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On ‘Monotonic’ Binomial Distribution

Naofumi Muraki

Mathematics Laboratory, Iwate Prefectural University
Takizawa, Iwate 020-0193, Japan

Abstract. The ‘monotonic’ analogue of binomial distribution is discussed. Its
probability distribution is determined in a recursive way. We also give a graphi-
cal simulation of monotonic central limit theorem and of monotonic Poisson limit
theorem (= monotonic law of small numbers), through this monotonic binomial

distribution.

1.  The notion of monotonic independence was introduced by the author [6] as
an example of universal notions of independence in non-commutative probability
theory. It is well-known that a non-commutative analogue of classical probability
theory, that is free probability theory, can be developed based on the notion of
freeness (= free independence) of D. V. Voiculescu [2][11]. After trying to find other
possibilities of such non-commutative notions of independence, the author found a
new example (= monotonic independence) [6]. It was introduced as the algebraic
abstraction of a structure which have been hidden in the discussion of a ceratin
central limit type argument in monotone Fock space [4][5] (or in chronological Fock
space discussed independently by Y. G. Lu [3]). In the way parallel to the free
probability theory of Voiculescu, we can develope the monotonic analogue of several
probabilistic notions, for example, the analogue of central limit theorem, law of
small numbers, Brownian motion, convolution of probability measures, Lévy-Hinéin
formula, Lévy processes, and stochastic calculus [5][6][7][1]. Also interesting is the
monotone product construction for non-commutative probability spaces [7], which
can be compared with the tensor product construction in classical probability theory
and the free product construction in free probability theory.

In this note, as a continuation of my program of developing ‘monotone proba-
bility,” we consider about the probability distribution of monotonically independent
sum of identically distributed Bernoulli random variables (= ‘monotonic’ binomial
distribution). We give a recursive description for the monotonic binomial distribu-

tion. Plotting the graph of monotonic binomial distribution, we can certify in a
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visual way the monotonic central limit theorem (which asserts, in its special case,
the convergence of ‘monotonic’ binomial distribution to ‘monotonic’ Gaussian dis-
tribution) and the monotoni Poisson limit theorem (which asserts, in its special
case, the convergence of ‘monotonic’ binomial distribution to ‘monotonic’ Poisson
distribution) although these limit theorems have been already established in [6] for

possibly non-binomial random variables.

2.  Let (A, ¢) be a C*-probability space consisting of a unital C*-algebra A and a
state ¢ over A. Let us be given a linearly ordered family {A;}ics of C*-subalgebras
of A, where the index set I is linearly ordered. Here we do not assume that the unit
14 of A is contained in each A;. The family of subalgebras {A;}ics is said to be

monotonically independent if the following conditions are satisfied.

(M1) The factorizaion
(Y XiX;XxZ) = ¢(X;)9(Y Xi X1 Z)

holds whenever i < j > k and X; € A;, X; € Aj, Xy € A, Y, Z € A
(M2) The factorization

(X -+ - Xig Xiy X X, Xigg - Xi,,)
= ¢(Xi,) - H(Xiy)(Xiy ) $(X5)( Xy ) $(Xkz) - - - $(Xkkn)

holds whenever iy > -+ > 93 > 91 > j < k1 < kg--- < kp and X;, € A;;,
Xi, € Aig, -+, Xi, € Ai, Xj € Aj, Xi, € Agy, Xiy € Aiy, -+, Xi,, €
Ak,

For any family of C*-probability spaces (A;, ¢;)ics with linearly ordered index
set I, there exists a C*-probability space (A, @) so that every (A;, ¢;)’s are embeded
as monotonically independent subalgebras of (A, #). This construction (= mono-
tone product construction) can be characterized by some universal property in the

category of non-commutative probabity spaces.

3. In the usual probability theory, the notion of convolution of probability mea-
sures is useful for the description of probability distribution of the sum of inde-
pendent random variables. Also in the setting of ‘monotone probability’, we can
introduce a certain kind of convolution for probability measures, which is associated
to the notion of monotonic independence [7).

