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Abstract

This note reviews the connection between the existence of fractional weight au-
tomorphic forms on real Lie groups, and the existence of non-congruence subgroups.
It is intended to explain the simple results which are rarely even stated, and to avoid
the complicated question of precisely where and why the congruence subgroup prop-
erty fails. As aconsequence, anew method is presented, for obtaining congruences
between Eisenstein series and cusp forms in half-integral weight.

Let $G$ be a(real) connected Lie group with aconnected cyclic cover
$1arrow\mu_{n}arrow\tilde{G}arrow Garrow 1$ .

Here $\mu_{m}$ denotes the group of $n$-th roots of unity in C. Suppose we have an arithmetic
subgroup $\Gamma\subset G$ . We shall discuss the following questions:

does $\Gamma$ lift to asubgroup of $\tilde{G}$?

does $\Gamma$ have asubgroup of finite index which lifts to $\tilde{G}$?

Example. Suppose the group $G$ is $\mathrm{S}\mathrm{L}2(\mathrm{K})$ . The fundamental group of $G$ is $\mathbb{Z}$ , and so
for every $n\in \mathrm{N}$ there is aunique connected $n$-fold cover. For simplicity we shall assume
that the arithmetic subgroup $\Gamma$ is torsion-free.

A. If $\Gamma$ has cusps then $\Gamma$ is afree group. Therefore $\Gamma$ lifts to every cover of $G$ .

B. If $\Gamma$ is cocompact then Peterson showed (see [7]) that $\Gamma$ lifts to the $n$-fold cover if
and only if $n$ is afactor of the Euler characteristic $\chi(\Gamma)$ . In particular for every $n$

there is a $\Gamma$ which lifts.

Very roughly speaking, Peterson’s theorem is proved as follows. One finds agenerator
$\sigma\in H^{2}(G,\mathbb{Z})$ corresponding to the universal cover of $G$ . Asubgroup $\Gamma$ lifts to the n-fold
cover if and only if the image of ain $H^{2}(\Gamma,\mathbb{Z})\cong \mathbb{Z}$ is amultiple of $n$ . The image of $\sigma$

in $H^{2}(G,\mathrm{R})$ is represented by an invariant 2-form on the upper half-plane. This 2-f0rm
turns out to be the Euler form. To find the image of $\sigma$ in $H^{2}(\Gamma,\mathbb{Z})\cong \mathbb{Z}$ one integrates
the 2-form over afundamental domain for $\Gamma$ . Hence by the Gauss-Bonnet theorem the
image of $\sigma$ in $H^{2}(\Gamma,\mathbb{Z})$ is $\chi(\Gamma)$ . This implies the result
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1Fractional weight multiplier systems

Let $\mathrm{C}^{1}$ denote the groups of complex numbers with absolute value 1. Suppose $w$ : $G\mathrm{x}$ $Garrow$

$\mu_{n}$ is a2-cocycle representing the group extension $\tilde{G}$ . By aweight $w$ multiplier system on
$\Gamma$ , we shall mean afunction $\chi:\Gammaarrow \mathrm{C}^{1}$ such that

$\chi(\gamma_{1}\gamma_{2})=w(\gamma_{1}, \gamma_{2})\chi(\gamma_{1})\chi(\gamma_{2})$ .

In other words the image of tp in $Z^{2}(\Gamma,\mathrm{C}^{1})$ is the coboundary $\partial\chi$ . If an arithmetic
subgroup $\Gamma$ lifts to $\tilde{G}$ then such a $\chi$ exists on $\Gamma$ . We shall now prove aconverse to this:

Proposition 1If there is a weight $w$ multiplier system on an arithmetic subgroup $\Gamma\subset G$

then there is an arithmetic subgroup $\Gamma_{0}\subset\Gamma$ which lifts to $\tilde{G}$ .

Proof. Suppose first that $\mathrm{r}\mathrm{k}\mathrm{n}(\mathrm{G})$ $\geq 2$ . In this case it is known (see [11]) that the
commutator subgroup $\Gamma’$ has finite index in $\Gamma$ . From the exact sequence

$1arrow\mu_{n}arrow \mathrm{C}^{1}arrow \mathrm{C}^{1}narrow 1$

we obtain along exact sequence containing:
$H^{1}(\Gamma, \mathrm{C}^{1})arrow H^{2}(\Gamma,\mu_{n})arrow H^{2}(\Gamma, \mathrm{C}^{1})$.

