohja (1994). @

The terminology “weak $\mathrm{B}$-stability”is used here to denote the standard $\mathrm{B}$-stability notion in order to

distinguish this ffom a stronger notion of $\mathrm{B}$-stability, “strong $\mathrm{E}$-stability.”The notion of strong $\mathrm{E}$ stability,

which is concerned with stability of an overparameterized system, is suggested and discussed at length in

Evans and Honkapohja $(1994, 2001)$ . In what follows, Iwill use proposition 11 as the stability conditions

for the model. The distinction between weak and strong $\mathrm{E}$-stability, however, will not be emphasized
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Proposition 12 Local animal spirits sunspots near $\theta_{L}$ and $\theta_{H}$ are not E-stable.

Proof. The result is easily checked because $F’(\theta_{L})<1<F’(\theta_{H})$ holds. $\blacksquare$

4Targeting Debt to Control Inflation

4.1 Characterization

This section considers an alternative scenario in which the fiscal authority is active in the sense that it targets

the tax rate as well as the debt-GDP ratio. Thus, the central bank has to adjust the nominal interest rate

so as to be consistent with all other equilibrium conditions. Accordingly, the gross nominal interest rate is

endogenous.

The money market equilibrium requires %=(1-\mbox{\boldmath $\alpha$}-\mbox{\boldmath $\tau$}) $\gamma(I_{t+1})$ and the capital market equilibrium

implies

$\theta_{t+1}=A(1-\alpha-\tau)[1-\gamma(I_{t+1})]-A\overline{b}\equiv\ominus(I_{t+1})$ . (26)

It is easy to check that $\Theta’(I)=-A(1-\alpha-\tau)\gamma’(I)>0$ . In words, the nominal interest rate and the

output growth rate are positively related. The government’s budget constraint can be rewritten as

$g= \tau+\overline{b}-\frac{\alpha A}{\theta_{t}}\overline{b}+(1-\alpha-\tau)\gamma(I_{t+1})-\frac{\alpha A}{I_{t}}\frac{1}{\theta_{t}}(1-\alpha-\tau)\gamma(I_{t})$, (27)

The evolution of the economy is described by (26) and (27).

4.2 Balanced Growth Equilibrium

At any balanced growth equilibrium, $\theta_{t}=\theta$ and $I_{t}=I$ for all $t$ . Thus, abalanced growth equilibrium solves

$I= \frac{\mathrm{r}\alpha A(1-\alpha-\tau)\gamma(\underline{I})-}{\sim\tau-g+\overline{b}+(1-\alpha-\tau)\gamma(I)\Theta(I)-\alpha A\overline{b}}\equiv J(I)$ . (28)

It will be helpful to study some properties of the function $J$.

Lemma 13 $J’(I)<0$ holds.

Proof. Prom (28), it is straightforward to show that

Since 7’ $(I)<0$ , $J’(I)<0$ holds. $\blacksquare$
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Prom lemma 13 it is easy to show that the mapping $J$ has aunique fixed point. The typical configuration

of the function $J$ is depicted in figure 3. The question here is whether the fixed point constitutes an

equilibrium. Namely, one needs to check if the fixed point satisfies $I\geq 1$ , which is the natural lower bound

for the gross nominal interest rate or equivalently the nominal interest factor.

Example 14 Let $A=3$ , $\alpha=0.33$ , $\rho=0.2$ , $\sigma=0.6$ , $g=0.02$ , $\tau=0$, $and\overline{b}=0.25$ . Then, there is a unique

balanced growth equilibrium utdh $I=1.03$ and the corresponding output growth rate and inflation rate are

$\theta=1.05$ and $\Pi=1.04$ .

Proposition 15 (a) An increase in the government spending raises the nominal interest rate, the inflation
rate, and the output growth rate, (b) An increase in the target debt-GDP ratio reduces the nominal interest

rate, the inflation rate, and the output growth rate if and only if $\theta>A(1-g)/2$ .

$\mathrm{P}$ roof. (a) Omitted, (b) Prom (28),

$\frac{dI}{d\overline{b}}=\frac{\partial J/\partial\overline{b}}{1-J(I)},$ ,

where $J’(I)$

So $\partial J/\partial\overline{b}<0$ if and only if
$(1- \alpha-\tau)[1-\gamma(I)]+\frac{g-1}{2}>\overline{b}$,

which, using (26), can be rewritten as $\theta>A(1-g)/2$ . @
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4.3 Dynamics: Local Indeterminacy

Inow turn to describing dynamic properties of the economy. Substitute (26) into (27) to obtain

(29)

ffom which one can define the perfect-foresight dynamics, $I_{t+1}=\gamma^{-1}(\Phi(I_{t}))$ . Linearize (29) around the

steady state to obtain $dI_{t+1}=Ddlu$ where

Then, the unique balanced growth equilibrium is locally determinate if and only if $|D|>1$ . This implies

that sunspots near the single balanced growth equilibrium exist if and only if $|D|<1$ .

