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H-Function Generalized Fractional Integration

Operators in Subclasses of Univalent Functions:
Some Distortion and Characterization Theorems

Virginia S. Kiryakova!
Megumi Saigo®

Shigeyoshi Owa?®

1. Introduction

Let A(n) denote the class of functions of the form

flz)=2z+ Y a2t (meN={1,23,..}), (1)

k=n+1
which are analytic in the unit disk U = {z : |z] < 1}, and let S(n) denote the subclass
of A(n) of univalent functions in U. The so-called subclass of functions with negative
coefficients is also often considered, denoted by T'(n) C S(n), of the functions of the form

o0
f2)=2z— Y ap2* with ¢, >0 (k=n+1,n+2,...). 2)
k=n+1
We consider some mapping, distortion and other characterization properties of the
operators of the generalized fractional calculus involving Fox’s H-functions (Kiryakova
[7]), in the classes A(n), S(n), T'(n) and their subclasses of the so-called starlike and convez
functions of order a, 0 < a < 1. '

In this way we extend our previous results (see Kiryakova, Saigo and Owa [9]) related
to the operators of generalized fractional calculus involving Meijer’s G-functions, and
including the hypergeometric fractional integration operators by Saigo ([21]-[23], [31])
and Hohlov ([3],[4]), the Appell’s Fi-function operators by Saigo ([24],[25]) and most
of the classical integral operators considered in classes of univalent functions by various
authors.
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2. Generalized Fractional Calculus Operators

We remind first the definitions of some special functions referred to in our paper.

By a Fozr’s H-function we mean a generalized hypergeometric function defined by
means of the Mellin-Barnes type contour integral

ﬁ P(bk - Bbs) ﬁ T (1 — a; + SAJ')

A ) 1 k=1 j=1
Hmn [ (akv k ] = — J o’ ds, (3)
(b, B){ |~ 2mi C/ I T(-b+sB) 1 T(a;—sA;)
k=m+1 j=n+1

where L' is a suitable contour in C, the orders (m,n,p, g) are integers 0 < m < ¢,0 < n <
p and the parameters a; € R,A; > 0,j = 1,...,p, bp € R,Br > 0,
k = 1,...,q are such that A;(b; +!) # Bi(a; Ny g 1) l,l' = 0,1,2,.... For vari-
ous type of contours and conditions for existence and analyticity of function (3) in disks
C C whose radii are p = [[f_, A; A74 19, BB > 0, one can see [14],[28},[7, App.], etc.

When 4, =...=4, = 1,B1 = ... = B, = 1, (3) turns into the more popular
Meijer’s G-function (see [2, Vol.1, Ch.5],[14],[7]). The G- and H-functions encompass
almost all the elementary and special functions and this makes the knowledge on them

very useful. Observe that the generalized hypergeometric functions ,F, are special cases
of the G-function:

jI;I re;) 1, 1-ay,...,1~a
F(al...a'bl...b-a)=:—___—-GP [ i P
ptaq ’ s @py V1, s Yqy P pyq+1 Ol—b, l—b

J.l_;llr(aJ) !

while the Mittag-Leffler functions E, , (appearing as solutions of fractional order differ-
ential and integral equations) and the Wright’s generalized hypergeometric functions ,¥,
with irrational 4;, By > 0, give examples of H-functions, not reducible to G-functions:

v ( (al,Al),...,(ap,Ap) '0) _ x I’(a1+kA1)...I‘(ap +kAp) ZI:
(b1, B1),- .-, (bg, By) ’ i=o T(by + kBy)...T(b, + kB,) k!

Lp [ (1~01,A1) o5 (1 = ap, Ap) ]
P+l ,(1— b1,Bl) (1= by, By ) .

However, for A1=...=Ap=Bl=...=Bq=1,

ﬁ I'(a;)
(a1,1),...,(ap, 1) . [\ _ . . .
p‘I’q( (bl’l)a---’(bqal) ’ ) B H F( :) qu( Lyeees P?bl’---,bq, ) (5)

=1

4)

In this scheme of H-functions we have recently included and studied also multi-index
analogues of E,,, called multiindez Mittag-Leffler functions (see Kiryakova [8]):

oo ) Zk
B (%) = kiz%wzk =3 T(a + k/p1) - Tt + k/Pm) (6)

k=0
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Here m > 1 is an integer, p1,...,pm > 0 and py,...,p%m are arbitrary real numbers,
and for m = 1 one gets the classical Mittag-Leffler function. In terms of the H- and
» ¥ -functions,

(1) 0,1)
E(%i),(u;)(z) =1¥m ( (i, & L FAEY: by ;m+1

BN R BN

Using as kernel-function a Meijer’s G-function, and more generally - a Fox’s H-function
of peculiar order (m,0,m,m), a generalized fractional calculus has been developed in
Kiryakova [7] that includes as special cases almost all the known operators of fractional
integration and differentiation studied by many authors. Especially, even the particular
case with a G-function kernel, has been shown (Kiryakova [7, Ch.5], Kiryakova, Saigo
and Owa [9], Kiryakova, Saigo and Srivastava [10]) to encompass most of the integro-
differential operators already popular in univalent functions theory.

