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Introduction
In the study of modular forms of half integral weight, it is well known that

Kohnen’s plus space (a certain subspace of elliptic modular forms of half in-
tegral weight) of weight “even integer minus 1/2” is isomorphic to the space
of Jacobi forms of index 1(cf. Eichler-Zagier[3] .Theorem 5.4). Moreover,
Skoruppa[14] introduced the notion of skew holomorphic Jacobi forms which
satisfy acertain transformation formula like Jacobi forms but not holomor-
phic functions, and he constructed alinear isomorphism between skew hol0-
morphic Jacobi forms of index 1and Kohnen’s plus space of weight “odd in-
teger minus 1/2” in the case of degree 1. This notion of skew holomorphic Ja-
cobi forms was generalised for higher degree by Arakawa[l]. There are several
works about the Jacobi form of general degree (cf. $[1],[2],[8],[10],[11],[15],[18]$
etc), but there are few results about skew holomorphic Jacobi forms of gen-
eral degree except Arakawa[l].

The purpose of this article is to investigate skew holomorphic Jacobi
forms of general degree. This article is asummarisation of three papers of
Hayashida[4],[5],[6]. In Section 1we describe the definition of skew holomor-
phic Jacobi forms following Arakawa[l]. Skew holomorphic Jacobi forms are
not holomorphic functions but vanish under acertain differential operator
$\Delta_{\mathcal{M}}$ which will be defined in Section 1. In Section 2we give an isomorphism
between plus space of general degree and the space of skew holomorphic Ja-
cobi forms of index 1of general degree. In Section 3we construct Klingen
tyPe Eisenstein series of skew holomorphic Jacobi forms. In order to obtain
this construction, we used acertain differential operator $\Delta_{\mathcal{M}}$ . In Section 4
we give an analogue of the Zharkovskaya’s theorem for Siegel modular forms
of half integral weight,
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1 Skew holomorphic Jacobi forms

We denote $Sp_{n}(\mathrm{R})$ the real symplectic group of size $\underline{9}n$ . Let $\hslash_{n}$ denote Siegel
upper half space of degree $\mathrm{n}$ , and let $\mathfrak{D}_{n,l}=\hslash_{n}\mathrm{x}M_{n,\mathfrak{l}}(\mathbb{C})$.

Skew holomorphic Jacobi forms was first introduced by Skoruppa[14] as
function on $\mathfrak{D}_{1,1}$ , and he showed the isomorphism between Kohnen’s plus
space and the space of skew holomorphic Jacobi forms of index 1 in the case
of degree 1. This notion of skew holomorphic Jacobi forms was generalised
for higher degree by Arakawa[l]. In this section, we would like to describe
the definition of skew holomorphic Jacobi foms following Arakawa[l]. We
prepare some notations.

Let $G_{n,l}^{J}$ be the Jacobi group, $G_{n,l}^{J}$ is asubgroup of $Sp_{n+}\iota(\mathrm{R})$ as follows,

$G_{n,l}^{J}:=\{$ $(\begin{array}{lll} *0* * *\mathrm{l}_{l}* * *0* *0 00 1_{l}\end{array})\in Sp_{n+l}(\mathrm{R})\}$

We put $\Gamma_{n,l}^{J}=G_{n,l}^{J}\cap Sp_{n+l}(\mathbb{Z})$ .
We denote the action of $Sp_{n}(\mathrm{R})$ on $f\hslash_{n}$ by

$M\cdot Z$ $:=$ $(AZ +B)(CZ+D)^{-1}$

where $M=(_{CD}^{AB})\in Sp_{n}(\mathrm{R})$ , and $Z$ $\in\hslash_{n}$ .
Let $M$ $>0$ be asymmetric half integral matrix of size I. Now we describe

the definition of the skew holomorphic Jacobi forms.

