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Abstract

In this article, the following three topics in N ( Nishimoto's ) - fractional calculus
are reported, that is,

PartI. N-Fractional calculus operator N” (the set of them {N"} is an
action group ),

PartII. N-Fractional calculus of the function log(z-c) and Beta function,

Part III.

Application of N-fractional calculus to the homogeneous Gauss
equation and Kummer's 24 functions.

Partl. N-Fractional calculus operator N’

§ 0. Introduction ( Definition of N Fractional Calculus )
(I) Definition. ( by K. Nishimoto ) ([1]Vol. 1)
Let D={D ,D.}, C={C_,C,},
C_ be a curve along thg cut joining two points z and - ® +iIm(z),
C, be a curve along the cut joining two points z and o+ iIm(z),

D_be a domain surrounded by C_, D, be a domain surrounded by C, .
(Here D contains the points over the curve C ).

Moreover, let f = f(z) be a regular function in D(z €D),

v+l . f(©)
fv-(f)v‘C(f)v_ 2.71'1 L(C_Z)vﬂ dg (V $Z-): (1)
(Fow=lim (f),  (mEZ, (2)
where - sarg(f-z)smw for C., Osarg(l-2)<2n forC, ,

E=z, zEC, vER, T ;Gamma function,

then (f), is the fractional differintegration of arbitrary order v ( derivatives of

order v for v >0, and integrals of order —v for v <0 ), with respect to z , of
the function f , if |(f),

<,

52



§ 1. The Set of N-Fractional Calculus Operator
[I] Definition of N- fractional calculus operator N*

We define N- fractional calculus operator ( Nishimoto's Operator) N’ as

N = F(V +1) d ‘ i
( 2mwi fC(C Wl) (ve&Z"), [Referto(1)]
with N = l_l.rl}an (m EZ+),

and define the binary operation o =X as
NP oN®f=NPxN°f=N°’N°f=NP(N°f) (a,BER).

Then we have

vo e (DOED . dE _
N'f =N f(z>=( o fc(g_z)m)(f(C)) (vez),

_Tw+D . @)

S
2mi fC(C—

= fv(z) =fv N
[I1] An Abelian product group

v+l dC 4

(1)

(2)

(3)

(4)

(5)

(6)

Following Theorem 1 is reported in JFC Vol. 4, Nov. (1994) [ 3 ]. However, it is

shown again here for our convenience.
Theorem 1. The set
{N"}={N"|vER]}

(7)

is an Abelian product group ( having continuous index v ER , viz. —® <v < ®) for

the function
FEF={f;0#|f)|<= vER},
where f = f(2) and zEC.
(In the following O= fEF and v,a,B,y ER .)

Proof.
We have the following for the multiplication of N'.
We have ;
(i) NPN°f=N**f= Nf (y=0c+p).

Therefore, we obtain

NPN® = NP*® = N' &(N"}. (Closure)

(8)

(9)

(10)
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(ii) N'(NPNEYf =(N"NP)N® f= N"*Fef
Therefore, we obtain

N"(NPN%y =(N"NPIN® . (Associative law )

(iii) 1+ f=Nf=f
Therefore, we obtain

1=N° . (Existence of unit element )

(iv) NYN'f=N'N"f=Nf=f .

Therefore, we obtain

NN =N'N"=N°=1. (Existence of inverse element )

(v) NPN°f= N°NPf= N™Ff |
Therefore, we obtain
NPN® = N°N* . (Commutative law )
Therefore, we have this Theorem 1 by (i)~ (v).

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Then we call the set {N"} as " Fractional calculus operator group " and denote

this by " F.0.G. {N"}".

Note 1. Wehave([1]Vol.1,[2])

NN = (1), - I‘(ﬁ+1)fc flm)

’)J'Fl )ﬁ+l
_I +1)I‘(a +1) dn
e S O T 2
r‘(a + ﬁ 2 PRA(9)

j‘C(C -z )a+ﬂ+l

=Jawg = NMpf
Note 2. Notice that letting (N") "' be the inverse to N” we have
(Nv)-x-Nv - Nv(Nv)-l =1
Then we obtain
(Nv)—l = N—v'
from (24 )and (16).

Therefore, we can see that

(19)

(20)

(21)

(22)

(23)

(24)

54



(NY DT =N =N, (25)
from ( 24 ).

[III] Action group
We have the following definition for action group. ( [17] pp.40-42. & pp. 113 -
133.)

Definition 1. Let G = {g} be a group, and A={a} =¢ be aset. When the map
from Gx A= {(g,a)| gEG,aEA} to A={a|aEA} satisfies
(i)  g,°(g,a)=(g °g,)a foral g, g €G, a€A , (26)

(ii) loa=a forall a€A , (27)

we say "G is agroup actingonaset A ".

Then we call G as " action group ".
Obeying this definition we have the following theorem.