For any probability measure 4 on the real line R, its Cauchy transform G,(z) is
defined by

400 1 N
Gula) = [ du(z), z€CH

-00 zZ—X
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where C* denotes the complex upper half plane. Its reciprocal

H,(z) zeCt

_ 1

B Gu(2)’
is called the reciprocal Cauchy transform of u. For any self-adjoint random variable
X = X* € Ain a C*-probability space (A4, ¢), we define its Cauchy transform (resp.
reprocal Cauchy transform) by Gx(z) := G, (2) (resp. Hx(2) := Hy,(2)) where
i x is the probabity distribution of X under the state ¢. A family of random variables
is said to be monotonically independent if the family of subalgebras generated by

each random variavles is monotonically independent. Then we have the following.

Theorem [7] Let X1,Xs,---,X, € A be monotonically independent self-
adjoint random variables, in the natural order, over a C*-probability space (A, ¢).
Then

Hx,+Xp++X,(2) = Hx,(Hx,(---Hx,(2)")).

This theorem tells us that the role of the reciprocal Cauchy transform in mono-

tone probability is analogous to that of the Fourier transform in classical probability

and to that of the R transform of Voiculescu in free probability. Based on the re-
ciprocal Cauchy transform, the monotonic convolution X = u b v of two probability
measures u, v on the real line R, which are possibly unbounded, is defined by
H)(2) = H,(H,(z)). This notion is well-defined [7].

4. Let Xy, X3, ---, Xy, --- be monotonically independent and identically dis-
tributed Bernoulli random variables. So the same distribution p := ux,; of each X;
is given by
B = p:0a+q-dy,

where p >0, ¢ >0, p+ g =1 and a < b. Here 4, denotes the Dirac measure at
a point zo. Let us investigate the probability distribution u, of the monotonically
independent sum Y, := X; + X3 + - - + X,,. The distribution u, should be called
the monotonic binomial distribution.

Using the reciprocal Cauchy transform, we can determine in the recursive way
the probability distribution y, of the random variable Y;, (= Y,-1 + X;;) as

bn = E p(o) - 60.(6),
o€{~+}"

where the coefficients a(0), p(o) (0 = (e1,€2,**+,&n) € {—, +}") satisfy the initial
conditions

a(=):=a, a(+):=b p(-):=p, p(+):=g¢
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and the recursive relations

a(*) + (a + b) + e/(a(*) + (a — b))% + 4(b — a)q a(*)

a(*,e) = 2 3
— ix a(x€) — (aq + bp)
p(*is) - p( ) XeX a(*+) _ a(*_) ’

where * is an arbitrary element in {—, +}""! and ¢ is an element in {—,+}.
Specifying the scaling of the parameter of the distribution py,, let us visualize
the behaviour of the monotonic binomial distribution p, with the number of trials

n — oo. We plot the graph of y, with use of Mathematica.

A. Scaling of the central limit type.  Let each X; be the symmetric Bernoulli
random variables with values a = —1, b = +1 and the respective probabilities 1/2.

In this case, the coefficients c(x), p(*) satisfy the recursive relations

a(x) + e/ T

a(*)E) = 2 )

(%,€) = (*)xex-—“(ff)—
p%el =7p Va(*)Z+4
We note that the coefficients a(c), p(c) describing the monotonic binomial dis-

tribution u, have the following properties.

1) The correspondence a(o) — a(o,+) (o € {—,+}""!) preserves the order

relation. So for any 01,09 € {—,+}"_1,

2) Under the inversion o +— o defined for o = (€1,€2,:*+,€n) by o' =
(),€hy++-,€h), +' = —, = = +, we have a(d’) = —a(g), p(o') = p(0).
Of course u,, is the symmetric probability distribution.

3) The correspondence o0 — a(c) preserves the lexicographic order among

o’s. So we have
o1 <02 = afo1) <a(oz) (01,02 € {—,+}")

Here the lexicographic ordering among o’s is defined in the way that, in the evalu-
ation for the ordering, the letter in the right hand side is more dominant than the

letter in the left hand side. For example, we have

(=) < (+),
(= =) = (=) < (= 4) < (++),
(=)< (=)< (=+H-) < (++-)
< (== +) < (+,—+) < (= +,+) < (++,+).



