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Abstract

Asequence pair can be used to represent aset of instances of arectangle-packing problem so
that the set is guaranteed to include the minimum-area layout. The sequence pair has attracted

much attention from CAD researchers because it provides them with an efficient representation

of the instances of the rectangle-packing problem without restricting layouts to slicing structure.
In this respect, the sequence pair is the first representation that can adequately handle realistic
requirements. This paper relates the sequence pair to the notion of dimension of partial orders

and clarifies its mathematical background.

1Introduction

The notion of the sequence pair was proposed in [1]. Asequence pair can be used to represent

feasible instances of the rectangle-packing problem in asimple form. The rectangle-packing

problem is one of the fundamental problems in LSI layouts, and its purpose is to pack agiven

set of rectangular modules without overlapping so that the chip area can be minimized. Since

the publication of the paper, the sequence pair has attracted much attention among CAD

researchers because it is the first efficient representation that can be applied to instances that

do not necessarily have aslicing structure.

The sequence pair is apair of sequences whose terms are the names of rectangular modules

placed on achip. It is characterized by the feasible placement of the rectangular modules. This

means that the feasible placement of modules can be determined by the sequence pair and,

conversely, that asequence pair can be constructed from the feasible placement of modules.

The solution space defined by the sequence pair not only can be easily enumerated but can also

be confirmed to include the optimum solution of the minimum area. Hence, if we construct a
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a
$\mathrm{P}_{1}=(\mathrm{b}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{c}, \mathrm{a})$, $\mathrm{P}_{2}=$($\mathrm{b},$ $\mathrm{a}$, $\mathrm{d}$, $\mathrm{c}$, $\mathrm{e}$ , f)

(1) (2)

Figure 1: Sequence pair representing rectangle placement. (1) Sequence pair. (2) Rectangle
packing.

mechanism such as simulated annealing to search for the instances in the solution space, we
can obtain abetter solution than those by previously proposed methods as long as sufficient
computing time is given.

For these reasons, the sequence pair continues to be used in the placement stage ofVLSI (Very

large scale integrated circuits) layout design process. However, the mathematical background

of the sequence pair has not been clarified yet. In this paper, we relate the sequence pair to the
notion of dimension of partial orders and clarify its mathematical background.

The rest of this paper is organized as follows. In Section 2, we review the notion of the

sequence pair. We introduce the dimension of partial orders in Section 3. Section 4relates

the sequence pair to the dimension of partial orders. The rectangle packing method based on
simulated annealing and some application results are described in Section 5. Finally, Section 6

gives some concluding remarks.

2Sequence Pair

Figure 1shows an example of the sequence pair. Figure $1(1)$ demonstrates how to repre-

sent the rectangle placement described in (2) by asequence pair, $P_{1}=(b, d, e, f, c,a)$ and

$P_{2}=(b, a, d, c, e, f)$ . Asolid (broken) arrow represents horizontal (vertical) relation between

rectangles. The $P_{1}$ sequence corresponds to the axis having slope -1, while the $P_{2}$ sequence

corresponds to the axis having $\mathrm{s}\mathrm{l}\mathrm{o}\mathrm{p}\mathrm{e}+1$ . We consider an orthogonal coordinate system that is
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determined by the two axes above. The coordinates are confined to $n\mathrm{x}n$ grid lines separated

uniformly, where $n$ is the number of rectangular modules. Each grid line corresponds to arect-

angle in the same order as it appears in the sequence. Each module is placed on the grid point

forming the intersection of the two orthogonal grid lines determined by the rectangle.