Theorem 2. Theset {N"} is "anaction group which has continuous indexv
for the set F "
Proof. lLetting G={N"}, A=F and a= f €EF inthe above definition, we have

(i) NP*(N° f)=(NPN®)f forall N° ,N°€E{N'}, fEF , (28)
and
(ii) Nf =1-f=f forall fEF . (29)

Therefore, we can see that the set {N"} of our fractional calculus operator N”

is a group acting on a set F

Theorem 3. Theset {N"} is "an Abelian product group acting on a set F ,

having continuous indexv €R .

Proof. Itis clear by Theorems 1. and 2.

PartIl. N- Fractional calculus of the function
log(z-c) and Beta function

Chapter 1. N- Fractional Calculus of the Power Functions and
Logarithmic ones
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§ 1. N- Fractional Calculus of Power Functions

Theorem 1. We have

8 _F(O"‘ﬂ) _ \A-a (F(a -B) m)
(a-2)"), T (a-2) o-p

where EC , z#a and a(ER), B(ER) and a(EC ) are constants.
Proof. Obeying our definition of N- fractional calculus, we have
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. ra (a=§)°' '
((G‘Z)ql)_p- (21” fc (& -P*l dg (2)
1 set £ =ak,
_Ld-p) = a"“{l-(Cf:?}'" d¢ | a=6e";8.0ER, | (3)
2xi Jeerim@  (E -7) largal=l¢l< /2
[‘(1 p) e (t+) (1- E)q-l a-g= (z/a-t.) (4)
fomr imas (50
: : l-t=y,
F(l ”) ’*"f, ' (1-t-n)"" dn (n_su) ()
0+) _ _ ) l‘lpl<ﬂ/2,
F(;mp)( i lf-” w? (1= u)'™ du ( w-args) (6)
ra- - .
- (znip)(a-z)”“'Zzsm:rp-B(l-p-q,p) ([2],p.20) (7)
F(l—q_p) _ S\Pre-l
_—_I‘(l-q) (a-2) ' (8)
since we have
F(p)I(l-p) = —— . (9)
sinzp
Therefore, setting
q-1=p and -p=a
we have (1), under the conditions.
Corollary 1. We have
4-ma L0t = ﬂ) pa ( r(a—g_)l w)
. (10)
((z a)) T ﬂ) a) B <
Proof. Itis clear by Theorem 1, since we have
e ((z-a)f) = e "”-————Fl(,?_ﬂ')s 22— o) (-—-—H[f;_;f ) <°°) (11)

from(1).



Corollary 2. We have
(1), =0 (I a)l< o) . (12)

Proof. We have

0 ~-lna F(a - O) 0-a
- - ol S - I M) , 13
(1), =(2"), - e -0 ° 0 (IMe)l<w), (13)
from ( 10 ).

§ 2. N-Fractional Calculus of Logarithmic Functions
Theorem 2. We have

(1) (log(a-2)), = - T(a)(a=-2z)™ =- e~ [(a)(z ~a)™ (14)
and '
(ii) (log(z-a), = (log(a - 2)), (15)

where II'(a)l<», zEC, z#a,and a(ER) and a(EC ) are constants.
Proofof (i). We have

(log(a-z))l-— (a-z)" (z=a) . (16)
Oi)erate N°™ to the both sides of ( 16 ), we have then
((108(a-2),). =- ((a-2™),, . (17)

hence
(log(a-2), = -T(ax)@~-2)",

by our index law and by Theorem 1.
Proof of (ii). We have

(log(a-2), =(loge™(z- a))a = (log(z-a)+in ), (18)
= (log(z- @), (19)

since
(im), =0 for IT(a)l<® . (20)

Therefore ,we have this theorem under the conditions.
Corollary 3. We have .
(logaz), =(logz), =-e™*T(@)z™* (l'(a)l<x) (21)
where a=0.
Proof 1. Since we have

(log az), =(log z+loga), =(log z), +(log a), . (22)
it is clear.
.Proof 2. Using the relationship ‘
®  ayg s P e-: - e-au
logaz-j;fl e ‘dtds -j; p ds (23)
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we obtain ( 21 ) by our definition of N- fractional calculus. ([ 1] Vol.1, pp 28 - 30.)
([2]pp.50-51.)

Theorem 3. We have ,
log(a -z2) (24)

. —a 1
R
and
; 1
(ii) (z-a)%) =-¢€"" log(z - a) (25)
e-a7). Na)
where II'(a)l<o, and z=#a .
Proof of (i). We have
(log(a-2)), =-T(@)(a-2)"* (IN(a)l<x) . (26)
Operate N to the both sides of ( 26 ), we have then
(tog(a-2),)., =-T@)(@@-2%)_, . (27)
hence we have '
log(a-2) = -T@)((@a-2")._, (28)

by our index law.Therefore, we have ( 24 ) from ( 28 ) clearly, under the conditions.