The image of $w$ in $H^{2}(\Gamma,\mathrm{C}^{1})$ is trivial, so $w$ is the image of an element $\varphi\in H^{1}(\Gamma, \mathrm{C}^{1})$ .
However $\varphi$ : $\Gammaarrow \mathrm{C}^{1}$ is just acharacter. Let $\Gamma_{0}=\mathrm{k}\mathrm{e}\mathrm{r}(\varphi)$ . It follows that the restriction
of $w$ to $\Gamma_{0}$ is trivial, so $\Gamma_{0}$ lifts to $\tilde{G}$ . Since $\Gamma_{0}\supset\Gamma’$ , it follows that $\Gamma_{0}$ is an arithmetic
subgroup of $G$.

The above argument fails when $\mathrm{r}\mathrm{k}_{\mathrm{B}}G=1$ since $\Gamma/\Gamma’$ is often infinite in this case.
However since $\Gamma$ is finitely generated, $\Gamma/\Gamma’$ is afinitely generated abelian grouP, and so is
of the form $F\oplus \mathbb{Z}^{r}$ , where $F$ is afinite abelian group. We extend our sequence one step
to the left to give:

$H^{1}(\Gamma,\mathrm{C}^{1})^{\mathrm{x}n}arrow H^{1}(\Gamma,\mathrm{C}^{1})arrow H^{2}(\Gamma,\mu_{n})arrow H^{2}(\Gamma,\mathrm{C}^{1})$.

This $\mathrm{g}\mathrm{i}\mathrm{v}\mathrm{e}$ :
$0arrow H^{1}(\Gamma,\mathrm{C}^{1})/narrow H^{2}(\Gamma,\mu_{n})arrow H^{2}(\Gamma,\mathrm{C}^{1})$ .

Note that we have
$H^{1}(\Gamma, \mathrm{C}^{1})/n=\mathrm{H}\mathrm{o}\mathrm{m}(F\oplus \mathbb{Z}^{r},\mathrm{C}^{1})/n=\mathrm{H}\mathrm{o}\mathrm{m}(F,\mathrm{C}^{1})/n$ .

This implies
$0arrow \mathrm{H}\mathrm{o}\mathrm{m}(F,\mathrm{C}^{1})/narrow H^{2}(\Gamma,\mu_{n})arrow H^{2}(\Gamma,\mathrm{C}^{1})$ .

We may therefore choose $\varphi$ : $F$ $ $\mathbb{Z}^{f}arrow \mathrm{C}^{1}$ to be trivial on Zr. Hence $\mathrm{k}\mathrm{e}\mathrm{r}(\varphi)$ again
$\mathrm{h}\mathrm{a}\mathrm{s}\square$

finite index in $\Gamma$ and the result follows as before.

2Atrivial case
Suppose for amoment that the covering group $\tilde{G}$ is alinear group. In this case there
is always some arithmetic subgroup $\Gamma_{0}$ of $G$ which lifts to $\tilde{G}$ . To see this, choose any
arithmetic subgroup $\Gamma$ of $G$ and let $\tilde{\Gamma}$ be the preimage of $\Gamma$ in $\tilde{G}$ . Each element of the
kernel $h$ is in $\tilde{\Gamma}$ . For each of these elements apart from the identity, we can choose a
congruence subgroup of $\tilde{\Gamma}$ not containing that element. Hence the intersection $\Gamma_{0}$ of all
these congruence subgroups is acongruence subgroup with trivial intersection with $\mu_{n}$ .
Thus $\Gamma_{0}$ is alift to $\tilde{G}$ of acongruence subgroup of $\Gamma$ .
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3Areformulation
In view of the above remark, it makes sense to assume that the group $G$ is an (alge-
braically) simply connected linear group and that the covering group $\tilde{G}$ is non-linear. We
shall make this restriction from now on.