Assume an $xy$ orthogonal coordinate system on the plane where aset of rectangles are
placed without overlapping one another. Arectangle that is placed above (right on) another

rectangle implies that the former is included in the halfspace of $\{(x,y)|y\geq k\}(\{(\mathrm{z}, y)|x\geq k\})$ ,

while the latter is in $\{(x, y)|y\leq k\}(\{(x, y)|x\leq k\})$ , for some constant $k$ . On the basis

of this implication, the correspondence between the rectangle placement and its sequence pair

representaion is defined as

$P_{1}=$ $(\ldots$ , $i$ , $\ldots$ , $j$ , $\ldots$
$)$ and $P_{2}=(\ldots, i, \ldots,j, \ldots)$

$\Leftrightarrow def$ Rectangle $j$ is right on rectangle $i$ , (1)

$P_{1}=$ $(\ldots$ , $j$ , $\ldots$ , $i$ , $\ldots$
$)$ and $P_{2}=(\ldots, i, \ldots,j, \ldots)$

$\Leftrightarrow d\mathrm{e}f$ Rectangle $j$ is above rectangle $i$ . (2)

Given arectangle packing, we can obtain asequence pair that corresponds to the rectangle

packing as demonstrated in Fig. 2. We move the rectangles slightly so that every two rectangles

is separated each other. For each rectangle $i$ , we draw lines as follows. First, the starting

point, from which we begin to draw lines, is located at the upper right corner of $i$ . Starting

to move upward, we turn its direction alternately right and up until we reach the upper right

corner without crossing: i) boundaries of other rectangles, \"u) previously drawn lines, and \"ui)

the boundary of the chip. The drawn line is called the up right step line of rectangle $i$ . The

down-left step line is also drawn in asimilar fashion. The union of these step lines together

with the connecting diagonal line of rectangle $i$ is called the positive step-line of rectangle $i$ . We

can draw such apositive step-line for each rectangle. The positive step lines are referred to by

the corresponding rectangles. An example of resultant positive step lines is shown in Fig. $2(1)$ .
Since no two positive step lines cross each other, they are linearly ordered. Selecting positive

step-lines from left to right, we can obtain the sequence of rectangles $P_{1}=(b, d, e, f, c, a)$ .

Negative step lines are drawn in asimilar manner to the positive step lines, as demonstrated

in Fig. $2(2)$ . The difference is that anegative step line is the union of the left-up step line

and right-down stepline, whose directions alternate between left and up and between right and

down, respectively. Ordering the negative step-lines also from left to right, we can reach the

sequence of rectangles $P_{2}=(b, a, d, c, e, f)$ . Consequently, we can obtain apair of sequence
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(1) (2)

Figure 2: Conversion from arectangle packing to the corresponding sequence pair. (1) Positive
step lines. (2) Negative step lines.

$P_{1}$ and $P_{2}$ from agiven rectangle packing.

Conversely, given asequence pair, we can construct arectangle packing that corresponds to

the sequence pair. First, for horizontal relation between rectangles, we construct adirected and

vertex-weighted graph called the horizontal-constraint graph $G_{x}(V, E_{x})$ as shown in Fig. $3(1)$ .
Here, vertex set $V$ comprises source vertex $s$ , sink vertex $t$ , and vertices labeled with rectangle

names. For source $s$ and sink $t$ , there exist directed edges $(s, i)\in E_{x}$ and $(i, t)\in E_{x}$ for each

rectangle $i$ . There exists adirected edge $(i,j)\in E_{x}$ if and only if rectangle $j$ is right on rectangle
$i$ as defined in equation (1). It should be remarked that the transitive directed-edges are omitted

for simplicity in Fig. 3. Vertex-weight is defined as zero for source $s$ and sink $t$ , while width

of rectangle $i$ for the corresponding vertex $i$ . Second, the vertical-constraint graph $G_{y}(V, E_{y})$ is

constructed using vertical relations defined as in equation (2) and the heights of rectangles in

asimilar fashion. See Fig. $3(2)$ . These constraint graphs contain no directed cycles. Finally,

after x- and $y$-coordinates of source vertex $s$ are initialized by zero, longest path length ffom

source $s$ to vertex $i$ is calculated in both $G_{x}(V, E_{x})$ and $G_{y}(V, E_{y})$ independently. For example,

we can aPPly alongest path algorithm proposed in [2]. We set the x- and the y-coordinates

of rectangle $i$ to the longest path lengths from source vertex $s$ to vertex $i$ in $G_{x}(V, E_{x})$ and
$G_{y}(V, E_{y})$ , respectively. Here, x- and $y$-coordinates are the ones of the lower left corner of the
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(1) (2)

Figure 3: Conversion from asequence pair to the corresponding rectangle padcing. (1)

Horizontal-constraint graph. (2) Vertical-constraint graph.