Let m > 1 be an integer; §; > 0.,7; € R,5; > 0,i = 1,...,m. We consider
0 = (81,...,0m) as a multiorder of fractional integration, resp., v = (1,...,%Ym) as mul-
tiweight, ,6 = (B1,...,0m) as additional parameter. The integral operators defined as
follows:

(w+1- 5,57 f(z0)do, it ,2-316 >0, (8)

f(Z), if 61=52=...=6m=0,

1
H7o (o
G =4 07"

are said to be multiple (m-tuple) Erdélyi-Kober fractional integration operators and more
generally, all the operators of the form

If(z) = 2 IS f(z) with 8 20,
are called briefly generalized (m-tuple) fractional integrals.

The corresponding generalized fractional derivatives are denoted by D(g') f,‘i) and de-

fined by means of explicit differintegral expressions (see [7]), similarly to the idea for the
classical Riemann-Liouville denvatlve For m = 1, operators (8) turn into the Erdély:-
Kober fractional integrals I, widely used in the applied mathematical analysis (see
[26],[7]) and to the classical Riemann-Liouville fractional integrals R®:

Sf(z) = f—lr‘%—i o f(z0"/F)de (6 >0,v € R,B > 0),

1 9)
Rif(2) = [ S35~ f(a0)do = #14f(z) (6> 0),

namely:
Rf(z)=201f(2), IJ°f(2) = T f(2),

for m = 2 - into the hypergeometnc fra.ctmnal integrals (Love, Saigo, Hohlov, etc.), and
for various other special choices of m > 1 and of parameters, to many other generalized
integration and differentiation operators, used in analysis, including in univalent functions
theory, integral transforms and special functions, differential and integral equations, etc.
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The main feature of the generalized (m-tuple) fractional integrals is that single integrals
(8) involving H-functions (or G-functions in the simpler case of equal §; = 8> 0,1 =
1,...,m) can be equivalently represented by means of commutative compositions of finite
number (m) of Erdélyi-Kober z'ntegrals (9), namely: in the case considered here, for
%2 =1,8:20,8,>0,i=1,.

1) “’"f(z) [ 7] 1)

1 1 — 55 1 1 (10)
=/ [H(l a,) ] f(zafl_...af.-';)dal...dam.
0 o L=l
If some of the §; are zeros: §; = ... =4, = 0,1 < s < m, the corresponding multipliers

are identity operators (I} 7d = 1) and the multiplicity of (8) (10) reduces from m to m—s
(the same for the order of the kernel H-functions). Decomposition (10) is the key to
numereous applications of (8), arising from the simple but quite effective tools of the G-
and H-functions.

A detailed theory, called generalized fractional calculus and an analogue of the classical
fractional calculus and its different applications are proposed in [7]. Here we consider
some mapping properties of operators (8) in classes of analytic functions in the unit disk

U={z:]2] < 1}.
Using only the simple properties of Fox’s H-function ([14],(28],(7, App.]), one easily

obtains the following.

Lemma 0. Foré; >0, € R, >0(i=1,...,m ), and each p > max [-B:i(vi+1)],
(%).8) 7 py — . T(vi +1+p/B)
Igym {27} = Ap 27 with ), H Ty + 6+ 1+ 2/5) > 0. (11)

Then the conditions
6>0,v%>-1,8>0,i=1,...,m, (12)

ensure that (11) holds for each p > 0, i.e. in the class A and its subclasses.

Proof . Toevaluate the I (g:) /(8), -image of an arbitrary power function f(z) = 2%, we
use an extension of known integral formulas for the H-functions, namely formula (E. 21),

[7, App.:

jHM[ EZ: C)T ] ,_ngg.w) for a;>b > =G (i=1,...,m)

Then, according to the well known H-function’s property (see (E.9), [7, App.]), we obtain

I(y.)(s,){z,,} /H”‘”[ (’7.+6+1 é,ﬁ,h

(i+1=5, 57
1
_ m, (v+&+1+(-1)/8)7 p (i +1+p/B:)
—zPO/Hm,?n [" (7=-+1+(1o—-1)/ﬂ.-)’1"1 } do =z EP('7.+6 +1+p/8) =A%

