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Convection is the most important mechanism for the Earth’s internal dynamics, and plays asubstantial role in
its evolution. When investigating the thermal history of the Earth, convective heat transport should be taken into

account. However, it is difficult to treat precisely full convective flow throughout the Earth’s entire history. As
aresult, parameterized convection was developed and has been widely used [Schubert et $\mathrm{a}/.$ , 1979; Sharpe and
Peltier, 1979].

Convection occurring in the Earth’s interior has some complicated aspects, including alarge variation in vis-
cosity, internal heating, and phase boundaries. In particular, the viscosity contrast has asignificant effect on the
efficiency of convective heat transport. Parameterized convection treats viscosity variation artificially, and there-
fore has many limitations. We developed an alternative method based on the concept of “mixing length theory”.

The basic concept of this theory is that heat is transported by vertical motion of afluid parcel, and after migrating
for mixing length, the parcel loses it’s individuality. We can relate the local thermal gradient to the local convective
velocity of the fluid parcel and define the effective thermal diffusivity as the effect of convective heat transport.
Then, we can calculate ahorizontaly averaged temperature profile and heat flux in aconvective fluid by solving

amere thermal conduction problem. When estimating the parcel’s velocity, we can include effects such as that

caused by variable viscosity.
In this study, through comparison with experimental results, we confirm that the temperature profile can be

calculated correctly by this method. We further determine the effect of the viscosity contrast on the temperature
structure of the convective fluid, and calculate the relationship between the Nusselt number and arepresentative
Rayleigh number for the layer.

Fomuktion

As described above, here we simply treat the convective heat flow using mixing length theory, of which the
basic premise is that the velocity of the fluid parcel is related to the local thermal gradient.

Mixing length theory was firstly developed in the field of astrophysical studies in order to estimate heat flux

for convective fluid with low Prandtl number and high Rayleigh number [Vitense, 1953]. This formulation was
derived by neglecting viscous drag, and the vertical velocity of the convective fluid parcel was estimated from free

fall velocity by considering that all gravitational energy was changed into kinematic energy. The viscosity, then,

does not appear in the formula. Sasaki and Nakazawa [1986] and $Abe$ [1993] extended the theory and formulated
for highly viscous fluids. This fomlulatim was based on the estimation of the vertical velocity of aparcel from

Stokes velocity, namely on the concept that the buoyancy force is balanced with viscous drag. These formulations
were derivd from the perturbation equations of energy and momentum
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In this study, we $\mathrm{r}\mathrm{e}$-formulate this theory more simply and intuitively, especially for highly viscous flfluids. Be-
cause the idea of this theory is that the flfluid parcel migrates for a mixing length and loses it’s individuality, the
mixing length can be regarded as a type of mean free path. Therefore, the effective thermal diffusivity, $\kappa_{c\circ nv\prime}$ can
be deflflned as

(2)

$\kappa_{\mathrm{c}onv}=v\mathrm{x}$
$l$ (1)

where $v$ is the velocity of the flfluid parcel, and $l$ is themixing length. The temperature difference between the parcel
and the surrounding $\mathrm{t}\mathrm{e}\mathrm{m}\mu \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ of the flfluid, generated because the parcel moves for $l$ vertically, is estimated as

$\triangle T=[(\frac{dT}{dz})_{ad}-(\frac{dT}{dz})]l$

(4)

where $( \frac{dT}{dz})_{ad}$ is the adiabatic temperature gradient. In this study, the size of the parcel is assumed to $\mathrm{k}$ identified
with the mixing length. $\Pi \mathrm{e}$ flfluid parcel moves against Stoke’s resistance. The velocity of the parcel, then, is
defind as

$v$ $=$ $\frac{4\alpha gl^{2}}{15\nu}\triangle T$ (3)

$=$ $\frac{4\alpha g}{15\nu}[(\frac{dT}{dz})_{ad}-(\frac{dT}{dz})]l^{3}$

(5)

where $\alpha$ is the themal expansivity, $g$ is the gravitational accerelation, and $\nu$ is the $\mathrm{k}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{m}\mathrm{a}\dot{\mathrm{u}}\mathrm{c}$ viscosity. The effective
thermal diffisivity and convective heat flflux are calculated as follows;

$\kappa_{conv}$ $=$ $v \mathrm{x}l=\frac{4\alpha g}{15\nu}[(\frac{dT}{dz})_{ad}-(\frac{dT}{dz})]l^{4}$

(6)$J_{eonv}$ $=$ $\rho C_{P}\kappa_{conv}\frac{\triangle T}{l}=\rho C_{P}\kappa_{conv}[(\frac{dT}{dz})_{ad}-(\frac{dT}{dz})]$

where $\rho$ is the density and $C_{P}$ is the heat capacity. Therefore, the temporal change of the horizontally averagd
$\mathrm{t}\mathrm{e}\mathrm{m}\mu \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{l}\mathrm{e}$profile in the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{c}\dot{0}\mathrm{v}\mathrm{e}$ flfluid can be estimated by solving the conduction equation,