In order to fix notation, we shall recall the definition of an arithmetic subgroup of the
Lie group $G$ . Suppose $k$ is atotally real field with real places $v_{1}$ , $\ldots$ , $v_{r}$ and let$|$ $9/k$ be an
algebraic group such that

(i) $9(k_{v_{1}})$ is isomorphic to $G$ , and

(ii) $9(k_{v}.\cdot)$ is compact for $i=2$, $\ldots$ , $r$ .

We shall write $G(\mathrm{O})$ for the projection of $9(\mathrm{O})$ onto $G$ . By an arithmetic subgroup of $G$

we mean asubgroup of $G$ commensurable with some $G(\mathrm{O})$ . As usual we let $k_{\infty}=k\otimes_{\mathrm{Q}}$ R.

Proposition 2Let $G/\mathrm{R}$ and $9/k$ be as above

(i) Every topological cover $\tilde{9}(k_{\infty})$ of $9(k_{\infty})$ is of the form
$\tilde{G}\oplus 9(k_{v2})\oplus\ldots\oplus 9(k_{v_{r}})$ ,

for some unique cover $\tilde{G}arrow G$ .

(ii) An arithmetic subgroup $\Gamma$ lifts from $9(k_{\infty})$ to $\tilde{9}(k_{\infty})$ if and only if its projection in
$G$ lifts to $\tilde{G}$ .

Proof. Part (ii) is immediate from (i). To prove (i), we must show that for $i>1$ , the
compact group $9(k_{v})$:is (topologically) simply connected. Note that $9(k_{v:})$ is acompact
real form of $9(\mathrm{C})=G(\mathrm{C})$ , and is hence amaximal compact subgroup of $G(\mathrm{C})$ . By the
Iwasawa decomposition

$\mathrm{i}\mathrm{o}\mathrm{f}$ $G(\mathrm{C}),\mathrm{w}\mathrm{e}\mathrm{n}$
know that $G(\mathrm{C})$ is homotopic to $9(k_{v_{\mathrm{i}}})$ . However

$\mathrm{a}s\square$

$G/\mathrm{R}$ is (algebraically) simply connected, we know that $G(\mathrm{C})$ is simply connected.

4Metaplectic covers
Let 9 be alinear algebraic group over an algebraic number field $k$ . We shall write Afor
the addle ring of $k$ . Let $A$ be afinite Abelian group. By ametaplectic extension of 9 by
$A$, we shall mean atopological central extension:

1
$arrow Aarrow\tilde{9}(\mathrm{A})arrow\nwarrow 9(\mathrm{A})9(k)\uparrow$

$arrow 1$

which splits on the subgroup $9(k)$ of $k$-rational points of 9. Suppose we have such
an extension and let $\tilde{9}(k_{\infty})$ be the pre image of $\mathrm{S}(\mathrm{k}\mathrm{v}\mathrm{i})$ in $9(\tilde{\mathrm{A}})$ . We therefore have an
extension of Lie groups:

$1arrow Aarrow\tilde{9}(k_{\infty})arrow 9(k_{\infty})arrow 1$ .
We shall show that this extension splits on acongruence subgroup of $9(k_{\infty})$ .
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To see this we let $\mathrm{A}_{f}$ denote the ring of finite ad\‘eles of $k$ . As the map $\mathrm{p}\mathrm{r}:\overline{9}(\mathrm{A}f)arrow$

$9(\mathrm{A}_{f})$ is atopological covering, there is aneighbourhood $U_{1}$ of tbe identity in $\mathrm{S}(\mathrm{A}/)$ such
that $\mathrm{p}\mathrm{r}^{-1}(U_{1})$ is adisjoint union of homeomorphic copies of $U_{1}$ . We may therefore choose
acontinuous section $\tau:U_{1}arrow\hat{U}_{1}$ , where $\hat{U}_{1}$ is the copy of $U_{1}$ which contains the identity
element of $\tilde{9}(\mathrm{A}_{f})$ . Now define for $\alpha,\beta\in U_{1}$ , $\sigma(\alpha,\beta)=\tau(\alpha)\tau(\beta)\tau(\alpha\beta)^{-1}$ . Clearly ais
continuous on $U_{1}\mathrm{x}$ $U_{1}$ and has values in $A$ . Furthe rmore $\sigma(1,1)$ is the identity element
of $A$ . Hence there is aneighbourhood $U_{2}$ of the identity in $9(\mathrm{A}/)$ such that ais trivial
on $U_{2}\cross U_{2}$ . Now choose $U_{3}\subset U_{2}$ to be acompact open subgroup of $\mathrm{S}(\mathrm{A}/)$ . On $U_{3}$ the
section $\tau$ satisfies $\tau(\alpha\beta)=\tau(\alpha)\tau(\beta)$ and so the extension splits on $U_{3}$ . Restricting the
metaplectic extension we obtain:

1 $arrow$ $A$ $arrow$ $\tilde{9}(k_{\infty})0$ $\tau(U_{3})$ $arrow$ $9(k_{\infty}.)\oplus U_{3}$ $arrow$ 1.

(Remark: it is widely believed that the local factors of metaplectic groups always com-
mute. This belief is false; some counterexamples are described in [8[.) As $U_{3}$ commutes
with $9(k_{\infty})$ , it follows that the action of $\tau(U_{3})$ by conjugation on $9(k_{\infty})$ is trivial in a
neighbourhood of the identity of $\tilde{9}(k_{\infty})$ . Therefore $\tau(U_{3})$ acts by permuting tbe connected
components of $\tilde{9}(k_{\infty})$ . It follows that there is asubgroup $U_{4}$ of finite index in $U_{3}$ , such
that $\tau(U_{4})$ commutes with $\tilde{9}(k_{\infty})$ . We therefore have

1 $arrow$ $Aarrow$ $\tilde{9}(k_{\infty})\oplus\tau(U_{4})$ $arrow$ $9(k_{\infty})\oplus U_{4}$ $arrow$ 1.

Now consider the congruence subgroup:

$\Gamma=9(k)\cap(9(k_{\infty})\oplus U_{4})$ .

As the metaplectic extension splits on $9(k)$ , we have by restriction:

1 $arrow$ $Aarrow$ $\tilde{9}(k_{\infty})\oplus\tau(U_{4})$

$\backslash arrow$

$9(k_{\infty})\oplus U_{4}\uparrow$

$arrow$ 1

$\Gamma$

Factoring out by $U_{4}$ and $\tau(U_{4})$ in the above diagram, we obtain as required:

1
$arrow Aarrow\tilde{9}(k_{\infty})arrow\backslash 9(k_{\infty})\uparrow$

$arrow 1$

$\Gamma$

$\square$

5The congruence subgroup property

Let $9/k$ be an absolutely simple and (algebraically) simply connected algebraic group over
an algebraic number field $k$ . We shall abbreviate $k_{\infty}=k\otimes_{\mathrm{Q}}$ R. Assume also that $9(k_{\infty})$

is not topologically simply connected. The group 9 will be said to satisfy the congruence
subgroup property if every arithmetic subgroup of $9(k)$ is acongruence subgroup.

The question of whether congruence subgroups exist or not has been reformulated by
Serre as follows. By the strong approximation theorem, we have

$9( \mathrm{A}_{f})=\lim_{arrow(\Gamma \mathrm{c}ongru\mathrm{e}nc\mathrm{e})}G(k)/\Gamma$.
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Now define
$\hat{9}(\mathrm{A}_{f})=\lim_{-(\Gamma arithmetic)}G(k)/\Gamma$.

There is asurjective map $\hat{9}(\mathrm{A}_{f})arrow \mathrm{S}(\mathrm{A}/)$ . The kernel $C(9)$ of this map is called the
congruence kernel. The congruence kernel is trivial if and only if all arithmetic subgroups
are congruence subgroups. Serre has conjectured ([15]), that $\mathrm{C}(5)$ is afinite subgroup of
the centre of $\hat{9}(\mathrm{A}_{f})$ if and only if $\mathrm{r}\mathrm{k}_{\mathrm{R}}(9(k_{\infty}))\geq 2$. Serre’s conjecture in known for most
groups of real rank $\geq 2$ . In particular the conjecture is known for all isotropic groups
apart from groups of type $2E_{6,1}$ .