] zPoP do
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where the conditions v; +6; + p/8; > vi +p/8 > -1 (i = 1,...,m) are ensured by
6; >0and v > -1-p/Bi(i =1,...,m), ie. p > max[-Fi(y +1)]. To have (11) for all
2P, p > 0, it suffices to ask v; > ~1. [

In view of formula (11), for considering functions in the classes A(n), S(n), T'(n),
it is suitable to normalize the operators (8) by the multiplier constant [A;]™! (p = 1).
Therefore, further we consider the generalized fractional integrals (using the same name for

the normalized versxon, but stressing this fact by an additional “tilde” in the denotation:
T(‘Yv) (%) . [A ]——11’ %) (8 ),

(ﬂi):m
~( .) @) T+ 0 +1+1/8) 0).(8)

Thus, from Lemma 0 and the more general results in [7, Ch.5, §5.5], {11, Th.1], we can
easily obtain the following:

Theorem 1. Under the parameters’ conditions (12):

51' 2 0, ¥i > -1, ;Bi >0 (z: la”-am)
the generalized fractional integral T};:))’f:')
of a power series (1) has the form

o) =I0@ G+ 3 atl=zt 3 (k) aus € A(n), (14)

k=n+1 k=n+1

maps the class A(n) into itself, and the image

with multipliers’ sequence:

_ Rt 1+ kB Dyt i+ 1+ 1/8) g
C(vi+6+1+k/B)T(v+1+1/5)

(k=n+1,n+2,...). (15)

Proof . First we need to establish the fact that
o Jim @ =1 (16
Denote, for brevity in the proofs of Th. 1 and next Th. 2,
a;=7%+0%+1,bi=v+1, k/B; =k, (17)
and additionally, ¢; =a; +(n+1)/8;,di=b;+ (n+1)/6;, i =1,...,m,
from where and from (12) evidently,
| a; 2 bi,c;>2di, t=1,...,m and k; = 00 as k = oc.

The known asymptotics (
L(b+ k) b—a
T(atr) k as Kk — 0o,

yields Db+ ) 1/k e s ik
e B GO R CORRCY

I(a; + k)
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and the limit equalities lim k'/* = 1, lim (kl/’“)p =1, lim ¢* =1 for p,q =const,
k—o0 k—yo0

. k—o0
give:
. T'(b; + Ki) Lk ] I‘(a,' + l/ﬁi) Lk . 17k
——t| = ——r ) =1 k=1,
AT [r(a,. ¥ >] band 0 St 1/)] !
We have then
. Db+ m) 1 [T+ 17801, .
1k = TR T R 21 e (16).
kllbrgo Ia(k)l ’}l’l{.lo,:q [I‘(a,- + E,‘):| P(b, + l/ﬂ;) » 1€ (16)
In order to have (11) valid with p > 0, we require conditions (12). Then,
3 (6: 3 (6 A
f};’:;’,(:'){z} =2z and T&g,’g‘){zk} = :\fzk = 6(k) 2*

and term-by-term integration of power series (1) gives series (14). By virtue of the Cauchy-
Hadamard formula, the radius of convergence of the first series, as analytic function in

-1
the unit disk, is R = {gi’ﬁm,,,p/ k } > 1, and that of the latter series is calculated by
-1
B — I T lal1/k . i1/k
R={Tmlal* P}

therefore B > 1 and the image f}g:; ,’,(,'f‘) f(2) given by series (14) is analytic function in the
unit disc, too. Note that due to positiveness of the multipliers 6(k), series with positive
(like in A(n)) and negative (like in T'(n)) coefficients map into series of same kind. ]

The Hadamard product (convolution) of two analytic functions in U

o) =S at,  g(z) =3 bt

k=0 k=0
is defined by

Frg(z2) =3 arbi2®.
k=0

Theorem 2. In the class A(n) the generalized fractional integral (13) can be represented
by the Hadamard product

T8 £(2) = h(z) » £(2), (18)

where the function h(z) € A(n) is ezpressed by the Wright generalized hypergeometric
function (4):

h(z) =z+kilo(k)z’= |
o e L+ +1+1/6) (1,1), (i +1+(n+1)/8:,1/B)T .,
=z+2" 131 T(vi+1+1/8) '"“\I'"‘( (7;+5.'+1+(n+1)/ﬂ,-,1/ﬂ,-)§'} ’ )

/1n\
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Proolf . In the expression for h(z) we change the index of summation k =
n+l,n+2,...,00t0 j =0,1,...,00 via k = j+(n+1), and using the short denotations
n (17), we get

h(z) =z + Z B(k)z* = 2z + 2"\~ Z Ajt(nt1) 2
k=n+1 =0

d i
=z + 2"\ 1§F(1+ Hf‘_(c—a—}j—;_g:)l j:

— n - (191)’(d )1/:8 ))'--a(dnul/ﬂm) .
=242 +1[A1] 1m-%-l‘I’m ( (cl,l;ﬂl),-l--y(cm-)l/ﬁm) ,Z) 3
which gives (19). =

Corollary 1. In the case n = 1, in the classes A,S,T the representation of the
“convolution function” h(z) in (18) szmplzﬁes as follows:

-1 L1),(w+1+1/8;,1/8)]
h(z) = 2[Ad] ,,,H\pm( ( 0 2!-%7+1+1/{6’ “1/212,, z) (20)

Corollary 2. When all 3; = 3 > 0,¢ = 1,...,m, and espectally for shortness of
denotations it 1s taken B = 1, for the generalized fractional integrals with Meijer’s G-
function in the kernel,

1

@ () = [0, 5 () = I [ G, ["

0

(;:)(,:,',) T ] f(zo)do, (21)

we get respectively the simpler representations of multipliers’ sequence 6(k) and convolu-
tion function h(z) as follows:

o(k) =i=ﬁ1 (7(1;_23’;‘)1_1 >0 (k=n+1n+2,...) (22)

with (a); = I'(a + k) /T'(a) denoting the known Pochhammer symbol, and

— N (71 + 2)‘" n+1 1’ ('Yc + 2 + ‘n)T .
h(z) = z+il;_|1: —-—————(% 151, PAARIY (v 4 6; + 2+ )7 2. (23)

For n =1 (i.e. in the classes A,S,T), h(z) simplifies to a ym+1Fm-generalized hypergeo-

metric function:
h(2) = 2 w1 Fm ( (;' 9:5++2)2) ) o (24)

Many special cases of operators (13) or of their modified form ¢ 2% f(") @) ¢(2) with
¢ = const and dy > 0, especially in the case with kernel-function reducmg to Meijer’s
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G-function, have been used very often in the univalent function theory, like the known
operators of: Biernacki, Komatu, Libera, Rusheweyh, Owa and Srivastava, Carlson and
Shaffer, Saigo, Hohlov, etc. (see the examples in [7, Ch.5], and details in Kiryakova, Saigo,
Owa [9], Kiryakova, Saigo, Srivastava [10]). Thus, the results below give as corollaries
corresponding properties of all these operators.

3. Distortion Inequalities in the Classes S,(n) and L.(n)

A function f(z) belonging to S(n) is said to be starlike of order a (0 < @ < 1) if and
only if it satisfies the inequality

sz{z;(g’;)} sa  (z€D) (25)

and this subclass is denoted by S,(n). Further, f(z) € S(n) is said to be convez of order
a (0 < a < 1) if and only if

2f"(2) }
RI1+ZL >a (z€U 2
{a+25 (zeD) (26
and the subclass is denoted by K,(n). We note that f(z) € K,(n) if and only if 2 f(z) e
Sa(n), and also for any 0 < & < 1,

Sa(n) C Sp(n), K,(n) C Ko(n) and  Ka(n) C Sa(n).

The classes S,(n) and K,(n) have been recently studied by Srivastava, Owa and Chat-
terjea [30]. For n = 1, these denotations are usually used as S,(1) = S*(a), Ka(l) =
K (c), which are introduced earlier by Robertson [19]. Especially, taking @ = 0, we obtain
the well-known classes S* and K of starlike and convex functions in U, respectively.

In the class T'(n) of functions (2) with negative coefficients, we take now the respective
intersections for 0 < a < 1,n € N:

To(n) = Sa(n) NT(n), Lu(n)= Ku(n)OT(n). (27)

The latter classes were considered by Chatterjea [1] and in particular, case n = 1 gives
the Silverman’s classes T*(a), L(a), [27].

For functions of these classes we propose here some distortion inequalities in terms of
the generalized fractional calculus operators (13).