$\rho C_{P}\frac{\partial T}{\partial t}=\mathrm{d}\mathrm{i}\mathrm{v}(k\frac{\partial T}{\partial z}-J_{conv})+H$ (7)

where $\mathrm{H}$ is the heat generation. These formulae are the same as those derived by Sasaki and Nakazawa [1986],

except for the coefficient, although the process of formulation is difference

convective heatflux
In this methd, the mixing length $\prime l’$ is the most important parameter. We assume that the mixing length is

qual to the distance from the boundary, as adopted by Sasaki and Nakazawa [1986] and $Abe$ $[1993]$ . $\mathrm{T}\mathrm{i}\mathrm{s}$ means
that the flfluid parcel has a size that is the same as the distance from the boundary to its generating point, and it
moves for the distance of its size. This concept is illustrated in Figure 1. To compare with $\mathrm{e}\mathrm{x}\mu \mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{l}$ results,

we set the adiabatic temperature gradient to zero and calculated the heat flflux based on equation (6). We assumed
that the viscosity in the flfluid layer was constant. Figure 2 shows the Nusselt number derived by the calculated heat
flflux as a function of Rayleigh number. The Nusselt number increases in proportion to the Rayleigh number to the
$\mu \mathrm{w}\mathrm{e}\mathrm{r}$ of $\frac{1}{3}$ :

$Nu$ $\propto$
$Ra^{\beta}$ (8)

$\beta$ $=$ $\frac{1}{3}$ (9)
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$\mathrm{H}1:$ The concept of the mixing length and the parcel size, when the parcel size is regarded as same as the mixing

length and the mixing length is assumed to $\mathrm{k}$ the distance from the boundary of the convective flluid.
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$\mathrm{H}$ $2$ : Nusselt number-Rayleigh number relation obtained by the mixing length theory.

and agrees well with the experimentally measured value. Therefore, the methd for treating convective heat flflow
&veloped here can calculate the temperature sructule in the convective layer accurately and easily. However, the

Nusselt number is slightly overestimated by this calculation at low Rayleigh numbers. If the.Rayleigh number is

below the critical Rayleigh number, which is the value for the onset of convection, the Nusselt numkr should $\mathrm{k}$

aunity. Here, the calculatd Nusselt number is larger than 1 under the critical Rayleigh number. This is because

in this methM, the critical Rayleigh number is 1, which is much smaller than the experimental or linear stable

analytic $\mathrm{c}\mathrm{r}\mathrm{i}\dot{\mathrm{u}}\mathrm{c}\mathrm{a}\mathrm{l}$ Rayleigh number $(\sim 10^{3})$. But the surplus heat flflux is relatively small and cannot affect the

system significantly.

$\hslash m\mu mture\ \mu n\ neeofv\dot{u}$eosl.y
$\ln$ considering mantle convection, $\mathrm{v}\dot{\iota}\mathrm{s}\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{y}$ is strongly variable due to its temperature dependence. In previous

parameterized convection $\mathrm{m}\iota\lambda \mathrm{e}\mathrm{l}\mathrm{s}$ . it is implicitly assumed that the Nusselt-Rayleigh numkr relationship is not

affected by spatial $\mathrm{v}\mathrm{a}\dot{\mathrm{n}}\mathrm{a}\dot{\mathrm{u}}\mathrm{o}\mathrm{n}$ in viscosity. When using viscosity calculated from the mean $\mathrm{t}\mathrm{e}\mathrm{m}\mu \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$

$\mathrm{k}\mathrm{t}\mathrm{w}\infty \mathrm{n}$ the

top and the bottom boundary, it is experimentally found that although the viscosity $\mathrm{d}\mathrm{e}\mu \mathrm{n}\mathrm{d}\mathrm{s}$ on $\mathrm{t}\mathrm{e}\mathrm{m}\mu \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\iota \mathrm{e}$ , the

Nusselt-Rayleigh number relationship is the same as for constant viscosity convaetion [Booker, 1976; Richter et

$al.$ , 1983}, Some experimental and computational studies indicate that when the viscosity has an eXtlet1rly high
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$\mathrm{N}$

$\mathrm{T}\mathrm{e}\mathrm{m}\mu \mathrm{r}\cdot \mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$

$\mathbb{H}$ $3$ : Horizontal mean temperature profile in convective layer with strongly temperature dependent viscosity. $\mathrm{m}$ is
indicator of temperature $\mathrm{d}\mathrm{e}\mu \mathrm{n}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{y}$ of viscosity

contrast between the top and the bottom boundaries, the $\mathrm{d}\mathrm{e}\mu \mathrm{n}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ of Nusselt number on the Rayleigh number
decreases [Christensen, 1984]. Namely, in equation (8), $\beta$ drops klow $\frac{1}{3}$ .