If Serre’s conjecture holds for $\mathrm{S}$ of real rank $\geq 2$ , then our assumption that $9(k_{\infty})$ is
not simply connected implies that

$C(9)\cong \mathrm{H}\mathrm{o}\mathrm{m}(\overline{9(k)’}/9(k)’,\mathrm{C}^{1})$ ,

where $9(k)’$ is the commutator subgroup of $\mathrm{S}(\mathrm{f}\mathrm{c})$ and $\overline{9(k)’}$ is its closure with respect
to the subspace topology on $9(k)$ induced from $9(\mathrm{A}/)$ . In particular, if $9(k)$ is perfect
then $C(9)$ is trivial. Furthermore the triviality of $C(9)$ would follow from aconjecture of
Platonov and Margulis (see [14]). This Conjecture is known in most cases. More precisely
we have:

Theorem 1(Congruence Subgroup Property) Suppose $\mathrm{S}/\mathrm{k}$ is absolutely simple and
(algebraically) simply connected, but $9(k_{\infty})$ is not topologically simply connected. Sup-
pose also that $\sum_{v|\infty}\mathrm{r}\mathrm{k}_{v}9\geq 2$ . If either $9/k\dot{w}$ isotropic but not of type $2E_{6,1}$ , or $9/k$ is
anisotropic but not of type, $E_{6}$ or $3,6D_{4}$ , and not an outer form of type $2A_{n}$ then $\mathrm{S}$ satisfies
the congruence subgroup property

The results and conjectures referred to above are more fully described in the useful
survey [14].

6Apartial converse
We shall now prove apartial converse of the result of \S 4.

Theorem 2Let let $\mathrm{S}/k$ be absolutely simple and simply connected. Suppose there is $a$

topological central extension

$1arrow Aarrow\tilde{9}(k_{\infty})arrow 9(k_{\infty})arrow 1$ ,

which splits on some arithmetic subgroup $\Gamma_{0}$ . If $\mathrm{S}$ satisfies the congruence subg roup prop-
erry then this extension is the restriction to $9(k_{\infty})$ of a metaplectic dension of 9.
Remark 1In fact with some extra work one could replace the condition that all arith-
metic subgroups are congruence subgroups by the weaker condition that the congruence
kernel is finite. However, since $9(k_{\infty})$ is not topologically simply connected, it is conjec-
tured that $C(9)$ is either infinite or trivial.

Remark 2The theorem is essentially due to Deligne $(f\mathit{4}])$ . Deligne makes the assumption
that $9(k)$ is perfect, which is slightly stronger than the congruence nbgroup property here.
However the assumptions are at least conjecturaily equivalen
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Proof. By the strong approximation theorem, $9(k)$ is adense subgroup of $9(\mathrm{A}f)$ . We
may therefore identify

$9( \mathrm{A}_{f})=\lim_{arrow}9(k)/\Gamma$ ,

where the limit is taken over the congruence subgroups, or equivalently over the arithmetic
subgroups. We also define

$\tilde{9}(\mathrm{A}_{f})=\lim_{arrow}\tilde{9}(k)/\tau(\Gamma)$ ,

where $\tilde{9}(k)$ is the preimage of $9(k)$ in $\tilde{9}(k_{\infty});\Gamma$ ranges over congruence subgroups of $\Gamma_{0}$

and $\tau$ : $\Gamma_{0}arrow\tilde{9}(k_{\infty})$ is the splitting of the extension on $\Gamma_{0}$ . For the moment we shall
assume that $\tilde{9}(\mathrm{A}(S))$ is agroup.

The canonical projections $\tilde{9}[k$ ) $/\tau(\Gamma)arrow 9(k)/\Gamma$ induce aprojection $\tilde{9}(\mathrm{A}(S))arrow 9(\mathrm{A}(S))$ .
As $\tilde{9}(\mathrm{A}(S))$ is acompletion of $\mathrm{S}(\mathrm{f}\mathrm{c})$ it follows that we have acommutative diagramme:

1 $arrow Aarrow\tilde{9}(k_{\infty})arrow 9(k_{\infty})arrow$ 1

1 $arrow A||||arrow$ $\tilde{9}(k)\uparrow\downarrow$ $arrow$ $9(k)\uparrow\downarrow$ $arrow$ 1

1 $arrow Aarrow$ $\tilde{9}(\mathrm{A}_{f})$ $arrow$ $9(\mathrm{A}_{f})$ $arrow$ $1$ .