Proofof (ii). Wehave
((a-2)%)_ =™ ((z-a)"), - (29)

Therefore, we have (25) from (24 ), (29) and ( 15 ), under the conditions.
Theorem 4. We have

- n ! n 1
(log(z—a))_"_ (z n?) {log(z—a)— z Z—} (30)

where z=a and nEZ* .

Proof. We have

(log(z-a))_, = log(z- @) *(z-a) -(z - a) . (31)
Then operating N™™ (m €Z") to the both sides of ( 31 ) we have
(log(z-a)._,., = (log(z - a) (2~ @))_, ~(z-a)_, - (32)
Now we have
! ra-m

lo - . - - ( - -
(log(z-a)(z~a))_, 2 AT ool gz @) e a) (33
= (log(z- @))_,(z-a)-m(log(z=a))_, _, (34)
since we have ' »

~ N1+ a)

(u-v), = U, v, ([1]Voll) |, (35)

S kIT(1+a-k)
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mmr‘(—l_ m)( _ )l+m - 1 (Z_a)

ren Y
Therefore, substituting ( 36) and ( 34 ) into ( 32) w/e obtain

(z-a)_, =e

1
l+m

(log(z-@)_ .., = (1+m)! (1+ m)

We have then, setting m = 0,

(log(z- a))_, = log(z - a)(z-a) -(z-a) ,

from (37), setting m=1in( 37 ) and using ( 31 ) we obtain

(log(z-a))_, =4 (2~ @){log(z ~&) -1 +)} -
Next setting m = 2 in( 37 ) ,and using ( 38 ) we obtain

(log(z-a))_, = (2~ @)*{log(z -a) ~(1+ 3 +5)}

and so on.

Therefore, we have this theorem from (39)for z=a and n€Z".
Note 1. S.-T.Tu and D-K. Chyan derived

(£-10g2), = (). {logz +9 (1 +B) -y (1+B - )} (2=0)
where
IT(B-a)/[(-a)l<w, Re(l+B8)>0

and ¥ is the Psi function.

From ( 42 ) they got (30 ) having a=0 .[6]

Chapter 2. N- Fractional Calculus of the Function log(z —¢)
and Beta Functions

§ 1. Some Theorems Associated with The Beta Functions
for N- Fractional Calculus of Function log(z-¢)

In the following o, B,y,6E€R, z=c and B( , )is Beta function.

Theorem 1. We have

(lOg (Z - C))m +a (log(z - C))m+ B - _ ei:r(n -2 m) [a ]m[ﬁ]m
(log(z=9),,q.s [a+B],

B(a, ﬁ ) (Z_c)n-bn

where
mn€Z;, m+a),(m+p),(n+a+p)¢Z, and

(log(z~ @))_, (z-a) - ! (z- a)*" .

(37)

(31)

(38)

(39)

(42)

(43)

(1)
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[A], = L(A +n) =AMA+1D)-(A+n-1) with [A]; =1.

(A)

Proof. We have

(log(z-0), ,, =—€¢ ™™ Tm+a)z-c)" ™  (|Tm+a)| <»),

(lOg (Z "C))"Hﬁ - _e-i:r(nuﬁ)rw(m_*_ﬁ)(z _ C) —(m+p) ( lr\(m+ ﬂ)l < ),

and

(2)

(3)

(log(z—c))an = TPy g+ B)(z- ) A (II‘(n+ a+B)| <oo),

Therefore, making (2)x(3)/(4), we have

{m(n-2m) [a]m[ﬁ]m . F(a)r(ﬁ)
[a+B], T(@+p

IHS of (1) = —e Y

=_eix(n—2m) [a]m[ﬁ]m B(a,ﬁ)(z-C)"-zm ‘

[a+ B,

under the conditions, since
C(al'(B)

I'la +B) =B@.p).

Corollary 1. We have

(log(z - C))ﬁ (log(z-¢))
(log(z- ) I

(i) £ - _B(a,B) (TheoremA)

whevre

a.f . (a+p)&Z; .

(log(z- ), (log(z-©)),,, _ap

(ii) B(a,B)(z-¢)™

(log @ - 9),, aup a+f
where
(I+a),1+8),A+a+B&Z, .
(log(z-0)),, (log(z~ ), , ap
PR 1+a 1+ = — B ,
iy (log(z- 0),..._, (@sBrarpsn P
where

(1+a),(1+B),Q+a+P&Z,; .

(4)

(5)

(1)

(6)

(7)

(8)

(9)
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log(z-c)), .| i
I-( Og(Z C))mux] - (_I)HHIM B(a’ [)’)(z—-c)'ln

(iv)
(lOg(Z'— C)),,,+ 2la [za]m
where
meEZ,, (m+a),(m+2a)EZ, .

Proof of (1i). Set m=n=0in(1).

Proof of (ii). Set m=n=1in(1).

Proof of (iii ). Set m=1,n=21in(1).