Definition 1(skew holomorphic Jacobi forms cf. [1]). Let $F(\tau, z)$ be
a function on $\mathfrak{D}_{n},\iota$ , holomorphic on $\hslash_{n}$ and real analytic on $M_{n,l}(\mathbb{C})$ . We say
$F$ is a Skew $ho\grave{t}omor\mathrm{p}hic$ Jacobi forrre of weight $k$ of index $\mathcal{M}$ belongs to $\Gamma_{n,l\prime}^{J}$

if $F$ satisfies the following two conditions :

(1) We put $F_{\mathcal{M}}(Z):=F(\tau, z)$ $e(tr(\mathcal{M}\tau’))$ for $Z=(\begin{array}{ll}\tau zt_{Z} \tau\end{array})$ $\in f\hslash_{n+l}$ , then

$F_{A4}$ satisfies
$F_{\mathcal{M}}(\gamma\cdot Z)=\overline{\det(CZ+D)}^{k-l}|\det(CZ+D)|^{l}F_{\mathcal{M}}(Z)$ ,

for $eve\eta$ $\gamma=(_{CD}^{AB})\in\Gamma_{n,l}^{J}$ .

(2) F has the Fourier expansion as follows :

$F(\tau,$z) $=$

$\sum_{N\in Sym_{n},R\in M_{n,1}(\mathrm{Z})}C(N,$
R) $e(N \tau-\frac{i}{2}(4N-R\mathcal{M}^{-1t}R)Im \tau+^{t}Rz)$

,
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where we denote by $Sym_{n}$ the set of all half integral symmetric matrices
of size $n$ , and $C(N, R)=0$ unless $4N-R\mathcal{M}^{-1t}R\leq 0$ .

Moreover, if Fourier coefficients satisfy a condition that $C(N, R)=0$ unless
$4N-R\mathcal{M}^{-1l}R<0_{f}$ we say $F$ is a skew holomorphic Jacobi cusp form.
$\mathfrak{D}_{n,l},W$$where \delta_{s,t}istheKronecker’ deltaso,and\frac{\delta}{\delta\tau_{\epsilon.t}}..\cdot=\frac{)_{\delta}f}{\delta x_{*_{1}t}}-i\frac{\delta}{\delta y_{s,t}})esetdifferentialoperators\frac{\delta}{S\delta\tau}=(\frac{1+\delta_{\epsilon,t}}{ymb2}\frac{\delta}{\delta\tau_{e’.t},l})\frac{\delta}{\delta z}\cdot=(\frac{\delta}{\delta z_{\dot{\mathrm{s}},.g},\frac{1}{2}(}or(\tau,z)\in$

,
where $x_{s,t}$ (resp. $y_{s,t}$) is the real part (resp. the imaginary part) of $\tau_{s,t}$ . We
define a differential operator

$\Delta_{\mathcal{M}}:=8\pi i\frac{\delta}{\delta\tau}-\frac{\delta}{\delta z}\mathcal{M}^{-1t}\frac{\delta}{\delta z}$ .

We note the follouring equivalence. If a function $F$ on $\mathfrak{D}_{n,l}$ satisfies the
condition (1) of the definition ofskew holomorphic Jacobi form, and if$n>1$ ,
then the condition (2) is equivalent to the following condition

(2’) $\Delta_{\mathrm{A}\mathfrak{i}}$ F $=0_{n}$ .
We denote the vector space of skew holomorphic Jacobi forms (resp. skew

holomorphic Jacobi cusp forms) of weight $k$ of index $\mathcal{M}$ by $J_{k,\mathcal{M}}^{\epsilon k}(\Gamma_{n}^{J})$ (resp.
$J_{k,\mathcal{M}}^{sk,c\mathrm{u}sp}(\Gamma_{n}^{J}))$ .

2 Isomorphisms between skew holomorphic
Jacobi forms of index 1and plus spaces

First, we shall describe the definition of Siegel modular forms of half integral
weight.