3Dimension of Partial Orders

Apartially ordered set (poset) is defined as apair $(X, P)$ where $X$ is aset (finite in this paper)

and $P\subset X\mathrm{x}X$ is apartial order on $X$ . Apartial order $P$ is abinary relation on $X$ that satisfies

the following three conditions:

(1) For all $x\in X$ , $(x,x)\in P$ . (reflexivity)

(2) If $(x, y)\in P$ and $(y, x)\in P$ , then $x=y$ . (antisymmetry)

(3) If $(x, y)\in P$ and $(y, z)\in P$ , then $(x, z)\in P$ . (transitivity)

The notations $(x, y)\in P$ , $x\leq y$ and $y\geq x$ in $P$ are used interchangeably. If $(x, y)\in P$ and

$x\neq y$ , then we use the obvious notation $x<y$ or $y>x$ in $P$ . Elements $x,y$ in $X$ are said to

be comparable if $(x, y)$ or $(y, x)$ in $P$ ;otherwise $x$ and $y$ are incomparable, which is denoted by

$x||y$ . Let $\mathrm{I}_{P}=$ { $\{x$ , $y\}|x$ , $y\in X$ , $x||y$ in $P$}. If $\mathrm{I}_{P}=\emptyset$, then $P$ is called alinear order on $X$

and $(X,P)$ is called alinearly ordered set or achain.

If $P$ and $Q$ are partial orders defined on $X$ such that $P\subset Q$ , then $Q$ is said to be an extension

of $P$ . In particular, if $P\subset Q$ and $Q$ is alinear order, we call $Q$ alinear extension of $P$.

For any binary relation $R$ on $X$ , the transitive closure $\overline{R}$ of $R$ is a set of $(x,y)\in X\mathrm{x}X$

for which there exists a sequence $x_{1},x_{2}$ , $\ldots$ , $x_{n}\in X$ such that $n\geq 2$ , $x_{1}=x$ , $x_{n}=y$ , and

$(x:,x_{+1}.\cdot)\in R$ for every $i(1\leq i\leq n-1)$ .
For agiven poset $(X, P)$ , we can construct adirected graph $G_{P}=(V,E)$ as follows. The

vertex set $V$ is defined by $Vdef=X$ and the directed-edge set $E$ by $(x,y)\in E$ if and only if

$x<y$ in $P$ . Since $(x,y)\in E$ and $(y,z)$ $\in E$ imply $(x, z)$ $\in E$ , the transitivity of directed edge
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holds. An undirected graph $G=(V, E)$ is transitively orientable if each edge can be directed
so that the transitivity holds. Acomparability graph is an undirected graph that is transitively
orientable. For an undirected graph $G=(V, E)$ , its complementary graph $G^{\mathrm{c}}=(V, E^{c})$ is an
undirected graph defined by $\{x, y\}\in E^{\mathrm{c}}$ if and only if $\{x, y\}\not\in E$ .

Lemma 1If $P$ is a partial order on $X$ and $\{a, b\}\in \mathrm{I}_{P}$ , then $\overline{P\cup\{(a,b)\}}$ is a partial order on
$X$ .