Proof of (iv). Set a=f8,m=nin(1).

Theorem 2. We have

(1og (log(z - ), ) (l0glog (2~ »,),
( log(log(z - C))y)

=y B(a, )
a+f

where

v.o,B.(a+BYEZ, .
Proof. We have
' (log(z-c), = - T()(z-c)"  (IT(n]<=),

(10)

(11)

(12)

(log(z-0),,, == Iy +1)z-0) "™  (IT(y+D|<»), (13)

hence we have

(log(z-¢)) " 4
=y (z-0)

(Iog(z—c))r
from (12 )and (13).

Then operating N to the both sides fo (14 ) we otain

{ (log(z-¢)) "
l (log(z-¢)),

) -r{z-97), .

| -1
namely
log(log(z-¢)), =~y log(z -¢).

Next operate N to the both sides fo ( 16 ), we have then

(log (tog(z ~ ¢)), ). = - y(log(z~c)),

=ye " Ta)z-c)* (IT(@)l<®).

(14)

(15)

(16)

(17)

(18)
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In the same way we obtain

(loglog(z =), ), = ve ™ I(Bz=c)?  (ITB)I<=).  (19)

and
(lOg (log(z -¢)), )Mﬂ = ye TP (g 4 B)(z-c) P

(IT(a+B)l<xo).

(20)
Therefore, making (18) x (19) /(20), we obtain
I'(a)['(B)
11) =y ———=y" B(a,fB), (11)
IHSof (11) =y T ) y* B(a,B)
under the conditions.
Corollary 2. We have
2
(100082 -c,) ]
, =y B(a,a) (21)
(log(log(z - e, ) _
where
Yy.a, 20 €Z; .
Proof. Setoa=f in(11).
Theorem 3. Let
S =S (z) = log(log (log(z - ¢)), )5 - (22)
We have then
S,S
—=£_.5:B(a,B) (23)
Sa+ﬂ
where
6,Y,a,ﬁ,(a+/3)$zt; ¢
Proof. We have
(108(10g(z-C)),)6=—Y(108(z—0))6 (IT(y)l <) o (24)

and

=ye™'T®)z~-9" (IT(8)I<®). (25)

(1og (log(z ~¢)), ), = ye NG (-9 (IT(G+1)l<o). (26)

from ( 16 ), respectively.
Then, making (26)/(25), we obtain

(108 (log(z —¢)), )a+1 =-8(z-0" .
(log(log(z -¢)), ) .

(27)
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Then operating N! to the both sides fo ( 27 ) we otain

(loglog(z - <), )., —-6-((z-07)
(log(logz-¢)), ), ) "

that is,
S =log (log(log(z-¢)),); ==0" log(z - ¢).

Next operate N to the both sides of ( 29), we have then
S =8¢ " Na)z-09™* (INa)l<®).

In the same way we obtain

Sg=08-¢"""T(B)z-0" (IC(B)l<w).

and
Serp=0e™ P T(a+)(z-0)"" (IT(a+p)i<®).

Therefore, making (30) x(31)/(32), we obtain

SaSp _ 5. D()T(B)

=6 'B(a, B)
Sasg L+ P)
under the conditions.
Corollary 3. We have
s ) '
.(._L).. =6 -B(a,a)
Sla .

where
d,.vy,o,2a€&Z, .

Proof. Seta=f in(23).

Theorem 4. Let
(lOg(Z — C))y+l

T=T()= )
(9= logz -0,
We have then
LT, aBy -1
B - . _ ,
T., wrf B(a,B)(z-c¢)

where

y,a,B.(a+BEZ; .
Proof. Operating N” to the both sides of (34 ) we have

(log (z- 0)),

T =‘((log(z~C))z +1) -y ((z-—C)_l),, (IT(y) I <>) .

(28)

(29)

(30)

(31)

(32)

(23)

(33)

(34)

(35)

(36)
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=—yae " Na)(z-c)"* (IT(a)l< ). (37)
In the same way, we obtain
Ty=-yBe ™ T(B)(z-c)'F (IT(P)I<w), (38)

and
Tig=-v(@+B)e ™ PTa+p)z-0)"*F (IT(@+P)l<w)  (39)

from ( 34 ).
Therefore, we have

LT, __ aBy (@)

-0, 40)
T,.s a+f I'(a+p) -9 (

from ( 37), (38 ) and ( 39).
We have then ( 35) from ( 40 ) clearly, under the conditions.
Corollary 4. We have

T 2
-(-%=-221--B(oz,a)(z—c)"1 (41)
where
v.a, 20€Z, .

Proof. Seta=p8 in(35).