For positive integer $\mathrm{g}$ , we put

$\Gamma_{0}^{(n)}(q):=$ {M $=(_{CD}^{AB})\in Sp_{n}(\mathbb{Z})|C\equiv 0$ (modq)}

is the congruence subgroup of the symplectic group $Sp_{n}(\mathbb{Z})$ .
We define acharacter $\psi$ on $\Gamma_{0}^{(n)}(4)$ , $\psi$ is given by $\psi(M):=(\frac{-4}{\det D})$ for

$M=(_{CD}^{AB})\in\Gamma_{0}^{(n)}(4)$ .
We put the standard theta series $\theta^{n}(Z)$ and put afunction $j(M, Z)$ as

follows:

$\theta^{n}(Z)$
$:= \sum_{m\in \mathrm{Z}^{n}}e(^{\mathrm{t}}mZm)$

, $(Z\in f\hslash_{n})$

$j(M, Z)$ $:=$ $\frac{\theta^{n}(M\cdot Z)}{\theta^{n}(Z)}$ , $(M\in\Gamma_{0}^{(n)}(4), Z\in\hslash_{n})$ ,
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then this $\mathrm{j}\{\mathrm{M},$ Z) satisfies

$\mathrm{j}\{\mathrm{M},$ $Z)^{2}=\psi(M)\det(CZ+D)$ for any M $=(_{CD}^{AB})\in\Gamma_{0}^{(n)}(4)$ .

Let $k$ be an integer, $\chi$ be aDirichlet character modulo $q$ , and $4|q$ . $\mathrm{A}$

holomorphic function $F(Z)$ on $f\hslash_{n}$ is said to be aSiegel modular form of
weight $k-1/2$ with character $\chi$ belongs to $\Gamma_{0}^{(n)}(q)$ if $F$ satisfies

$F(M$ . $Z)=\chi(\det D)j(M, Z)^{2k-1}F(Z)$ , for any M $=(_{CD}^{AB})\in\Gamma_{0}^{(n)}(q)$ ,

and in the case of $n=1$ we need that the function $F(Z)$ is holomorphic at all
cusps of $\Gamma_{0}^{(1)}(q)$ . We denote the set of such functions by $M_{k-1/2}(\Gamma_{0}^{(n)}(q),\chi)$ .
If $n=0$ then we denote $M_{k-1/2}(\Gamma_{0}^{(0)}(q), \chi)=\mathbb{C}$ for $k>0$ . Also, we denote
the set of cusp foms in $M_{k-1/2}(\Gamma_{0}^{(n)}(q), \chi)$ by $S_{k-1/2}(\Gamma_{0}^{(n)}(q), \chi)$ .

Next, we define asubspace $M_{k-1/2}^{+}(\Gamma_{0}^{(n)}(4),\psi^{\mathrm{u}})$ of $M_{k-1/2}(\Gamma_{0}^{(n)}(4),\psi^{u})$

($u=0$ or 1) by

$M_{k-1/2}^{+}(\Gamma_{0}^{(n)}(4),\psi^{u})$

$:=$ $\{h(\tau)\in M_{k-1/2}(\Gamma_{0}^{(n)}(4),\psi^{u})|$ the coefficients $c(T)=0$ ,

unless $T\equiv-(-1)^{k+\mathrm{u}}\mu^{t}\mu$ $\mathrm{m}\mathrm{o}\mathrm{d} 4Sym_{n}$ for some $\mu\in \mathbb{Z}^{n}$ }.

We also define $S_{k-1/2}^{+}(\Gamma_{0}^{(n)}(4),\psi^{u})$ by

$S_{k-1/2}^{+}(\Gamma_{0}^{(n)}(4),\psi^{\mathrm{u}}):=M_{k-1/2}^{+}(\Gamma_{0}^{(n)}(4),\psi^{u})\cap S_{k-1/2}(\Gamma_{0}^{(n)}(4),\psi^{u})$

We say that $M_{k-1/2}^{+}(\Gamma_{0}^{(\mathrm{n})}(4),\psi^{u})$ is the plus space.
Let $\mathcal{M}$ $>0$ be ahalf integral symmetric matrix of size $l$ and let $R\in$