$\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}$ Reflexivity and transitivity are obviously satisfied. Suppose that $x\geq y$ and $y\geq x$ for
$x$ , $y\in X$ . From the definition of the transitive closure, there exists adirected loop $x_{1}$ , $x_{2}$ , $\ldots$ , $x_{n}$

such that $(x_{i}, x_{i+1})\in P\cup\{(a, b)\}$ , $(1 \leq i\leq n)$ and $x_{n+1}=x_{1}$ , which includes $x$ and $y$ . If
the sequence does not include $(a, b)$ , then $x=y$ . Otherwise, $a$ and $b$ become comparable in $P$ ,

which is acontradiction (i.e., $\{a$ , $b\}\not\in \mathrm{I}_{P}$ ). Hence, antisymmetry also holds. Thus, $\overline{P\cup\{(a,b)\}}$

is apartial order on X. 1
Given areflexive binary relation whose graph representation is $G=(V, E)$ , where $V=$

$\{v_{1}, v_{2}, \ldots, v_{n}\}$ , we can generate its transitive closure by applying WarshalPs algorithm to $G$

[3]. The time complexity of the algorithm is $O(n^{3})$ .

Theorem 1If $P$ is a partial order on $X$ , then the collection $\mathrm{C}$ of all linear extensions of $P$ is

nonempty $and\cap \mathrm{C}=P$ .

Proof: If $\mathrm{I}_{P}\neq\emptyset$ , then we can choose $\{a, b\}\in \mathrm{I}_{P}$ . From Lemma 1, we can construct apartial

order $P_{1}=\overline{P\cup\{(a,b)\}}$ .
If $P_{1}$ is not alinear order, then we again choose another $\{c, d\}\in \mathrm{I}_{P_{1}}$ , which remains incom-

parable, and construct apartial order $P_{2}=\overline{P_{1}\cup\{(c,d)\}}$ . This procedure is repeated until we

reach alinear order $P(a,b)$ , which depends on the first selection $(a, b)$ . Thus, $C$ is not empty. For

any $\{x, y\}\in \mathrm{I}_{P}$ , we can construct linear orders $P(x,y)$ and $\mathrm{P}(\mathrm{y},\mathrm{x})$ as described above. Let $\mathrm{C}$ be

the set of all linear orders constructed in this way. Clearly, $\cap \mathrm{C}=P$ holds. 1
Let $F$ be an edge orientation of the complete graph $K_{n}$ on $n$ vertices. The set $F$ is a

transitive tournament if and only if $(x, y)\in F$ and $(y, z)\in F$ imply $(x, z)\in F$ . Clearly, this

is equivalent to the condition that there exists no 3-cycle. It should also be noted that alinear

order precisely corresponds to atransitive tournament. Thus we can consider the theorem below

as acharacterization of linearly ordered sets or chains. See [4] for detailed proof.

Theorem 2 [4] Let $F$ be an edge orientation of the complete graph $K_{n}$ . The following state-

rnents are equivalent

70



(1) $F$ is a transitive toumament.
(2) $F$ is acyclic.

(3) The vertices can be linearly ordered $(v_{1}, v_{2}, \ldots, v_{n})$ such that $vi$ has in-degree $i-1$ in $F$ for
all $i=1,2$ , $\ldots$ , $n$ .

(4) The vertices can be linearly ordered $(v_{1}, v_{2}, \ldots, v_{n})$ such that $(v_{\dot{l}}, v_{j})\in F$ if and only if $i<j$ .

From Theorem 2, we can consider alinearly ordered set (chain) as asorted sequence of its

elements. Thus we can aPply topological sort to construct acollection $C$ of linear extensions

directly in Theorem 1.

Let $G=(V, E)$ with $V=\{v_{1}, v_{2}, \ldots, v_{n}\}$ be agraph representaion of apartial order $P$ on
$X$ . If $\{x, y\}\in \mathrm{I}_{P}$ , then $G=(V, E\cup\{(x, y)\})$ is acyclic. By applying topological sort based on
the depth-first search to graph $G$ , we can obtain alinear extension. As in the proof of Theorem
1, acollection $C$ of linear extensions can be generated by applying topological sort to edge sets

$E\cup\{(x, y)\}$ and $E\cup\{(y, x)\}$ for all $\{x, y\}\in \mathrm{I}_{P}$ . This collection of linear extensions $\mathrm{C}$ satisfies
$\cap \mathrm{C}=P$ . While the time complexity needed to generate transitive closure of $G$ is $O(n^{3})$ , the

time complexity of depth-first search is $O(m+n)$ when $|E|=m$ . Thus direct application of

topological sort is superior to that of transitive closure.