§ 2. Some examples of the Theorems
(I) Example of Theorem 1

(i) (log(z - ), ,(log(z - 9), , --B(1/2,3/2) === . (1)
(log(z - C))(uz)+(3/z) 2
(ii) (log(z~ ), (log(z - ), _1-2 B(1,2)(z-c) =< (z-0" . (2)
(log(z - ©)), 3 ’ 3 '
log(z - log(z -
(i11) (log(z~ ),y (108(2- ) s, 112)(113) B(1/2.3/2) (2 0"
(log(z = ), c1r2ys carsy ((1/2) + (1/3))
-=-;-B(1/2,1/3)(z—c)" : (3)
[(log(z—c))l 0/2)]2 1\ 2 ;7 1
. + == - l=—(z-0"" . 4
(iv) o s} (2) BAI2,12)z-0) =T @-9™ . (4)
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(I1) Example of Theorem 2

(log logz - ), ), , (log (log(z —c), ), ,
(log (log(z o), ),

log(l
[(log(log(z-c), ), 1’ =y B(1/2,1/2)=y -7 .

(log (log(z - 9)), )l

(III) Example of Theorem 3

(ii)

5,5, (logllog (log(z~c)),), ), . (logloglog(z - <)), ), ), ,

-y-B(1/2,312) =L .

(i) S, (log(log (log(z-©)), ), )2
-5-B(1/2,3/2) = 2%
2 [(log(log (log(z - 2
Gy G [(log(log og(z -¢)),), ), ] 6 B <

S, (log(logllog(z- c)),),).

(1V) Example of Theorem 4

) Tl =((log(z— c)),“) ( (log(z - ¢)), H) , ((log(z ~ c))zﬂ)
T, (log(z - ¢)), (log(z - ©)), (log(z-c)),

(1

= % y-B(1/2,3/2)(z-—c)"---13gy m(z-c)”

(1) (E/z)z - ((log(z- C))y+1) / ((IOS(Z’C))ZH)
I (log(z - 9)), (log(z - ¢)),

=—£—-B(1/2,1/2)(z—c)'1= —%yn-(z -0

Part IIl. Application of N-fractional calculus to
the homogeneous Gauss equation
and Kummer's 24 functions.

Chapter 1. N-fractional calculus operator N method to
homogeneous Gauss equation
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§1. N’ method to the homogeneous Gauss equation

By our fractional calculus operator N’ method we obtain the following solutions

which contain the N-fractional calculus.

Theorem1. Let p €p° ={p|0 = p,| <0, VERY}, then the homogeneous Gauss

equation

Lig,z;a,8,y ]

g, -2+ {z@+B+)-y}+paB=0 (z=0,1)

has solutions of the form
(Group I );
- K(z"" ‘(z —1)"”")a =P, (denote)

_K(zﬂ Y. (z - 1)r-a l)p P
14 -K((z-l)y_ﬂ - z° ’)a 1 =¢(3).

@ =K((2“1)r-a-l a- r)ﬂ 1 2‘3’(4):
(Group I1);

"2 @-)7) =gy,

(2 )
’(Zﬂ (Z 1) ﬂ)ﬂ -r = Py
K2' (z- 1)—11 a- l)a L, = Py

@ =Kz ’((2—1)"" 4- ')ﬂ

a-y

= -Kz"
-Kz

( Group 1II );
@ -K(z-l)"'"’(z (z-1)"" 'oa

)
@ -K(Z“ l)r-ﬂ ﬂ(z -f . (Z l)a ’),,_p.—l -¢(w),
= Kz= 1)@ -1 20) | mpy,
¢ =K(z- 1)""'”((2 -1 Z-p)r_,_, = Puzy»

(0)

(1)
(2)
(3)
(4

(5)
(6)
(7)
(8)

(9
(10)
(11)
(12)

where ¢, =d'@p/dz* (k=0,1,2), @, =9 =9(z), zEC, and K is an arbitrary

constant, a, f and y are given constants.

Proof of Group I;

Operate N-fractional calculus operator N” directly to the both sides of (0), we

have then
N{Llp,z;a,8,71}
= ¢20v .(Zz —Z)+¢“v'{l(2‘V+a +ﬂ+1)—'V""}'}

+cpv~{v2+v(a+ﬂ)+aﬂ}-0 (z=0,1)

since
v R L o™\ - \ F(V +1)
N(p, 2") =(®,'2"), 4TV +1-k)(k +1)
where n EZJ (= Z*U{O})'

Choose v such that visv(a+p)+apf=0,
ve-a and -pf.

(@n)vt @)

we have then

(13)

(14)

(15)
(16)
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Substilute v = -« into (13), yield

Py (Z2=2)t e, lz(-a ++1) +a -y} =0. (17)
Therefore, setling
Vg =u=u@E)  (P=Uq,) (18)
we have
w e ZEEILINIATY o (m0,1) (19)
z -2z

from (17). Thesolution of this differential equation is given by

u=Kz"'"(z-1)""". (20)

Thus we obtain

=Kz (z=1)""") =@,  (denote) (z=0,1) (1)

from (20) and (18). Where K isan arbitrary constant. o _
Inversely, the function given by (20) satisfies(19) clearly. Hence (1) satisfies equation

(17). Therefore, the function (1) satisfies equation (0).
Forv ==f , in the same way (or merely by the change of a and 8 in (1), because

the equation (0) is symmelry for ¢ and # ) we oblain other solution
@ =.I<(Zﬂ-r'.(2_1))‘-""1)”-‘l = Q3 (Z #0,1) (2)
which is dilferent from (1), ifa= g .