$M_{n,l}(\mathbb{Z})$ , we put the theta series

$\theta_{R,\mathcal{M}}(\tau, z)$

$= \sum_{\lambda\in M_{n.1}(\mathrm{Z})}e(tr (\mathcal{M}(\tau[(\lambda+R(2\mathcal{M})^{-1})]+2^{t}z(\lambda+R(2\mathcal{M})^{-1}))))$
,

where $\tau[(\lambda+R(2\mathcal{M})^{-1})]=^{t}(\lambda+R(2M)^{-1})\tau(\lambda+R(2\mathcal{M})^{-1})$ .
Let $\mathrm{F}(\mathrm{r}, z)\in J_{k,\mathcal{M}}^{sk}(\Gamma_{n}^{J})$ , then $F$ satisfies the condition (1) of the definition

of skew holomorphic Jacobi forms, we can see
$F(\tau, z +\tau\lambda+\mu)=e(-\mathrm{t}\mathrm{r}(\mathcal{M}(^{t}\lambda\tau\lambda+2^{t}\lambda z)\rangle)F(\tau, z)$

for every $\lambda$ , $\mu\in M_{n,l}(\mathbb{Z})$ . Hence, we have the following equation

$F( \tau, z)=\sum_{R\in M_{n.1}(\mathrm{Z})/(M_{n.l}(\mathrm{Z})(2\mathcal{M}))}F_{R}(\tau)\theta_{R,\mathcal{M}}(\tau,$
z),
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where $F_{R}(\tau)$ are uniquely determined and $F_{R}(-\overline{\tau})$ are holomorphic functions
on $fl_{n}$ . If we set $F( \tau, z)=\sum_{N},’ {}_{R}C(N, R’)e(N\tau-(4N-R’\mathcal{M}^{-1t}R’)Im\tau+^{t}$

$R’z)$ , then we can write $F_{R}$ by

$F_{R}( \tau)=4N-R\mathcal{M}^{-1t}R\leq 0\sum_{N\in s\mathrm{y}m_{n}}C(N,$

R) $e( \frac{1}{4}\mathrm{t}\mathrm{r}(4N-R\mathcal{M}^{-1t}R)\overline{\tau})$ .

In this section, from here, we consider only the case $l$ $=1$ , $\mathcal{M}$ $=1$ , and
we put $\theta_{r}:=\theta_{r,1}$ .

Let $F( \tau, z)=\sum_{r\in(\mathrm{Z}/2\mathrm{Z})^{n}}F_{f}(\tau)\theta_{r}(\tau, z)$ $\in J_{k.1}^{sk}(\Gamma_{n}^{J})$ . We define aholomor-
phic function $\sigma(F)(\tau)=\sum_{r\in(\mathrm{Z}/2\mathrm{Z})^{n}}F_{r}(-4\overline{\tau})$ , then we have the following
theorem.
Theorem 1. $\sigma(F)$ is an element of $M_{k-1/2}^{+}(\Gamma_{0}^{(\mathrm{n})}(4), \psi^{k-1})$ . Moreover, the
map $\sigma$ : $J_{k,1}^{sk}(\Gamma_{n}^{J})arrow M_{k-1/2}^{+}(\Gamma_{0}^{(n)}(4), \psi^{k-1})$ induces the linear isomorphism
over C. The space of skew holomorphic Jacobi cusp forms corresponds with
the space of cusp forms of plus space by this isomorphism. This isomorphism
map $\sigma$ commutes with Hede operators of both spaces.

We note that if degree $n$ is odd and integer $k$ is even, then it is easy to
see that $M_{k-1/2}(\Gamma_{0}^{(n)}(4), \psi)=J_{k,1}^{sk}(\Gamma_{n}^{J})=\{0\}$.

We denote the space of holomorphic Jacobi forms of weight $k$ of index 1of
degree $n$ by $J_{k,1}(\Gamma_{n}^{J})$ (cf. Ibukiyama [8]), then the table of linear isomorphisms
between the plus space and the holomorphic (or skew holomorphic) Jacobi
forms of index 1is given as follows.

