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Abstract

We would like to consider about Ttactability on $\mathrm{c}\mathrm{o}$-operative games arising
form combinatorial optimization problems. Tractability is like “Solvability”
in Computational Complexity Theory. If we were able to calculate solutions
of the $\mathrm{c}\mathrm{o}$-operative games in polynomial time, we would say that they have
good property. For example, nucleolus can be calculated in polynomial time
when the game is convex game. Convexity is important property for game
theory. But we consider about the original combinatorial optimization prob-
lem’s structure of the games. The discrete structures induces more complicate
situation. That is why Iwould like to consider Tractability.

1Introduction
Suppose that a $\mathrm{c}\mathrm{o}$-operative game in characteristic function form $\Gamma=(N, v)$

consists of aplayer set $N=\{1, \ldots, n\}$ and acharacteristic function $v:2^{N}arrow$

$R$. Also, $v(S)$ is equal to optimal value of combinatorial optimization prob-
lems for all $S=\{s\in 2^{N} : s\neq\emptyset\}$ with $v(\emptyset)=0$ . We call this type of games
“CO-Operative Games Arising from Combinatorial Optimization Problem”.
They are Profit Games in case combinatorial optimization problems are max-
imizing profit problem. Otherwise, they are Cost Games in case combinatorial
optimization problems are minimizing cost problems.

We want to calculate the well-h ove $\mathrm{c}\mathrm{o}$-operative game theory solutions,
i.e., core, Shapley value, nucleolus, kernel, $\ldots \mathrm{e}\mathrm{t}\mathrm{c}$ . directly, we must solve the
original combinatorial optimization problem $2^{n}-1$ times for all coalitions.
Also, if the original combinatorial problem is $NP$-hard in Computational
Complexity Theory, it would be very hard to get these solutions. That is why
if $n$ is large, it would not have possibility to calculate these solutions within
useful time. Besides it may happen if the original combinatorial optimization
problem is in $P$ .

Then we would like to consider the Tractability on $\mathrm{c}\mathrm{o}$-operative games
arising form combinatorial optimization problems. Ractability is like “Solv-
ability” in Computational Complexity Theory. If we were able to calculate
solutions of the $\mathrm{c}\mathrm{o}$-operative games in polynomial time, we would say that
they have good property. It is difficult to say what is TVactable on this type
of games. But we try to say something about “Ractability”.
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2 What is solution of $\mathrm{c}\mathrm{o}$-operative game ?

2.1 Solutions we discuss
This question is hard to answer. The plural solutions were proposed until now.
Also, they are not classified. We have only some information about relation-
ships among solutions of games. But we cannot discuss about Tractability if
we suppose them. At first, core and nucleolus, we suppose. That is because
these solutions are related to linear programming and deeply researched in
computational complexity theory.

2-2 Linear Production Game
For preparation, we introduce “Linear Production Game” Owen [18] in short.

2.2.1 Linear Production Problem

The original optimization problem which is not combinatorial optimization
problem,, is the Linear Programming Problem below.

(Notation)

$p$ -. the number of goods

$m$ :the number of resources
$e_{j}$ :the profit of aunit of $j$ th good
$a_{\dot{|}j}$ :the amount of $i$ th resource for aunit $j$ th good
$b_{\dot{l}}$ :the maximum amount of $i$ th resource

(Formulation)

$\max$ $\sum_{\mathrm{j}=1}^{p}e_{j}x_{j}$ (1)

subject to

$\sum_{j=1}^{\mathrm{p}}a_{\dot{|}j}x_{j}\leq b$: $i=1$ , $\ldots,m$ (2)

$x_{j}\geq 0$ $j=1$ , $\ldots,p$ (3)

2.2.2 Formulation of Linear Production Game

In this game, $l$ th player supplies his own resource $b_{\dot{1}}^{l}$ . That is why the maxi-
mum amount of resource is below for acoalition $S\subseteq N=\{1, \ldots,n\}$ to gather
$i$ th resource.

$b_{\dot{1}}(S)= \sum_{l\in S}b_{\dot{1}}^{l}$

(4)
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Now, we replace (2) with (4) i.e. $b_{i}(S)$ . Then we get a“Linear Production
Game” $\Lambda\Gamma=(N,$v) with characteristic function $v(S)$ is defined its optimal
value.

2.2.3 Calculation of amember of core
Suppose dual problem of this problem. We can calculate of amember of core.

$\min$ $\sum_{\dot{|}=1}^{m}b_{i}(S)y$: (5)

subject to

$\sum_{\dot{|}=1}^{m}a_{\dot{l}j}y:\geq e_{j}$ $j=1$ , $\ldots,p$ (6)

$y_{\dot{|}}$
$\geq 0$ $i=1$ , $\ldots,m$ (7)

The solution of this dual problem i.e. $y_{\dot{\mathrm{t}}}^{*}$ is ashadow price of $i$ th resource.
That is why the $l$ th player’s resource is $b^{\mathrm{t}}=$ $(b_{\dot{l}}^{l}, \ldots, b_{m}^{l})$ . The value of
resources is below for the 1th player.