Moreover, changing the order z*" and (z-1)" """ in (1) wehave other solution ([6]
Vol.1 & [7})

@ _K((Z_l)r-n-l.zn—r)ﬂ‘l =@, (z=0,1) - (3)
different from (1) when (a -1)€2Z, . In the same way we have other solution
‘P_K((z_l)r-n-l.zﬂ-r)ﬂ_l z¢“) (2#0,1) (4)

from (2), whichis different from (2) when (f -1) & Z; .

Proof of Group II;

Set p=2'¢, ¢=¢(2) (z=0,1) (21)
(Hence @, = Az' "¢ + 2'¢, and @, = A(A —1)2*"%¢ + 242*19, + 2*¢,). :
Substitute (21) into (0), we have then
b, (= 2)+ ¢ {2(a+ B+1+22)-24 -y}
+o-{AA-Drala+rfr1)+af-z"2(A-1+y)}=0 22)
where ¢, =d'¢/dz" (k= 0,1,2) and ¢, = ¢.
Here, we choose A such that
AA=1+y)=0 (23)
that is, A=0, 1-y. 29
(i) Inthecase A = () « .
In this case we have the same results as Group | .
(ii) Inthe case A =1-y
Substituting A =1 -y into (22) we have
b2 -2+ ¢, {2la+ -2y +3)+y -2} +o-{(L-¥)+al{1-7) + B} = 0. @5)
Next, operate N” to the both sides of (25), we have then
3192”,'(22 -z)+¢,"'{z(a +fA-2 +3+2v) +y —2—v}
+9, {vi+v(a+B-27+2)+(1-y)a+B+1-7)+ap} -0. (26)



Here we choose v such that
viev(a+f-2y +2)+(1-y)(a+ B +1-y)+afB =0, (27)
that is,
v=y-a-1 (28), and ve=y-f-1 (29)-

1) For the case of (28);
Substituting (28) into (26), we have

¢,+,,_,'(zz-z)+¢r_¢-{z(ﬂ—a+1)+a-1}-0. (30)
Set
b amu=u(z) ($=u,), @1)
we have then
u (2 -2)+u-{z(B-a+l)+a -1} =0 (32)
from (30). The solution to this differential equation is given by
u=Kz"(z-1"* (z=0,1) (33)

where K is an arbitrary constant.
Therefore, we obtain

p=K(z"@-07),, @=0,1) @9
from (33) and (31), hence we have
¢ =Kz (" @-17) _ =aq (z#0,1) (5

from (34) and (21).
Inversely, (33) satisfies (32), then (34) satisfiés (30) clearly. ’I‘herefor e (5 ) satisfies

(0), since we have (21).

2) For the case of (29);
In the same way as 1) (or merely by the change @ and 8 in (5) ) we obtain

p=Kz'T (2" (z-1)") =g, (270,1) (6)
B-r

as the solutions to the equation (0), which is different from (5)ifanp.
! and (z~1)"" in(5) we have other solution

= @ (z=0,1) (7)

Moreover, changing the order z°
- 1-y - -8, a-1
p=Kz ((z 1) 2 )a .

different from (5) when (a - y)éZ; . In the same way we have other solution
v =Kz (-1 2"), =ay =01 (8)

from (6), which is different from (6) when (8 -y)E Z, .

Proof of Group III;

Set —z-1)*9, =0 (z=0,1) sy

and substitute (35) into (0) we have then
b, (2 -2)+ ¢, {2+ pr1+28) -7}
sp-{z-1)' P +ra+Ap- —Ay)+(A+a)A+B)}=0. (36)
Here, we choose A such that . ,
AMA+a+pB-y)=0, @37)

that is, , ,
A=0, y-a-p8. ~ (38)

(i) In the case A =()
In this case we have the same resulls as Group L
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(ii) In the case A =y —a - f
In this case, substituting A=y -—a-f into(36) we have

b=+ {z@r-a-B+1)-rlee(r -y -F)=0. @)
Next operate N* to'the both sides of (39), we ahve then

b, (2 -2)+ 0, {z(@v+2y —a-p ) -v-y}

9, [V +v@2r ~a-B)+(r ~a)(r - B)} = 0. (40)
Here, we choose v such that
vi+v(2y —a-f)+( —e)r-B)=0, (41)
that is,
ve=a-y (42), and vmf-y . (43)

1) For the case of (42);
Substituting (42) into (40), we have

Preamy '(z’—z)+¢m_, -{z(a—ﬁ +1)—q} =0, (44)
Next set
bra, =W=wE)  (P=W o) (45)
we have then
w o (-z)+w-{z(@a-A+1)-a}=0 (46)

from (44). The solulion to this equation is given by

we=Kz"@z-1)"" (47)
where K is an arbitrary constant.
Hence we have
¢= K(z"(z - )r ant (48)

from (47) and (45). Therefore we have

¢ =K@E-1)"""zz-1)"") =0y (denoe) z#0,1) (9

from (48) and (35) which has A =y —a - 3,
Inversely, (47) satisfies (46), then (48) satisflies (44) clearly. Therefore, (9) satisfies
(0), since we have (35).