$k$

even odd
$M_{k-1/2}^{+}(\Gamma_{0}^{(n)}(4),\psi^{u})$ $\cong$

$u$

0 $J_{k,1}(\Gamma_{n})$ $J_{k.1}^{s}(\Gamma_{n})$

1 $J_{k.1}^{\epsilon}(\Gamma_{n})$ $J_{k,1}(\Gamma_{n})$

$k$

$u$
even odd

0 $J_{k,1}(\Gamma_{n})$ $J_{k.1}^{\mathit{8}}(\Gamma_{n})$

1 $J_{k.1}^{\epsilon}(\Gamma_{n})$ $J_{k,1}(\Gamma_{n})$

3 Klingen type Eisenstein series
We shall construct Klingen tyPe Eisenstein series of skew holomorphic Jacobi
forms. Let $r$ be an integer $(0\leq r\leq n)$ . We prepare the following subgroups,

$\Gamma_{[n,r]}$ $:=$ $\{g=(A_{1}A_{8}ABB0B_{1}B_{2}C0^{4}D_{1}^{3}D_{2}^{4)}0^{1}00D_{4}\in Sp_{n}(\mathbb{Z})|A_{1},$ $B_{1},C_{1},$ $D_{1}\in M_{\mathrm{r}}(\mathbb{Z})\}$ ,

$\Gamma_{[n,r],l}^{J}:=$ $\{(_{0001_{1}}^{A0B0}0100C0^{l}D0)(_{000^{n}1_{l}}^{t_{\lambda 1_{l}{}^{t}\mu\kappa}}1_{n}00\mu 001-\lambda)\in\Gamma_{n,l}^{J}|(_{CD}^{AB})\in\Gamma_{[n,r]}$ ,

$\lambda=(_{0^{1}}^{\lambda})\in M_{n,l}(\mathbb{Z})$
’

$\lambda_{1}\in M_{r.l}(\mathbb{Z})\}$ .
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Let $\mathrm{F}(\mathrm{r}, z_{1})\in J_{k,\lambda 4}^{sk,cusp}(\Gamma_{r}^{J})$ and let $k$ be an integer satisfies $k\equiv l$ $\mathrm{m}\mathrm{o}\mathrm{d} 2$

( $l$ is the size of $\mathcal{M}$ ) . We define a function $F^{*}$ on $\mathfrak{D}_{n,l}$ as

(3.1) $F^{*}(\tau, z)$ $:=F(\tau_{1},z_{1})$ ,

where $\tau=(\begin{array}{ll}\tau_{1} \tau_{2}t_{\mathcal{T}_{2}} \tau_{3}\end{array})$ , z $=$ $(\begin{array}{l}z_{1}z_{2}\end{array})$ and $(\tau_{1}, z_{1})\in \mathfrak{D}_{r,l}$ .

We consider the following function

(3.2) $E_{n,r}^{\epsilon k}(F;(\tau, z))$

$= \sum_{\gamma\in\Gamma_{[n.r]_{1}\mathrm{t}}^{\mathrm{J}}\backslash \Gamma_{n,l}^{J}}(F^{*}|k,\mathcal{M}\gamma)(\tau, z)$

, $(\tau, z)\in \mathfrak{D}_{n.l}$ .

The above sum does not depend on the choice of the representative elements.
Because $F$ is acusp form, we can show the fact that there exists aconstant
$C$ which satisfies

$|F(\tau_{1}, z_{1})|\det(\mathrm{Y}_{1})^{\mathrm{p}}e(-tr(\mathcal{M}^{t}\beta_{1}(i\mathrm{Y}_{1})^{-1}\beta_{1}))k<C$ ,

for every $(\tau_{1}, z_{1})\in \mathfrak{D}_{r,l}$ , where $\beta_{1}$ and $\mathrm{Y}_{1}$ are the imaginary part of $z_{1}$ and $\tau_{1}$

respectively. Hence, by the same calculation as Ziegler[18] $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2.5$ , we
can show the fact that if $k>n$ $+l$ $+r+1$ then $E_{n,r}^{\epsilon k}$ is uniformly absolutely
convergent in the wider sense on $\mathfrak{D}_{n,\mathrm{t}}$ . It is clear that $E_{n,\mathrm{r}}^{\epsilon k}(F;(\tau, z))$ satisfies
the condition (1) of the definition of skew holomorphic Jacobi forms of weight
$k$ of index $\mathcal{M}$ belongs to $\Gamma_{n}^{J}$

We can show the following equation :

(3.3) $\Delta_{\mathcal{M}}(E_{n,r}^{\epsilon k}(F;(\tau, z)))$ $=0_{n}$ .