Definition 1For a partially ordered set $(X, P)$ , its dimension denoted by $\dim(X, P)$ is the

smallest positive integer $m$ such that there exists a set of linear extensions $\{L_{1}, L_{2}, \ldots, L_{m}\}$

that satisfies $\bigcap_{i=1}^{m}L_{i}=P$ . The set of linear extensions is called a realizer of the partially ordered

set $(X, P)$ .

Theorem 1assures the existence of the dimension of any partial order.

4Equivalence of Sequence Pair to Dimension of Partial Orders

Let $X$ be aset of rectangles on aplane. Horizontal and vertical relations between the rectangles

are defined as in Section 2. We consider two partial orders $P_{x}\subset X\mathrm{x}X$ and $P_{y}\subset X\mathrm{x}X$ , which

correspond to horizontal and vertical relations, respectively. We use $(i,j)\in P_{x}((i,j)\in P_{y})\mathrm{m}\mathrm{d}$

$i<_{x}j(i<_{y}j)$ interchangeably unless $i=j$ . The relation $i<_{x}j(i<_{y}j)$ implies rectangle $j$ is

right on (above) rectangle $i$ .

Let $P_{1}$ and $P_{2}$ be two sequences of all the rectangles in $X$ . As in (4) of Theorem 2, we can

consider $P_{1}$ and $P_{2}$ as two linear orders (chains). For example, $P_{1}$ includes aset of rectangle

pairs $(i,j)$ such that $P_{1}=(\ldots, i, \ldots,j, \ldots)$ and rectangle pairs $(i, i)$ for all rectangles $i$ in $X$ .
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The reverse-0rdered sequence of $P_{1}$ also defines achain, and we denote it by $P_{1}’$ . On the basis

of this notation, we can represent equations (1) and (2) in Section 2as

$P_{x}$ $=$ $P_{1}\cap P_{2}$ , (3)

$P_{y}$ $=$ $P_{1}’\cap P_{2}$ . (4)

In equations (3) and (4) above, $\cap \mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{s}$ set intersection. It should be noted that equations (3)

and (4) mean that partial orders $P_{x}$ and $P_{y}$ have dimension two (See Definition 1).

The next theorem characterizes partially ordered sets of dimension two. Although the $\mathrm{t}\mathrm{h}\infty-$

rem is known, we give its proof to make the mathematical argument self-contained.

Theorem 3 [5] Let $G$ be the comparability graph of a poset $(X,P)$ . Then, $\dim(X,P)\leq 2$ if
and only if the complementary graph $G^{c}$ is transitively orientable.

Proof: Assume that $\dim(X,P)\leq 2$ . If $\dim(X, P)=1$ , then $P$ itself is achain. The edge set

of $G^{c}$ is empty. If $\dim(X, P)=2$ , then there exists two linear extensions $\{L_{1}, L_{2}\}$ such that
$L_{1}\cap L_{2}=P$ . This implies $L_{1}-P=(L_{2}-P)^{-1}$ . Here, $H^{-1}=\{(i,j)|(j,i)\in H\}$ . Clearly,

$L_{1}-P$ can be considered an orientation of the complementary graph $G^{c}$ . If $(i,j)$ , $(j, k)\in L_{1}-P$

such that $i\neq j$ and $j\neq k$ , then $(i,k)\in L_{1}$ because $L_{1}$ is achain. If we assume that $(i, k)\in P$ ,
then $(i, k)\not\in L_{1}$ - $P$ . This implies $(k,i)\not\in L_{2}$ - $P$ . Since $(j, i)$ , $(k, j)\in L_{2}-P$ , $(\mathrm{k},\mathrm{i})\in L_{2}$ .
Hence, $(k, i)\in P$ because if $(k,i)\not\in P$ , then $(k, i)\in L_{2}-P$ and consequently $(i, k)\in L_{1}-P$ ,

which contradicts $(i,k)\not\in L_{1}$ - $P$ . Combining $(i, k)\in P$ and $(k,i)\in P$ , we obtain $i=k$. This

leads to $j=k$ , which is acontradiction. Thus, $(i, k)\not\in P$ holds, which leads to $(i, k)\in L_{1}-P$ .
This implies that transitivity holds on $L_{1}$ - $P$ . Hence, $L_{1}-P$ is atransitive orientation of $G^{c}$ .