Finally we define
$\tilde{9}(\mathrm{A})=(\tilde{9}(k_{\infty})\oplus\overline{9}(\mathrm{A}_{f}))/\Delta$ ,

where $\Delta=\{(a,a) : a\in A\}$ . As (A a $A$) $/\Delta\cong A$ , we have acentral extension:

$1arrow Aarrow\tilde{9}(\mathrm{A})arrow 9(\mathrm{A})arrow 1$.

The restriction of this extension to $9(k_{\infty})$ is our original extension. It remains show that
this extension is metaplectic.

Choose any section $s$ : $9(k)arrow\tilde{9}(k)$ and define $t$ : $9(k)arrow(\tilde{9}(k)\oplus\tilde{9}(k))/\Delta$ by
$\mathrm{t}(\mathrm{a})=(\mathrm{s}(\mathrm{a}), s(\alpha))\Delta$ . As the extensions are central we have $s(\alpha)s(\beta)s(\alpha\beta)^{-1}\in A$ . Hence
$t(\alpha)t(\beta)t(\alpha\beta)^{-1}\in\Delta$ , so $t$ is ahomomorphism. This proves the theorem apart from

$\mathrm{t}\mathrm{h}\mathrm{e}\square$

assertion that $\tilde{9}(\mathrm{A}(S))$ is actually agroup.

Remark 3As the above theorem fails for the group $\mathrm{S}\mathrm{L}_{2}/\mathbb{Q}$ , and we have not yet wed the
congruence subgroup property, we rnay deduce that in this case the completion $\overline{\mathrm{S}\mathrm{L}}_{2}(\mathrm{A};)$ is
not a group.

6.1 Aremark on proflnite limits
Suppose $G$ is an abstract group and we have adirected system ff of subgroups $\Gamma\subset G$ .
We shall call $\mathcal{F}$ normal if for every $g\in G$ and every $\Gamma\in \mathrm{f}\mathrm{f}$ the subgroup $g^{-1}\Gamma g$ contains
an element of $\mathrm{f}\mathrm{f}$. If 3is anormal filtration then the profinite limit

$\overline{G}=\lim_{arrow \mathrm{r}\epsilon\sigma}G/\Gamma$.

$\mathrm{i}\underline{\mathrm{s}}$ a $\mathrm{g}\mathrm{r}\underline{\underline{\mathrm{o}}}\mathrm{u}\mathrm{p}$
(with the group operation continuous and compatible with the canonical map
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To complete the proof of the above theorem we must show that the system of subgroups
$\mathcal{F}$ $=$ { $\tau(\Gamma)$ : $\Gamma$ is acongruence subgroup of $\Gamma_{0}$ }

is normal in $\tilde{9}(k)$ . Choose any $\overline{g}\in\tilde{9}(k)$ and any congruence subgroup $\Gamma\subseteq \mathrm{F}\mathrm{C}\mathrm{F}\mathrm{o}$ . Let $g$ be
the projection of $\tilde{g}$ in $\mathrm{S}(\mathrm{k})$ . We define asection $\tau^{g}$ : $\Gamma^{g}arrow\tilde{9}(k)$ by $\tau^{g}(g^{-1}\gamma g)=\tilde{g}^{-1}\tau(\gamma)\tilde{g}$ .
Clearly the image of $\tau^{g}$ is $(\tau(\Gamma))^{\overline{\mathit{9}}}$ .

The intersection $\Gamma\cap\Gamma^{g}$ is acongruence subgroup. Furthermore on $\Gamma\cap\Gamma^{g}$ we have two
splittings $\tau$ and $\tau^{g}$ . As our extension is central we easily verify that

$\tau^{g}(\gamma)=\varphi(\gamma)\tau(\gamma)$ , $\gamma\in\Gamma\cap\Gamma^{g}$ ,

where $\varphi$ : $\Gamma\cap\Gamma^{g}arrow A$ is a homomorphism. Finally let $\Gamma_{1}=\mathrm{k}\mathrm{e}\mathrm{r}\varphi$. As $A$ is finite, $\Gamma_{1}$

is an arithmetic subgroup of $\Gamma_{0}$ . Hence, by the congruence subgroup property, $\Gamma_{1}$ is a
$\tau(\Gamma)^{\overline{g}}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{g}\mathrm{r}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$

subgroup. The sections $\tau$ and $\tau^{g}$ coincide on $\Gamma_{1}$ . Therefore
$\mathrm{r}(\mathrm{F}\mathrm{i})\subseteq\tau^{\mathit{9}}(\Gamma^{\overline{g}})=\square$