Because this equation induces the shape of the Fourier expansion of
$E_{n,r}^{\epsilon k}(F;(\tau, z))$ , and by using Shimura correspondence and $\mathrm{K}^{\cdot}\cdot\propto$her principle,
we can show the fact that $E_{n,\mathrm{r}}^{sk}(F;(\tau, z))$ satisfies the condition (2) of the
definition of skew holomorphic Jacobi forms Hence, we have the following
theorem.
Theorem 2. Let $\mathcal{M}>0$ and $F\in J_{k,\mathcal{M}}^{\epsilon k}(\Gamma_{f}^{J})$ . If $k>n+l+r+1$ satisfies
$k\equiv l\mathrm{m}\mathrm{o}\mathrm{d} 2$ , then $E_{n,\mathrm{r}}^{ek}(F;(\tau, z))$ is an element of $J_{k.\mathcal{M}}^{\epsilon k}(\Gamma_{n}^{J})$ .

We note that we can obtain the above theorem under the assumption on
$\mathcal{M}\geq 0$ (cf.[4]).

We shall show that the Siegel operator of skew holomorphic Jacobi forms
has same properties as holomorphic Jacobi forms case (cf. Ziegler[18]).

For afunction $F(\tau, z)$ on $\mathfrak{D}_{n,l}$ , we define afunction
$\Phi_{r}^{n}(F)(\tau_{1}, z_{1})$ $:= \lim_{tarrow+\infty}F((_{0it1_{n-r}}^{\tau_{1}0}), (^{z_{0^{1}}}))$ , $(\tau_{1},z_{1})\in \mathfrak{D}_{n.r}$ .

Then $\Phi_{r}^{n}(F)$ is afunction on $\mathfrak{D}_{r,l}$ . This $\Phi_{r}^{n}$ is called the Siegel operator.
By direct calculation, we have the following proposition
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Proposition 3. Let $F(\tau, z)$ $\in J_{k,\Lambda 4}^{sk}(\Gamma_{n}^{J})$ be a skew holomorphic Jacobi $form$,
then $\Phi_{r}^{n}(F)$ is also a skew holomorphic Jacobi form in $J_{k,\mathcal{M}}^{sk}.(\Gamma_{r}^{J})$ .

Moreover, we have the following theorem.
Theorem 4. If integer $k$ satisfies $k>n+l$ $+r+1$ and $k\equiv l$ $\mathrm{m}\mathrm{o}\mathrm{d} 2$ , then
we have $\Phi_{r}^{n}(E_{n,r}^{sk}(F;(\tau, z)))=F(\tau_{1}, z_{1})$ for every $F(\tau_{1}, z_{1})\in J_{k,\acute{\lambda}4}^{skcusp}(\Gamma^{\int_{f}})$

$Henoe_{f}$ the Siegel operator $\Phi_{r}^{n}$ induces a surjective rnap from $J_{k,\mathcal{M}}^{sk}(\Gamma_{n}^{J})$ to
$J_{k,\acute{\lambda}4}^{skeu\epsilon p}(\Gamma_{f}^{J})$ .

Now, we imitate some Arakawa’s work[2]. We assume the following con-
dition on $\mathcal{M}$ $>0$ .
(4.1) If $\mathcal{M}[x]\in \mathbb{Z}$ for x $\in(2\mathcal{M})^{-1}M_{l,1}(\mathbb{Z})$ , then necessarily, x $\in M_{l,1}(\mathbb{Z})$ .