4.4 Stability under Learning

This section studies stability of the balanced growth equilibrium. Consider the following adaptive learning

scheme,

$I_{t+1}^{\mathrm{e}}=\Gamma_{t}+\delta_{t+1}(I_{t-1}-I_{t}^{e})$ . (30)

From (13),
1

$m_{t}=(1-\alpha-\tau)\gamma I_{t+1}^{\epsilon}\dot{|}$ , (31)

where $I_{t+1}^{\mathrm{e}}$ is apoint expectation of the gross nominal interest rate. (13), (15), and (11) combined with

$b_{t}=\overline{b}$ yield
$\theta_{t+1}=A(1-\alpha-\tau)1-\gamma I_{t+1}^{\mathrm{e}}-A\overline{b}\equiv\Theta I_{t+1}^{\mathrm{e}}\mathrm{t}\mathrm{i}\mathrm{t}-\mathrm{i}1$ (32)

Substitute (31), (32), and the Fisher equation into the government’s budget constraint (11) to obtain the

actual gross nominal interest rate

(30)

It follows therefore the differential equation $dP/ds$ $=\Gamma$ (Je)-I, where

$\Gamma(I^{e})=\lim_{tarrow\infty}J^{\mathfrak{l}}\Gamma_{t+1}$ , $I_{t}^{\mathrm{e}}= \frac{\mathrm{r}\alpha A(1-\alpha-\tau)\gamma_{-}(I^{\mathrm{e}})}{\overline{(1-\alpha-\tau)\gamma}\overline{(I^{\mathrm{e}})+\overline{b}-g}\Theta(\overline{I^{\mathrm{e}}})-\alpha A\overline{b}}=J(I^{\mathrm{e}})\mathrm{I}$ .

The condition for $\mathrm{B}$-stability is $\Gamma’(I^{e})<1$ . Thus, it is now obvious that the following result is true.

Proposition 16 The unique balanced growth equilibrium is E stable.
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45Stability of Sunspot Equilibrium

Ihave pointed out that the model generates sunspot fluctuations around the unique balanced growth path

if it is indeterminate. This subsection is concerned with stability of such sunspot equilibria. Rewrite (29)

as $I_{t}=\Phi^{-1}(\gamma(I_{t+1}))\equiv F(I_{t+1})$ , where Iuse the same notation $F$ in order to make it easier to apply

Evans and Honkapohja’s $(1994, 2001\mathrm{b})$ results to this model. It is well-known that sunspot equilibrium

exists if $|F’(I)|>1$ . The question here is whether such SSEs are E–stable Let $(I_{1}, I_{2})$ be a2-state Markov

sunspot equilibrium with transition probabilities $0<\pi_{\dot{|}j}<1$ if $I_{1}=\pi_{11}F(I_{1})+(1-\pi_{11})F(I_{2})$ and

$I_{2}=(1-\pi_{22})F(I_{1})+\pi_{22}F$ (J2). Further, Let )) solve $\mathrm{b}$ $=F(\hslash\cdot$

Proposition 17 (Evans and Hon夏下暇 ohja (2001b)) (a) If $F’(\mathfrak{h}<1$ , then every $SSEsu$ fi\sigma 亡 nay n\mbox{\boldmath $\alpha$}『

the steady state is $E$-unstable. (b) If $F’(\mathrm{r}<-1,$ $d\iota en$ ffieoe exists an $E$-stable $SSE(I_{1}, I_{2})$ near the steady

state.

Proof. See Evans and Honkapohja (2001b). $\blacksquare$

5Conclusion

This paper studied amonetary-fiscal policy regime where the fiscal authority targets the debt GDP ratio. If

the monetary authority is active and targets the nominal interest rate, then two balanced growth equilibria

are shown to exist. The low-growth equilibrium is stable under learning. If there is no active monetary

authority, then aunique balanced growth equilibrium obtains. The unique balanced growth path is stable

under learning. This suggests that it is at least theoretically possible that the fiscal authority’s actions alone

determine growth and inflation in the long run. This would add another support for the view that the fiscal

authority’s coordinated actions are required for price (and output) stability. Although uniqueness obtains,

the economy without an active monetary authority can be subject to adaptively stable sunspot fluctuations.
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