We need first the following lemmas given By Chatterjea [1].
Lemma 1. Let the function f(z) be defined by (1). Then f(z) is in the class Toa(n) if
and only if
X k-«

Z l—-a

k=n+1

ax < 1. (28)

—
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Lemma 2. Let the function f(z) be defined by (1). Then f(z) is in the class Lo(n) if
and only if

i kk—a) =1 (29)

k=n+1 l-a

Applying Lemma 1 and Theorem 1, we obtain Theorem 3. Let conditions (12) be

satisfied and the function f(z) defined by (1) belong to the class To(n). Then the following
inequalities hold for eachn > 1 and z € U:

-

T3 f(2)] 2 |2l - ~————n+1

b(n +1) |2|™* (30)
and

__a__
n+1-—
where the multiplier 6(n + 1) is defined as in ( 15), namely:

H Dy +14+(n+1)/8)T(vi+6+1+1/8)
PO+ 6+1+(n+1)/8)T(v+1+1/8)

T80 £(2)| < 1 + B(n +1) |2, (31)

f(n+1) = > 0. (32)

Equalities in (80) and (31) are attained by the function

l-a n+1

fe) ==

(33)

Theorem 4. Let conditions (12) be satisfied and the function f(2) definied by (1) belong
to the class L,(n). Then the following inequalities hold for eachn > 1 and z € U:

T sto 2 - g S @4

and

—a_ f(n+1) ||+
n+1 n+1 ’
where the multiplier 9(n+1) is defined as in (32). Equalz'ties in (34) and (85) are attained
by the function

), {6
T )] < lel +

(35)

l-«
n+1l)(n+1-a)

f(z)=2- ( 2" (36)

Proof. of Theorems3, 4. The main point in this proof is that the multiplier
function 6(k) is nonicreasing for k > n + 1. To verify this, let us start from the known
digamma-function

¥(z) = I'(2)/T(z), increasing for all z > 0.



(¥'(z) > 0 for all z # —n, follows for example, from the representation of v (z), [13,
p.723,(4)].) Then,

['(z+¢) S ' (

U(z+¢)= Tate) = I

or, for the auxiliary function

z)) =¥(z), for €¢>0,

I'(z + ¢)['(z) — T(z + &) (2)
I2(z)

I(z):=T(z+¢)/T(z) = T(2)= >0, z>0,e>0.
Then, I'(z) is also an increasing function, and so,
I'(z +¢) S T(y+e)

I'(z) = T() |
This, for ¢ 1/63;,z > a; + k/ﬂ.-, y — b; + k/B; (according to the notations in (17) and
a; > b; > 0), gives foreach i =1,...,m

Do+ (b +1)/8) | it k-+1)/8)

T+ k/B) > TGi+kB)

therefore the required nonicreasing property for 8(k) follows:

_6(k) _fy Thitk/B)  Ta+k+1)/6) S
01D - LTh+ G0/ T@m+hp) 20 (37)

whenever z > y > 0.

2

Hence,
0<0d(k)<8(n+1) foreach k>n+1, (37)
and for f(z) of form (2),

",Ji
TsA0]2 b~ | 3 o) s
k=n<+1
0o l-a
> |z = 8(n+ D)=l 3 a2 el = 6(n+ D™ ——,

k=n+1

since in view of Lemma 1 (see (28)) we have also

E @S —T—
k

Thus, inequality (30) is obtained. Next inequality (31) can be proved similarly and
Theorem 4 follows in analogous way by application of Lemma 2. [

Corollary 3. If we set n =1 and a = 0, we obtain for the subclasses of starlike and
convez functions in U, respectively

fes T = @) 2 11 - 22 p, 115 < b+ B2 o

fe KT = T7G)| 2 1ol - L2 1P, 1TF(0) < Iol+ 220 1o

21
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with multiplier

H Pl +1+2/8)T(vi+6+1+1/5)
i T+ 1+2/B) T+ 14+1/6)

Corollary 4. The case m =1 (simply omitting the sign II in (82) and subindices i in

parameters) gives respective estimates for the classical Erdelyz-K ober operators (9).

As applications of the above general results, we can derive the same kind ones for the
operators by Saigo ([21]-[23],[31]), and by Hohlov ([3],[4]) as well as for the fractional
integrals and derivatives involving the Appell’s Fs-function, recently studied by Saigo et
al. [24],[25]. All these cases fall in the scheme of the G-function generalized fractional
calculus operators (21) and the details are given in Kiryakova, Saigo, Owa [9].

4. Characterization Theorems in the Classes S*(n) and K(n) Now we consider

some sufficient conditions for the operators of generalized fractional calculus to produce
starlike and convex functions. Namely, we denote by S*(n) the subclass of A( ) of func-
tions satisfying (25) with a = 0, i.e. S*(n) := Sy(n). Analogously, K(n) := Ky(n) is the
subclass of A(n) of functions f(2) satisfying (26) with a =

From Silverman’s results [27], one can formulate the followz'ng auziliary lemmas.
Lemma 3. If the function f(z) defined by (1) satisfies the condition

> klul <1, (38)
k=n+1
then f(z) € S*(n). The equality in (88) is attained by the function
0 zk
91(z) =z+¢(n+1) k=§}-1 R+ e=const, le|=1, z€U. (39)

Lemma 4. If the function f(z) defined by (1) satisfies the condition

Y kKlakl <1, n=1,2,3,..., (40)
k=n-+1 _
then f(z) € K(n). The equality in (40) is attained by the function
o
g2(2) =z +en+1) Z ——— e=const, lg|=1, z€U. (41)
ki1 B2 (K +1)

For the generalized fractional integrals (13) we obtain then the following sufficient
conditions.