6.2 The classification of metaplectic extensions.
The above theorem is useful because the mataplectic extensions of absolutely simple, sim-
ply connected groups have been classified. For such agroup $G$ one defined the metaplectic
kernel $M(9)$ to be the kernel of the restriction

$H^{2}(9(\mathrm{A}), \mathrm{C}^{1})arrow H^{2}(9(k), \mathrm{C}^{1})$.

This group is conjectured to be isomorphic to the Pontryagin dual of the group of roots
on unity in the base field $k$ . This conjecture is proved in almost all cases (see [13]). Thus
if $9(k)$ is not topologically simply connected then (in almost all cases) the metaplectic
kernel has order 2. As aconsequence we obtain the following.

Theorem 3Let $G/\mathrm{R}$ be absolutely simple and simply connected and let $\tilde{G}arrow G$ be $a$

connected $n$-fold cyclic cover. Let $\Gamma$ be a congruence subgroup of $G$ such that every sub-
group offinite index in $\Gamma$ is a congruence subgroup. Furthermore in the case that $G$ is $a$

special unitary group, assume that the construction of $\Gamma$ does not involve is a non-abelian
division algebra. If $\Gamma$ lifts to $\tilde{G}$ then $n\leq 2$ .

Proof. The special unitary case we have excluded is the only case in which the meta-
plectic kernel is not known. Let $\sigma\in H^{2}(G, \mu_{n})$ correspond to the extension. As the
extension is part of ametaplectic extension, we know that the image of ain $H^{2}(G,\mathrm{C}^{1})$

has order at most 2. However we have an exact sequence

$H^{1}(G,\mathrm{C}^{1})arrow H^{2}(G,\mu_{n})arrow H^{2}(G,\mathrm{C}^{1})$ .

As $G$ is perfect, it follows that $\sigma$ has order at most 2in $H^{2}(G,\mu_{n})$ . 0

7Examples
The descriptions of fundamental groups of $\mathrm{S}\mathrm{p}2\mathrm{n}$ , SU and SO given below are taken from
[16]. The results for Spin(p, $q$) may be found in [6]
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7.1 Symplectic groups
The symplectic group $\mathrm{S}\mathrm{p}_{2r}(\mathrm{R})$ of rank $r$ is absolutely simple and algebraically simply
connected. However it’s topological fundamental group is Z. Hence $\mathrm{S}\mathrm{p}_{2r}(\mathrm{R})$ has an n-fold
cover for every $n\in \mathrm{N}$. If $r=1$ then $\mathrm{S}\mathrm{p}_{2r}(\mathrm{R})$ $=\mathrm{S}\mathrm{L}_{2}(\mathrm{R})$ and it follows from Peterson’s
result that all fractional weights occur. However if $r\geq 2$ , then we only have forms of
half-integral weight. This was pointed out in [4].

7.2 Spin groups
Let $p\geq q\geq 1$ . The spin group Spin(p, $q$) has rank $q$ . The group Spin$(2, 2)$ is isomorphic
to $\mathrm{S}\mathrm{L}_{2}(\mathrm{R})$ $\mathrm{S}\mathrm{L}2(\mathrm{R})$ , so is not absolutely simple.

If $p\geq q\geq 3$ then the topological fundamental group of Spin(p, $q$) is $\mu_{2}$ , so we have
only adouble cover of Spiq(p, $q$).

For $p\geq 3$ the group Spin(p, 2) is absolutely simple and simply connected. The funda-
mental group is $\mathbb{Z}$, so this group has an $n$-fold cover for every $n$ . The congruence subgroup
property holds in this case. Hence we have only half-integral weight forms on Spin(p, 2).