Conversely, let $F$ be atransitive orientaion of $G^{c}$ . Aset of linear extensions $C$ $=\{P\cup F,P\cup$

$F^{-1}\}$ satisfies $\cap \mathrm{C}=P$. Consequently, $\dim(X, P)=2.1$

As defined in [6], in the rectangle packing problem, given aset $X$ of rectangles on aplane,

we pack all of the rectangles into as small an enclosing rectangular area as possible without

overlapping. It is clear that we can place all of the rectangles in $X$ without overlapping if

and only if every pair of rectangles has ahorizontal or vertical relation as defined in Section 2.

Furthermore, as shown in [6], it is sufficient to search for placements where any two rectangles

have only ahorizontal or only avertical relation. The next theorem, which is obtained from

Theorem 3, clarifies the mathematical essence of the sequence pair for rectangle packing.

Theorem 4Let $X$ be a given set of rectangles in the rectangle packing problem. Three sets
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(1) (2)

Figure 4: Partially ordered set of dimension two for horizontal relation (solid arrow) (1) Graph

representation. (2) Rectangle packing.

(1) (2)

Figure 5: Partially ordered set of dimension three for horizontal relation (solid arrow). (1)

Graph representation. (2) Rectangle packing.

of instances for rectangle packing satisfying (1), (2) and (3) below all coincide and include the

optimal solution to the rectangle packing problem.

(1) Partially ordered set $P_{x}(P_{y})$ of horizontal (vertical) relation has dimension two.

(2) Every pair of rectangles $i,j$ in $X$ only has either a horizontal or a vertical relation.

(3) For a sequence pair $P_{1}$ and $P_{2}$ , every pair of rectangles $i,j$ has a horizontal or a vertical

relation as defined by equation (1) or (2) in Section 2.

Figure 4shows an instance of the rectangle packing problem. The horizontal (vertical)

relation is depicted with solid (broken) arrows in Fig. 4. Let $P_{x}(P_{y})$ be aposet for the horizontal

(vertical) relation. The poset $P_{x}$ has dimension two, and its realizer is $P_{1}=(a, c, b,d)$ and $P_{2}=$

$(b,a, d,c)$ . Of course, this is an instance that must be searched in the rectangle packing problem.

On the other hand, Fig. 5demonstrates another instance in the rectangle packing problem for
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six rectangles. The same symbols as in Fig. 4are used in Fig. 5. The poset $P_{x}$ for the horizontal

relation has dimension three, and its realizer is $P_{1}=(a, b, e, c, d, f)$ , $P_{2}=(b, c, f, a, d, e)$ and

$P_{3}=(c, a, d, b, e, f)$ . If we change horizontal relation $(c, d)$ to the vertical one, the dimension of
$P_{x}$ decreases to two. This corresponds to packing rectangle $d$ in the horizontal direction so that

it touches rectangle $a$ . It is sufficient to examine only the resultant poset $P_{x}$ of dimension two.