2) For the case of (43);
In the same way ( or merely by the change ¢ and B in (9) ) we vblain

0 =K@ -0z -D"") , =g @=0,1) (a0

Morcover, changing the order 2™ and (z—l)n" in (9) we have other solulion

P =K@-)""z-1)""z") =ew (z=0,1) (11)

which is different from (9) when(y —a -1)& % .
In the same way we have other solution

¢=K(@- 1)"“"’((z _ 1)"-12_”),-5-1 =@y (2#0.1) (12)
from (10), whichis different from (10) when (¥ - -1) €% .
Theorem?2. When a = f8 , we have the following identities,
P = P » P = Py P =P (49)
Py = Py Py = Pog> M Puy = Puzy» 50)

respectively.
Proof. It is clear, because they overlap each other when a =8, respectively.
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Theorem3. We have the follawing identities,

Py = P for (e -1)EZg, 1
¢(2) = "7(4) for (ﬂ - 1) EZ(; ' (52)
Pis)y = Py for (@-y)EZ,, (53)
Pis) = Py for (B-r)EZ,, (54)
Py = Py for (r-a-1)EZ, (55)
and Puy =Pz Sfor r-p-1nez,, (56)
respectively. :
Proof. Let 1 =u(z)€p° and v -v(z)Ep°, we have then
(u'v),=(v-u), for VvEZ;, (57)
and (uv),=(vu), - for umv, and v&Z!. (58)
Therefore, we have this theorem clearly. ([1] VolL1)
Theorem 4. We have the following identities,
Py ™ P2y = Py = Proy for a= 8, (a-1)EZ, (59)
Ps) ™ Py = Pny = Py for a=p, (a-vy) EZJ ! (60)
and Pisy = Pao) = Py = Pz for a=f, (yr-a-1)€EZ, . (61)

Proof. It is clear by Theorems 2. and 3.

Chapter 2. More familiar forms of the solutions obtained in
Chapter 1 and Kummer's twenty- four functions

§1. More familiar forms of the solutions Group I in Chap.1, § 1.

Theorem 1. By the fractional calculus of products (using the generalized Leibniz
rule ywe have ([6]Vol.1 & [7])
- - ey - —aiayi)
Py = K(z Te@z-1)"""* ‘)m_1 =2'""(1-2)' (1+ﬁ—y,1 a;2 Yim g (1)
= Vo)
for '(z“" a_l_"|< o (n€Z'U{0}), 220,1 and |2z -1)| <1, where,F, is the
usual Hypergeometric functions of Gauss. '
Note, For the notations Vay (k=1,2,:++,24) refer to the list shown in §2.
Proof. We have
- r(a) ( a-y y-8-1
= "‘1
oo =K T(a -n)I(n+1)" N )
= Ke =Ny _qyr-aet <« [(a)[(y -1-m)[(B+1-y + n)( z )
nll(@a-n)I(y —a)L(f+1-y)\z~-1
~Kesren LD @ —z)""‘-zb;(,a tl-y,1-a;2-y ;—3—) (4)
I'y - a) z-1
under the conditions, since
I(l-
I'(a - n) = (-~ LA -2)

[(n+1-a)

(z=0,1) (2)

(3)

(n€z*U{0}). (5)
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Therefore, choosing
K=UM (M =c="=9T(y -1)/T(y - @)) (6)

we have (1) from (4).
By the change of @ and f in(1), wehave

- -a- YR IV 7)
272y E(1va -y 1= 8321 7) Vo (
Theorem 2. By the fractional calculus of products , we have

1
P = Kl(z-17 " 2") -2""(1—2)"“'”;1'](1—0, y-a;l-a-B+y;l- z)

(8)
= Vi
for ((z-l)""‘),_w|< w (n€Z'U{0}), 220,1 and |(z-1)/z] <1.
Proof. Wehave '
@ r(a) f '_17‘3'1 a-y (2#0,1) (9)
o K.Zz [(a-m)(n +1)\(z ) )“-*-" @ .

tn(y-8-1)_a-y e (=)' T(@T(a+B-y -WL@ —a+tm)(l-z\"
- K" -2) ‘,Zo nT(a-mLA+ -y -a) \ z ) o