Theorem 5. Under the condition (12), if the function f(z) defined by (1) satisfies
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1 B
k_zn;rlk |ax| < ICE) (for 8(n +1) see (32)) (42)

then f("‘) @) () belongs to the class S*(n).

Proof . We use again the inequality (37"), 0 < 8(k) < H(n + 1), valid for each
k> n+1and each n € N. Then, for the function I'f (2) =2+ Z bkz with coefficients

k=n+

= 6(k)a, we obtain %o: kb < 6(n+1) § kay < 1. [
k=n+1 k=n+1

Analogously, using Lemma 4, we obtain
Theorem 6. Under the condition (12), if the function f(z) defined by (1) satisfies
. ;
k2 ag S (43)

k=n+1
then f}g:)),,(:') f(z) belongs to the class K(n).

Remark. Examples of functions satisfying conditions (42),(43) are the following func-

tions
ko 1 2k

1 =z
93(2) =z+ 8(ko) K and g4(z) =z + g(ko) 76_(2,_,
respectively, with some k¢ > n + 1.

Next, to obtain another kind of characterization theorems, we use the following result
of Rusheweyh and Sheil-Small [20].

Lemma 5. Let h(z) and f(z) be analytic in U and satisfy the condition:
14 poz

WO = £(0)=0, h(z)*{TTEZf()} #0 (zeU\{0}) (44)

for some p,o € C (|p| = 1,|0| = 1) with * denoting the Hadamard product. Then, for a
Junction F(z) analytic in U and satisfying

R{F(2)} >0 (z€l),

G FN@Y Lo
»{T) >0 ¢ “

the inequality

follows.

Now we state some characterization theorems in terms of the Hadamard product.
Theorem 7. Let us assume condition (12) and let the function f(2) defined by (1)

belong to S*(n) and satisfy
14 ,oaz

ha) s {TEEZ5()) #0 eUND (46)
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for some p,o € C (|p| = 1,|0] = 1) and for the function h(z) defined by (19). Then,
I((g") it B)£(2) also belongs to S*(n), i.e. under such conditions the generalized fractional
integral preserves the class S*(n).

Proof . By Theorem 2,

IS f(2) = 2+ 3 6(k)* = h(z) * £(2).

k=n+1
Since it is easy to check that

A 1) () _ (% CF))
Br NG - (i pE) ek hfeAn),
it follows, if we set F(2) = zf (2)/f(2),
 2(If(2)) _h*zf _hxFf
(If(z) ~ hef — hxf"
Using that f € S*(n) implies R{F(z)} > 0, we obtain by Lemma 5

i) (hs FA)(2) e ot
%{ Uf()} gt{(h e }>° = lEHeSm.

For a subclass of the convex functions, an analogous theorem reads as follows.

Theorem 8. Let us assume condition (12) and let the function f(z) defined by (1)
belong to K(n) and satisfy

h(e) + {TEE2f ()} £0 (2 €U\ {0) (47)

for some p,a € C (|p| = 1,|o| = 1) and for the function h(z) defined by (19). Then,

f((;'),(:‘) f(z) also belongs to K(n), i.e. under such conditions the generalized fractional

integrals preserve the class K(n).

Proof . Notethatin (47) we have zf (z) instead of f(z) in (46). We use the fact
that f € K(n) <= zf € S*(n) and Theorem 7. ]

Lemma 6. (Rusheweyh and Sheil-Small [20]) Let h(z) be conver and f(z) be starlike
in U. Then, for each function F(z) analytic in U and satisfying R{F(z)} > 0 (z € U),

the inequality
(hxFHNE o o,
?R{ G D) }>0 (zeU) (48)

holds valid.

Whence, in a way similar like in Theorems 7,8 we have the following characterization
theorems for the generalized fractional integration operators (13).
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Theorem 9. Let us assume conditions (12), and let the function f(z) defined by (1)
belong to S*(n) and its “convolution function” h(z) defined by (19) belong to K(n). Then,

IG5 £(z) belongs to S*(n), i.e.

Theorem 10. Let us assume conditions (12), and the functions f(z) defined by (1)
and the “convolution function” h(z) defined by (19) belong to K(n). Then, f((;:gf:') f(z)
belongs to K (n), i.e.

f(2) €K(m), h(z)ek(m) = IgRf(z)eKn). (50)

Summarized, the above results (49) and (50), mean that if the “convolution function”
(19) of generalized fractional integration operator (13) belongs to K(n), then this operator

f((g'))g') preserves both classes S*(n), K(n).