$d$
$= \sum_{\dot{l}=1}^{m}b!.y_{\dot{l}}^{*}$ $l=1$ , $\ldots,n$ (8)

Prom Duality Theorem, $\mathrm{z}$ $=$ $(z^{1}, \ldots, z^{n})$ is amember of core.

It is important for us in above discussion that we can calculate
amember of core in polynomial time because we can solve Linear
Programming in polynomial time.

3Combinatorial Optimization Structure
Some readers guess that if the original optimization problem is solved in poly-
nomial time, we would be able to calculate amember of core or nucleolus in
polynomial time. It is not true. Granot and Huberman [12] and Kalai and
Zemel [16] discussed the existence of core for Linear Programming Games in
which Linear Production Game is. On such games, if the original problem
had feasible solution, asolution would be found in polynomial time using the
ellipsoid algorithm or the interior point algorithm which are polynomial time
algorithms for Linear Programming. Also, they guess that if the original com-
binatorial optimization problem has submodular property i.e. akind of
discrete convexity, the solution of the game would be calculated in poly-
nomial time. But combinatorial optimization structure makes situation much
harder. But we found the following proposition is true
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Proposition 1
If the original combinatorial optimization problem is $NP$-hard, we would be
unable to get the solution of the game arising from it in polynomial time.

3-1 Minimal Cost Spanning Tree (MCST) Game
MCST Game is deeply researched in this type of games. Also, MCST Problem
is in $P$ . Then we consider the typical game whose original combinatorial
optimization problem is in $P$ We introduce some results of research. Then,
useful information is gotten.

3.1.1 MCST Problem

The MCST Problem is posed on aconnected graph $G=(V,E)$ with positive
cost $w_{e}\in E$ . We are looking for the shortest spanning tree of G. We can
find its solution by Kruskal algorithm or Prim algorithm (see text books of
Discrete Mathematics or Graph Theory)in polynomial time.

3.1.2 MCST Game Definition

The MCST Game is usually defined on complete graph. Suppose water, elec-
tricity and cable television networks. 0is defined as aspecial node as one
common supplier. Users are Players as aset of other nodes which is denoted
by $N=\{1, \ldots,n\}$ . And its characteristic function is defined by

$\mathrm{v}(\mathrm{S})=\min\{\sum_{e\in T_{\iota}}w_{e}$
: $T_{\delta}$ is aspanning tree of $G(S\cup\{0\},E(S))$

which is asubgraph of $G(N\cup\{0\}, E)\}$ .

3.1.3 Tractability of MCST Game

Megiddo [17] and Granot and Huberman [12] show that nucleolus is calculated
in polynomial time for subclasses of MCST Game. However, Faigle, Kern and
Kuipers [8] shows that it is $NP$-hard to get nucleolus for MCST Game in
general. Then if the original combinatorial optimization problem is in $\mathcal{P}$ , it
would be not to calculate the nucleolus of its game in polynomial time. We
call this types of games “Intractable Game. That is why it is very interesting
to know if we can calculate in polynomial time for what kind of this game.

3.2 Facility Location Game and Traveling Salesman
Game
These original combinatorial optimization problems are famous problems which
are $NP$-hard. That is why they are “Intractable Gme”. But Goemans and
Skutella [11] show that amember of core is calculated in polynomial time for
subclass of the game. Its original Facility Location Problem has the special
property which is the no integer gap. Then we can calculate amember of
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core as the Linear Production Game. In this case, the original combinatorial
optimization problem is $NP$-hard in general. But its subclass is in $\mathcal{P}$ . This
is “TVactable” case. But as we wrote, if the original combinatorial optimiza-
tion problem is in $P$ , we would not say that amember of core or nucleolus is
calculated in polynomial time.

As for Traveling Salesman Game, its original problem i.e. Traveling Sales-
man Problem is $NP$-hard in general. But in Burkard et al. [2] and Gilmore
[5] shows that subclasses of this problem are solved in polynomial time. If we
know that amember of core or nucleolus is calculated in polynomial time for
what kind of subclasses of Traveling Salesman Game, it would be for good
information on defining “TVactability”.

4Remarks
Now, we have not defined “TVactability” specifically yet. But some informa-
tion is gotten to try to define it. On our next research step, we will gather
“TVactable” Game cases and seek something similarity from structures of thier
original combinatorial problems via matriod theoretical approach and discrete
convexity analysis theory.
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