By the same argument with Arakawa [2] (Proposition 4.1, Theorem 4.2
of [2]), we deduce the following Proposition 5and Theorem 6.
Propos\’ition 5, Let $F\in J_{k,\mathcal{M}}^{sk}(\Gamma_{n}^{J})$ . Under the condition (4.1) on $\mathcal{M}_{f}$ we
have $F\in J_{k\mathcal{A}4}^{sk,cusp}(\Gamma_{n}^{J})$ if ami only if $\Phi_{n-1}^{n}(F)=0$ .
Theorem 6. Assume that $\mathcal{M}$ satisfies the condition (4.1). Let $k$ be a positive
integer which satisfies $k>2n+l$ $+1$ and $k.\equiv l$ $\mathrm{m}\mathrm{o}\mathrm{d} 2$ . Then we have
the direct sum decomposition $J_{k,\mathcal{M}}^{\epsilon k}(\Gamma_{n}^{J})=\oplus_{t=0}^{n}J_{k,\mathcal{M}}^{sk,(\mathrm{r})}(\Gamma_{n}^{J})$ , where $J_{k,\mathcal{M}}^{sk,(r)}.=$

$\{E_{n,l}^{\epsilon k}(F;(\tau, z))|F\in J_{k,\acute{\lambda}4}^{skc\mathrm{u}sp}(\Gamma_{r}^{J})\}$ .
In section 2theorem 1we obtained the isomorphism between the plus

space and the space of skew holomorphic Jacobi forms of index 1. Hence, by
using theorem 6, if $k$ is an odd integer which satisfies $k>2n+2$ , we can also
obtain asimilar decomposition for the plus space of degree $n$ of weight $k- \frac{1}{2}$

with trivial character. Namely, under these conditions, we can deduce the
fact that the plus space of weight $k- \frac{1}{2}$ is spanned by Klingen-Cohen tyPe
Eisenstein series (which corresponds to the Klingen type Eisenstein series of
skew holomorphic Jacobi form of index 1) and cusp forms.

4 Zharkovskaya’s theorem
In this section, we give an analogue of the Zharkovskaya’s theorem for Siegel
modular forms of half integral weight, and quote aconjecture.

Let $q>0$ be an integer divisible by 4. Let $F\in M_{k-1/2}(\Gamma_{0}^{(n)}(q), \chi)$ be an
eigenfunction for the action of acertain Hecke ring. This $F$ has aFourier
expansion

$F(Z)$
$= \sum_{N\in Sym_{n}^{*}}f(N)e(NZ)$

,
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where we denote by $Sym_{n}^{*}$ the set of all semi positive definite half integral
symmetric matrices of size $n$ . Prom the definition of $M_{k-1/2}(\Gamma_{0}^{(n)}(q)_{\mathrm{J}}\chi)$ , it
follows that $f(^{t}UNU)=f(N)$ for every $U\in SL_{n}(\mathbb{Z})$ .

Here, we describe a result of Zhuravlev[17]. Let $\lambda$ be a completely multi-
plicative function which grows no faster than some power of argument, and
let $N>0$ be amatrix in $Sym_{\mathrm{n}}^{*}$ .

Theorem 7(Zhuravlev). When the real part of $s$ is sufficiently large, The
following series has Euler expansion,

(4.1)
$M \in SL_{n}(\mathrm{Z})\backslash M_{n}^{+}(\mathrm{Z})\sum_{(\det M,q)=1}\frac{\lambda(\det M)f(MN^{t}M)}{(\det M)^{e+k-3/2}}$

$= \prod_{p:p\mathrm{r}ime}\frac{P_{F_{1}p}(N,\lambda_{1}p^{-s})}{Q_{F,p}(\lambda,p^{-\epsilon})}$ ,

where we denote by $M_{n}^{+}(\mathbb{Z})$ all positive determinant matrices in $M_{n,n}(\mathbb{Z})$ , and
$P_{F,p}(N, \lambda, z)$ is the polynomial of $z$ which degree is at most $2n$ , $Q_{F,p}(\lambda, z)$ is
the polynomial of 2which degree is $2n$ . Especially $Q_{F,p}(\lambda, z)$ is not depend
on the choice of N. The polynomial $Q_{F,p}(\lambda, z)$ was defined as follows,