5. Special cases

Obviously, putting in results here 8; = 1, i = 1, ..., m, we obtain the analogues of The-
orems 1 - 10 for the generalized fractional integration operators with G-function kernels,
see Kiryakova, Saigo and Owa [9].

Then, same type results follow for a number of integral (or, integro-differential and
differential operators, when considering the respective generalized fractional derivatives)
operators that are rather popular in univalent function theory but follow as special cases
(mainly for m = 1,2 and one example for m = 3).

In Saigo [21],[23], the following operators of generalized fractional integration and dif-
ferentiation that involve the Gauss hypergeometric function have been introduced:

2 a—1
rony) =t | EZ= R+ b-mat-D 10k, @Y
for real parameters o > 0,0, 7. First, operator (51) has been considered for real-valued
functions and used for solving boundary value problems [22],[31] for the Euler-Darboux
equation, but recently Srivastava, Saigo and Owa (see for example, [32], [12]) have applied
it to classes of univalent functions.
The “normalized” operator (51) falls in the scheme of operators (13) with m = 2,
namely:

2 r2-pr2+a+n) T2-AT2+a+n) (1-p0.(-natn)
Ia,ﬂ,r] = B ra,Bm — n—0,0),(—n,+n 51
Te-g+m | Te—f+m 003 (1)
and has respectively, multiplier sequence and convolution function of the form:
(-B+n+ 2)g—1k!
(=B + p-1(a+ 1+ 2)p-1’

o(k) =
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- ! —_
h(z) = 2+ (ZBH 1+ Daln 4 1)! Z,,+13F2< 1,-B+n+2+n2+n )

(=B +2)n(a+1+2), -B+2+na+n+24n""
Especially in the class A = A(1), its convolutional representation turns into:

= . 1,-8+n+2,2
a:ﬂ!ﬂ — o ? b .
I*Pf(2) = h(z) * f(2) with h(z) =2 3F, ( B+t n+2 ,z) :
For the corresponding results in the classes we consider, for any n € N under conditions
B~n<2,a+n>0,17<0,see Kiryakova, Saigo and Owa [9].

In [3],(4] Hohlov introduced a generalized fractional integration operator defined by
means of the Hadamard product with an arbitrary Gauss hypergeometric function:

F(a,b,c)f(z) :== z o Fi(a, b; c; 2) * f(2). (52)

This three-parameter family of operators contains as special cases most of the known linear
integral or differential operators, already used in univalent functions theory, namely: the
Biernack: operator, Rusheweyh derivative, generalized Libera operator and its inverse,
Carlson-Shaffer operator, etc. For details, see Hohlov [3], [4], Kiryakova [7], Kiryakova et
al. [10], [11]). _

This rather general Hohlov operator (52) also follows as a particular case of generalized
fractional integrals (13):

I'(c) a—2,b—2) (1—a,c~b a=25—2),(1—a,c—b
F(a7b7 C)f(Z) = f\-(;—)g_]:\—(-b—)- I((l,l)?,2 M )f(Z) = j}l,l),2 2 )f(Z) (52*)
Thus, Theorems 1 - 10 give corresponding results for this operator, and also for all its
special cases. The conditions (12) now are: 0 < a € 1,0 < b < c. We will refer here only
to the form of its multipliers and convolution function, namely:

~1(B)i1 (a)n(b)
o) = (D1l g U(n+1) = n
®= D (on "D = e
(@)n(®)n i1 ‘ :
h(z)=z+—ﬁwc—)——z sFa(l,a+n,b+n;c+n,1+n;2) in A(n),
resp. in the class A = A(1) : h(z) = 2z 2Fi(a, b;c; 2), a result that conforms with original
Hohlov’s representation (52). ’

In [24],[25] Saigo and his co-worker investigated in details the operator of generalized
fractional integration which involves the so-called Appell’s F3-function:

(z =g .
— =1-= d¢, (53

= SEEFOLAC)
but can be decomposed also as products of three Erdélyi-Kober operators (9). Asshown by
Kiryakova [7], this is an example of generalized fractional integrals (8),(13) of multiplicity
m = 3, and could be represented also in the form

Z

Ia,d,B,87)f(z) = Z“"‘/

0

£ Fy(a,d, 8,071 -
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] _ ! A
oa—-a +ﬂ37 2&,’)’ « ﬁ f(za)cla.