We plot, in the figures G[1], ---, G[7] and mG, the graphs of the symmetric
monotonic binomial distributions with the number of trials n = 1,2,---,7 and its
limit (n = o0o). The vertical axis in G[1], ---, G[7] (resp. mG) express the weight
p(o) (resp. the probability density). As shown in [4][6], the limit distribution of the
scaled sum 71; - Yy, is just the standard arcsine law with mean 0 and variance 1 given
by

1
—_——dz, -V2<z<V?
o7 T Viz

(see Figure m@G). So the arcsine law plays the role of ‘monotonic’ Gaussian law.
Furthermore we recognize from figures G[1], - - -, G[7] a cetain kind of fractal property

of monotonic binomial distribution.

B. Scaling of Poisson type.  Let us treat the scaling of Poisson type with the
parameter A > 0. In this case, we put ¥, = X f") + -+ X,(,") and assume that,
for any fixed n, the random variables X 1("), c++, X{™ are monotonically independent
and identically distributed. The distribution g of 1 trial (in the total n trials) is
already in the dependency on n as g = u(™. To be more concrete, for each fixed n,
every variables Xi(") takes the values ¢ = 0, b = 1 with the respective probability
p=1-X/n,qg=X/n (A >0). That is, we have
4 = (l_é) o+ 251
n n

Now we put Yk(") =X {")+- X ,5") (k < n). Also we denote by u,(c") the distribution
of ¥™. Then v{™ is given by

U'(cn) = Z p(n)(a)'(sa(")(a)’
ae{—:"'}k

where the finite sequence of families of coefficients {a(™ (o), p(™ (0)}oe(-4p+ (k=
1,2,---,n) is determined in the recursive way by

A A
a™(-) =0, a®(+)i=1, pM(-)=p®=1-2, pM(4)i= g™ =2,

n
al)(x) + 1+ &y/(al (x) — 1)2 + 4™ al™)(3)
2 )
a(n)(*, E) _p(n)
V(@ () = 1)2 + 4™ am)(x)’

a(n) (*, 6) =

PM(x,) = pM(x) x e X

with x € UpZ1{~, +}*. Note that, in the case of Poisson type scaling, the propability
p (resp. g) of tail (resp. head) in a coin toss is in the dependency on n as p = p(™,
g=q".

The coefficients a(™(5), p{™ (o) describing the binomial distribution V,(c") have

the following properties.
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1) The correspondence a(™ (o) — a(™(o,+) (0 € {—,+}*"!, k < n) pre-
serves the order relation.

2) The relation a(™(—,0) = a® (o) holds. By the mapping {—+} 1>
o~ (=, 0) € {—,+}*, the family {a(™(0)|o € {—,+}*1} is extended to
the family {a(™(0)|o € {—, +}*}.

3) The correspondence o — a{™ (o) preserves the lexicographic ordering of
o€ {—,+}*.

We plot, in the figures P[1,1/2], ---, P[7,1/2] and mP[1/2], the graphs of the
monotonic binomial distributions u,(;") with the number of trialsn =1,2,---,7 and
its limit (n = 00). In these figures, the parameter A of Poisson distribution is fixed
to be A := 1/2. The vertical axis in P[1,1/2], - -+, P[7,1/2] (resp. mP[1/2]) express
the weight p(c’) (resp. the probability density). We remark that the value of weight
p™ (=, —,+--,—) is out of the frame of each graph. By the result in [6], the limit
distribution of the binomial dsitribution »{™ is just the ‘monotonic’ Posson law (see
mP[1/2]). The monotonic Poisson distribution v with parameter A consisits of the
absolutely continuous part v; and the atomic part 5. The absolutely continuous

part v, is given by

1 1

Im——m———— b
mW_l(—a:e’\"’) dz, a<z<b,

™
and the atomic part is given by v; = ¢ dp with the Dirac measure do at the origin

z = 0, where the constants a, b, ¢ are defined by

1 1 1
a=—W0 ("‘E'l—_*_x), b=—W..1 ('—;—lﬁ), C=EX.

Here Wh(2) is the nth branch of the the Lambert W function (a special function).
Also in the Poisson case, we recognize from figures P[1,1/2], - --, G[7,1/2] a certain

kind of fractal property of monotonic binomial distribution.
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