(4.2) $Q_{F,p}(\lambda,$z) $= \prod_{\dot{|}=0}^{n}(1-\alpha_{i,p}\chi(p)\lambda(p)z)(1-\alpha_{\dot{l},p}^{-1}\chi(p)\lambda(p)z)$ ,

where $\alpha_{i,p}^{\pm 1}$ are the $p$-parameters of $F$ .

We denote the Siegel operator by $\Phi$ . Oh-KoO-Kim [12] showed the exis-
tence of acommuting relation between Hecke operators and the Siegel op-
erator acting on the Siegel modular forms of half integral weight, and they
showed also the fact that if $F\in M_{k-1/2}(\Gamma_{0}^{(n)}(q), \chi)$ is a Hecke eigen form
then $\Phi(F)\in M_{k-1/2}(\Gamma_{0}^{(n-1)}(q), \chi)$ is also aHecke eigen form.

We put $L(s, \lambda, F)=\prod_{(p,q)=1}Q_{F,p}(\lambda,p^{-s+k-3/2})^{-1}$ (see $\mathrm{e}\mathrm{q}(4.1)$ , $\mathrm{e}\mathrm{q}(4.2)$ ),

then we obtain the following theorem, this is an analogue of the theorem of
Zharkovskaya [16],

Theorem 8. We assume $\Phi(F)\neq 0$ , then we have

$L(s, \lambda, F)$ $=L_{1}(s-n+1, \lambda, E_{2k-2n,\chi^{2}})L(s, \lambda, \Phi(F))$,

where we put

$L_{1}(s, \lambda, E_{2k-2n,\chi^{2}}):=\prod_{p,(p,q)=1}(1-\lambda(p)p^{-s})^{-1}(1-\lambda(p)\chi(p)^{2}p^{2k-2n-1-\epsilon})^{-1}$
.

If $k>n+1$ then Li $(\, \lambda,E_{2k-2n,\chi^{2}})$ is the $L$-function of Eisenstein series of
degree 1 of weight $2k-2n$ with character $\chi^{2}$ twisted by $\lambda$ .
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Above theorem was first observed by Hayashida-Ibukiyama [7] in the case
of $n=2$ , $\lambda\equiv 1$ , and $\chi\equiv 1$ . Here, we have the case of higher degree with
character.

Let $F\in M_{k-1/2}(\Gamma_{0}^{(2)}(4))$ be aHecke eigen form, and we assume $\Phi(F)\neq 0$ ,

then
$L(s, F)=L(s, \Phi(F))L(s, E_{2k-4})$ ,

uP to Euler 2-factor. Let $f\in M_{2k-2}(SL(2, \mathrm{Z}))$ be aHecke eigen form which
corresponds to $\Phi(F)\in M_{k-1/2}(\Gamma_{0}^{(1)}(4))$ by Shimura correspondence, then we
have

$L(s, F)=L(s, f)L(s, B_{k-4})$ .
Similar figure seems valid for the case of cusp forms. We quote afollowing

conjecture from Hayashida-Ibukiyama [7].

Conjecture 1(cf. [7]). Let $k$ be an integer, and let $f\in S_{2k-2}(SL(2, \mathbb{Z}))$ ,
$g\in S_{2k-4}(SL(2, \mathbb{Z}))$ . We assume both $f$ and $g$ are nomilised Hecke eigen
forms. Then there exits $F\in S_{k-1/2}^{+}(\Gamma_{0}^{(2)}(4))_{f}$ such that $F$ is a Hecke eigen
form and satisfy

$L(s, F)=L(s, f)L(s-1,g)$

uP to Euler $\underline{\Phi}$-factor, and where $L(s, f)$ and $L(s,g)$ are usual $L$ function of
$f$ and $g$ respectively.
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