5Applications to Rectangle Packing

Asimulated annealing algorithm was applied to the rectangle packing problem. The sequence

pair was used to construct the solution space for the simulated annealing algorithm. Figure 6
shows the simulated annealing algorithm. The number with parenthesis at the head of each

line is only for reference. The outer while loop between lines (4) and (14) is repeated until

astopping criterion is satisfied. At each repetition, the temperature is lowered in accordance

with acooling schedule. On the other hand, in the inner while loop between lines (6) and

(12), the solution is perturbed at random until the solution reaches some equilibrium at each

temperature. The function $C(S)$ of solution $S$ is acost function, which calculates the area of

the rectangle packing created by the solution $S$ . As shown in line (9) to (11), the new solution
$S’$ is accepted with probability 1if $\mathrm{A}\leq 0$ , and with probability $e^{-\frac{\mathrm{A}}{T}}$ if $\Delta>0$ . The function

random$(0, 1)$ generates arandom number between 0and 1. This procedure allows occasional

“uphill moves”, which worsen the current solution. The movement prevents the solution from

being stuck at alocally optimal solution.

Simulated Annealing Algorithm
(1) begin
$\{\begin{array}{l}23\end{array}\}$ $T^{\cdot}\cdot.=\mathrm{I}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}.\mathrm{e}S.=\mathrm{I}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{s}\mathrm{o}1\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}S_{0}$

,
$T_{0;}$

(4) while (stopping criterion is not satisfied) do
5) begin
6) while (not yet in equilibrium) do

(7) begin
(8) $S’:=\mathrm{S}\mathrm{o}\mathrm{m}\mathrm{e}$ random neighboring solution of $S$ ;
(9) $\Delta:=C(S’)-C(S)$ ;

$(\mathrm{f}$

10) Prob $:=\mathrm{m}\mathrm{i}$.$(1, e^{-\frac{\Delta}{T}})$ ;
11) if random$(\mathit{0}, 1)\leq Pr\mathrm{o}b$ then $S:=S’$ ;
12) end;

(13) Update $T$ ;
(14) end;

(
$16(15\}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{O}\mathrm{u}$

tput best solution;

Figure 6: Simulated annealing algorithm
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We can represent the solution by the sequence pair $P_{1}$ and $P_{2}$ , which are sequences of rect-

angle names. If necessary, as described in Section 2, the sequence pair can be easily transformed

into the corresponding rectangle packing. The initial sequence pair made at line (2) in Fig. 6is

the one such that $P_{1}=P_{2}$ , which corresponds to alinear horizontal arrangement of rectangles.

The random perturbations used at line (8) consist of three kinds of pair-interchanges: i) two

rectangles in $P_{1}$ , $\mathrm{i}\mathrm{i}$ ) two rectangles both in $P_{1}$ and $P_{2}$ , and $\mathrm{i}\mathrm{i}\mathrm{i}$ ) the width and the height of

rectangle, which optimizes the orientation of the rectangle. The temperature $T$ was decreased

exponentially. Prom aheuristic point of view, we made the probability of selecting the operation

i) high in higher temperature, while the probability of selecting the operation $\mathrm{i}\mathrm{i}\mathrm{i}$ ) higher in lower

temperature.

The algorithm was applied to the test data where 146 rectangles must be packed. The pr0-

cessing time on Sun Sparc-Station II was 29.9 minutes. The algorithm searched at most 606192

distinct sequence pairs within the solution space whose size can be estimated by $(146!)^{2}2^{146}\approx$

$1.23\mathrm{x}10^{552}$ . It should be remarked that the search of only afraction about 4.92 $\mathrm{x}10^{-547}$ of the

solution space was enough to reach the good packing result. For alarger test data where 500

rectangles must be packed, 18.83 hours were required with the same workstation. See [1] and

[6] for details including the several figures of the rectangle packing results.

6Conclusions

We have presented the mathematical background to an approach using the sequence pair for

solving the rectangle packing problem. The equivalence of the sequence pair to the realizer of

partial orders having dimension two was proved in connection with the algorithms for generating

linear extensions of partial orders. We can say that the sequence pair for rectangle packing

rediscovered acharacterization of partial orders of dimension two. The sequence pair provides

an efficient representation of instances of the rectangle packing problem, but it also gives a

compact data structure that can be extended to solve more complex problems. On the basis

of the mathematical badcground described in this paPer, we intend to study its extensions to

various problems such as three-dimensional packing and its analysis methods.
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