1
! ’, — g—a—alty 3,0
e, o\, 8,857)f(2) = 2 6/G3,3 [U a—-d,f-d,y-2da-F

Then,
I(Of, Of,,,B, ,H,; '7)f(2) = z—a—a"l"‘)’ I((;x,-l—’(lx)’:g-—al,“(—2a’_ﬂ'),(,3)'7“04 -B,a )f(z)‘ (53*)
and for the “normalized” F3-operator of form (13):

If(z) = I(a, @, 8,8'37) f(2) i= 277 I(a, &/, B, '37) f (2)

we can apply all the results for classes of univalent functions, already obtained in Theorems
1 - 10. Let us mention that in this case the convolution function h(z) expresses in terms
of the 4Fs-function. Details can be seen in Kiryakova, Saigo and Owa [9].

Now, we consider some two ezamples of integral operators, studied recently in classes
of univalent functions, that fall essentially in the case of generalized fractional integration
operators with 8 # (1,1,...,1).

These are integral operators, considered in several modified forms by Raina et al.
(Raina [15], Raina end Bolia [16], Raina, Saigo and Choi [18], Raina and Kalia [17]), and
others.

The first operator, in the case of functions f(z) of the class A(n), is (see for example
[17, p.337, (2.3),(2.5)], and note that the 3 > 0 here was denoted by m in the original
papers by Raina et al.): _

TA(a,c;n) f(2) = ®4(a,c;n;2) * f(2), (54)
with '
Al e\ (c+(p—1)C ol a+(p—1)A+nA) J
®cla,eniz) = T(a+(p— Zj “1)C+nC) "~
_TPle+(p-1)C) , (L,1), (a A+ nA,A)
=Tt (p-14)" ‘I’1< (c = C +nC,C) ’Z) (55)

and the second, is a composition of two operators as above, T#(a,c) :=T&(a,¢;1) (n=1
is taken for simplicity):

MM F(2) = TE(L+ 8,1 — p+ B) TE(L +1 — p+ B, 1+ 1~ A+ B) f(2)
_ T(1-p+B)T(1+n-2+p) #18 D ’\’“’"ﬂf(z) (56)

T(1+AT(1+n-p+p) 0sil!
Here, for 0 < A< 1; y,n€ R, 3> 0,8 > max{A —n—1,p -1},

d z-ﬂ(l‘-x)
3P \ T =N

Dozi f(2) =

z tﬂ
/(2” =t )R (p=-A1-n1-X1- z—ﬁ)f(t)dt”}
0

™\
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is the fractional differential operator, corresponding to the so-called modified Saigo oper-
ator Ig‘"‘ 7 (see same papers by Raina et al., and compare with expressions in (51),(51%)),

2~ P(A+n)
I'(A)

z _ tB
/ (+# =) 3P+, =15 N 1= —5) f(2)dt” = const- Ty £(2),
0

(58)

I’\”“’ ( )._

in our denotations (8),(13).

It is seen then, that for S=1,n=1, A=C =1, 0 < a < ¢, the operator T4(a, c;n)
reduces to the Carlson-Shaffer integral operator L(a,c), defined by a Hadamard product
with a Gauss function, and easily seen to be special case of the Erdélyi-Kober operators

(9) (see e.g. [9]):
L(a,0)f(2) = ®(a,¢; 2) * f(2) = {z2F1(1,0;¢;2)} * £ (2) (59)

—_ P(C) 1 - )e—a—1 ca—2 F(C) a—2,c—~a
_ﬁm (1-0) o f(za)da_r( )I f(2).

The operators (56),(57), i.e. M. )"””’ or DO’“;;’ reduce for 3 = 1 to the hypergeometric
fractional derivative (resp. zntegml (51 ) with a Gauss function, studied by Saigo et al.

The operators (54)-(55) with A = C =1/ and (56)-(57)-(58) are special cases of the
generalized fractional integrals (8),(13), resp. for m = 1 and m = 2 (with 4, = C; =
Ay = Cy =1/, ie. B, =, = B > 0). Evidently, m-tuple compositions of operators
(54)-(55) give operators of form (13) in the general case m > 1.

Results for above two operators have been obtained by Raina et al., for example as
follows: analogue of Lemma 0 (for D "#.3), and respective operational properties of both
operators Dy’}] M M '\’”’ - in Raina [15], where as applications some inequalities for the
Wright functlons \Ilq, (4) have been derived; results analogous to our characterization
theorems (Theorems 7-8, 9-10) - for Do 47 in Raina, Saigo and Choi [18], and - for M, '\”‘ "
in Raina and Kalia [17], etc. Evidently, the results presented here for generalized fra.ctlonal
calculus operators (13) give, as special cases, also a series of other corresponding analogues
for the mentioned two operators.
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