In the method we propose here, only the local value of viscosity is needed. It is unnecessary to calculate
the Rayleigh number of the convective layer before getting the Nusselt number. Therefore, the variation of the
viscosity due to its temperature dependence can $\mathrm{k}$ taken into account directly, without an artificial treatment
like parameterized convection. In addition, as we only solve a simple conduction equation, less computational
effort is needed, even though the $\mathrm{t}\mathrm{e}\mathrm{m}\mu \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ dependence of viscosity is strong and convection is very active.
When the viscosity strongly depends on temperature, the 2 or 3 dimensional calculations require extremely large
computational efforts, and therefore are difficult to carry out. Experiments are also more difficult under such
situations. Consequently, the value of $\beta$ has not ken clarified for convection with highly variable viscosity, and it
has not been determined which viscosity is adequate for defining the system’s Rayleigh number.

Figure 3 shows the temperature profiles in a convective layer with strongly temperature dependent viscosity. The
viscosity is given by

$\nu=\nu_{\mathrm{O}}\exp(-A(T-T_{\mathrm{O}}))$ (10)

where $T_{0}$ is the criterion $\mathrm{t}\mathrm{e}\mathrm{m}\mu \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ , which is usually assumed to be the temperature at the cold or the hot
boundary, and $\nu_{0}$ is the viscosity at $T_{0}$ . The indicator of the temperature dependence of viscosity, $m$, is defined by

$\frac{\nu(T_{t})}{\nu(T_{b})}=10^{m}$ (11)

where $T_{t}$ and $T_{b}$ are the temperatures at the top and the bottom boundaries, $\mathrm{r}\mathrm{e}\mathrm{s}\mu \mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{y}$. Figure 3 indicates that
a greater $m$ corresponds to a thicker surface conductive layer and a higher core temperature, as shown in 2-D
computational calculations [Moresi and Solomatov, 1995].

Next we used the method developd here to estimate $\beta$ in equation (8), when the viscosity depends strongly
on $\mathrm{t}\mathrm{e}\mathrm{m}\mu \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{o}\mathrm{e}$ . We can conffim that when the temperature $\mathrm{d}\mathrm{e}\mu \mathrm{n}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ of the viscosity baeomes strong, the
dependence of the Nusselt number on the Rayleigh number decreases, namely $\beta$ becomes smaller, as previou

142



$\mathrm{Z}^{\Xi}$

$\mathrm{R}\mathrm{a}$

$\overline{\cup\aleph}4$ : Nusselt number-Rayleigh number relation with strongly temperature dependent viscosity. Here Rayleigh

number is calculated by the core temperature in the convective layer

studies indicated. When using the viscosity at the bottom temperature to calculate the Rayleigh number, the value
of $\beta$ decreases slightly from 0.33 to $\mathrm{a}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}0.3$ as increasing $m$ . By contrast, in the case of using the viscosity at the
top boundary, the value of $\beta$ gets much smaller below 0.1. If the viscosity is estimated at the core temperature, $\beta$

changes from 0.330.24. Figure 4 shows that relationship between the Nusselt number and the Rayleigh number,

for a range in the temperature dependence of the viscosity, when the Rayleigh number is estimated by the viscosity

at the core temperature.
lt is found that the value of $\beta$ differs significantly between various definitions of the Rayleigh number. If we

want to investigate the themal evolution of planetary bodies, the surface is the only place where the viscosity can
$\mathrm{k}$ put to be constant throughout history. Therefore it might be better to choose the viscosity at the surface of
the bodies to calculate the Rayleigh number, In this case. the value of $\beta$ to use would be much smaller than the

value adopted by many previous studies. If the value of the 4 is assumed to be $\frac{1}{3}$ and the Rayleigh number is

estimated from the viscosity at the mean temperature between the top and the bottom boundaries, the Earth would
have cooled very rapidly. In the method developed in this study, we do not need a Rayleigh number to calculate
the heat flux, and therefore we are free from the definition of a representative Rayleigh number and the value of
$\beta$ .

Appk.$M\dot{w}n$ for the themal history ofthe $EMh$

In this study, we developed a simple method for treating the convective heat flflux based on the concept ofmixing

length theory, and showed that this method can calculate the temperature structure in the convective layer conectly,

and can take into account strongly temperature dependent viscosity very easily. Of course, intemal heating can
also be taken into account very easily by only adding a heat generation term to the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{c}\dot{\mathrm{u}}\mathrm{o}\mathrm{n}$ equation. As

described above, the mixing length is the most important parameter in this method, and by assuming the mixing

length adequately, it is possible to extend this method to layered convection. In addition, it can be applied to

porous media by an alteration to the velocity of the fluid parcel. The mushy region ktween solidus and liquidus

can be regarded as a $\mathrm{t}\mathrm{y}\mathrm{n}$ of porous media, therefore, this extended method can ueat the phase change regime in

the planets. The phase change also can be considered easily, through the simple conduction problem we solve in

this method. $\mathrm{T}\mathrm{e}\mathrm{m}\mu \mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ dependence of the viscosity, porous media, phase change, and layered convection: a1
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of the obstacles to calculating the thermal histories of the planetary bodies can be avoided by using this method.
Therefore, we argue that this method is an adequate and powerful tool for investigating the one dimensional thermal
structural evolution of the Earth.
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