7.3 Orthogonal groups
Let $p\geq q\geq 1$ . The special orthogonal group SO(p, $q$) has rank $q$ . The group has two
connected components. Let $O^{+}(p, q)$ denote the connected component of the identity. For
$p\geq 3$ the fundamental group of $O^{+}(p,2)^{o}$ is $\mathbb{Z}/2\oplus \mathbb{Z}$ .

The group Spin(p, 2) is the double cover of $O^{+}(p, 2)^{o}$ corresponding to the infinite
cyclic subgroup of $\mathbb{Z}\oplus \mathbb{Z}/2$ generated by $(1, 1)$ . Thus the unique double cover Spi$\mathrm{n}(p, 2)$

of Spin(p, 2) is the cover of $O^{+}(p,2)$ corresponding to the subgroup generated by $(2, 0)$ .
This shows that Spin(p, 2) is a $\mathbb{Z}/2$ $\mathrm{Z}/2$-cover of $O^{+}(p, 2)$ (rather than a $\mathbb{Z}/4$-c0ver).

If we had aform of fractional weight on $O^{+}(p, 2)$ , then we could pull the form back to
afractional weight on Spin(p, 2). However this form would be afunction on Spin$(1,1)$ .
Hence the original form would have to be of half-integral weight.

7.4 Congruences between modular forms
We shall end by pointing out aconsequence of the above result using Borcherds products.
Recall that anearly holomorphic modular form for $\mathrm{S}\mathrm{L}_{2}(\mathbb{Z})$ is aholomorphic function $f(q)$

on the upper half-plane, which has the usual transformation behaviour, but which may
have apole at $\infty$ . In other words the Fourier expansion is allowed afinite number of
negative terms:

$f(q)= \sum_{n\gg-\infty}b_{n}q^{n}$ .

Let $f$ be anearly holomorphic form of weight $1-l/2$ , normalized so that $b_{n}\in \mathbb{Z}$ for all
$n<0$ . Corresponding to such an $f$ there is an automorphic form $\Psi$ on SO$(2, l)^{o}$ given
by aBorcherds product (see $[2],[3]$ ). The weight of $\Psi$ is $b_{0}/\underline{.)}$ . As we know that there are
only half-integral weight forms on SO$(2, l)^{o}(l\geq 3)$ , we deduce the following:

Corollary 1Let $f(q)= \sum b_{n}q^{n}$ be a nearly holomorphic form on $\mathrm{S}\mathrm{L}_{2}(\mathbb{Z})$ negative weight.
If $b_{n}\in \mathbb{Z}$ for $n<0$ then $b_{0}\in \mathbb{Z}$ .
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For anearly holomorphic form f, we shall call the negative part of its Fourier expansion
the principal part. The following result is proved in [3].

Theorem 4Let $b_{-1}$ , $\ldots$ , $b_{-n}\in \mathrm{C}$ . There is a nearly holomorphic form of (integral)
weight $2-k$ and principal part $b_{-1}q^{-1}+\ldots+b_{-n}q^{-n}$ if and only if for every weight $k$

cusp form $f(q)= \sum a_{i}q^{i}$ , we have

$\sum_{i=1}^{n}a_{i}b_{-i}=0$ .

If such a nearly holomorphic form exists then its constant term is given by

$b_{0}=. \cdot\sum_{=1}^{n}c\dot{.}b_{\dot{l}}$,

where $E(q)=1+ \sum_{\dot{|}=1}^{\infty}c_{i}q^{i}$ is the weight $k$ Eisenstein series, normalized so as to have
constant term 1.

Using this characterization, we may reformulate our corollary as follows.

Corollary 2Let $E$ be the (integral) weight $k$ level 1Eisenstein series normalized so that
the coefficients are integers with no common factor. Then there is a cusp $fom$ $f$ such
that the coefficients of $f$ are congruent to those of $E$ modulo the constant term of $E$ .

The above result can be obtained by much more elementary methods; in fact it follows
immediately from the fact that $E_{4}$ and $E_{6}$ have constant term 1. One can however obtain
asimilar result for the vector-valued, half-integral weight forms studied in [3] in the same
way. Such congruences have been proved for scalar valued forms of weight $\frac{3}{2}$ and prime
level in [10]. However as far aIknow for general half-integral weight, this is anew result.
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