1
-Ke"‘f"“"———r(“*ﬂ ")z"“'a-z)"""’,Fl (1—a,r -a;1~a—ﬁ+r;1-;) 11

FA+p-7)
under the conditions. Therefore, choosing
K=1M (M=e"""*YT(a+B-y)/T1+B-7)), 12)

we have (8) from (11).
By the change of @ and 8 in (8), we have
1
PTA- " NE(1-p,y -Bi1-a-prri1-d)-vh,. @
Theorem 3. Without the use of generalized Leibniz rule, we have

1
Py = K(z*7 - -1y )m_1 =(-z)",F (y -a,B;f-a+l ,i':';) (14)

= Vusy»
for l((l-z)"“"“"),_,l <w (k€z'U{0}, 20,1 and [1-z|>1.
Proof. Using the identity

A - 1\
z*-(z-1)*\1-i—1—) -(z—1)*21r(,c(+11))lf;§1:11)_k)(1-z)-‘ (I11-z|>1) (5)

-z
we have
Py = k(2 —1)"“"')‘”_l A=a-y) (z=0,1) (16)
= =1)I(A +1 ) orope -
4 I‘(k( " 1))r((/x " 1)_ pla-art =), @7

m w0 CO (@ -y +1) (o (18)
Ke :t.qk!l"(az—y+1—I«:)\(1 2) )“" ,
[ k
- Ke'™-8-D (1 _ -8 COT@-y +DIB+E) . _ 19)
Ke -2 ;kz T(a-y+1-k)I(-a+B+1+k) )
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= in(a-4-~1) F(ﬁ) N\ _ L '_L
Ke ——————~—r(ﬂ_a+1)(1 z) 2‘F;(y a,B;B a+1,1_z),

under the conditions.
Therefore choosing

K=UM (M =e"#90(8)/r(B-a+1))

we have (14) from (20).
By the change @ and § in (14), we have

- 1
1-2) zF,(r -B,a;a-p +1‘T-'-_z') =V -

Theorem 4. Without the use of generalized Leibniz rule, we have

(20

(21)

(22)

o= K(2"7 @ =)*) = -2 E(y ~a,y - fi1-a-Byi1-2) @)

= Wy

for [(@=27*7),_|<= k€z'U{0}), 220,1and|1-2]<1.

Proof. Using the identity
A (e O (CD'TA+1)
2 ={1-(1-2) 4Tk +)I(A +1-k)

we have
wu)-K(zA'(z-l)'”’")a_‘ A=a-y) (z=0,1)
O__ D TA+Y (0 & s
ATk T OIAr1-F)\ D €7D )uc
- ix(y-8-1) Q (_1)"1‘(3' +1L { Y 2 2
Ke ATRDTA+1-F) ¢ 72 )
o (-)'T@-y+DC(a+B -y -k) (1 —g)tor-e-t
2Tk +1)T(a -y +1-k)TQL+ B -7 -kK)

a-1

- Kt r-81

-Ke"""“’r(a+ﬂ_7)(1—z)"“"zF,(y -a,y-B;l-a- ﬂ;l-z)

Fa+g-7)
under the conditions. Therefore, choosing :
K=1/M (M=e""""C(a+f-y)/TA+B-7))

we have (23) from (29).
By the change a and 8 in (23) we have (23) itself again.

Theorem 5. Without the use of generalized Leibniz rule, we have

P = Kz @ -0 *) = B (B -1 +1, 81 8- 1)

= V)

for|(z##14) lcw (k€zZ'U{0}), 2=0,1and|z|>1.

Proof. Using the identity

doaf IV a__ (DT@+)
(z-1 Z(l z) 2 ATk +)T(A+1-k)

-2 (1-z|<1)

7t (lz]>1)

(24)

(25)

(26)

27)

(28)

(29)

(30)

@31)

(32)
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o = K(z27(z-1)) (A=y-B-1) (z=0,1)

R (=D'C'(y - B) fza-ﬁ—x-k)

& Tk +1)I(y - B - k)' @l

e Ketr 8N (-1)*I(y - BI(B +k) -
4 T(k+)T(y -B-K)[(B+1+k-a)

oy LB) . oa _ A 1
“  Tgmar E(p-v e, pip-artiy)

under the conditions. Therfore, choosing
K=1UM (M=-"*T(B)/T(-a+1)
we have (31) from (36).
By the change of @ and 8 in (31), we have

(-Z)'“zl‘l(a—r +1,a;a—ﬂ+1;§) =V, -

=K

Theorem 6. Without the use of generalized Leipniz rule, we have
O = K(z*7 - @=17"7) =2 F(a -y +1,8-7 +1;2-7;2)

=Yan
for I(z‘”"' )a-ll <w (k€Z'U{0}), 2=0,1 and |z]<1.
Praof. Using the identity

A ixA 2 ima__ (DA +1) <
(z-D* =" (1 -2)* =e A,E,r(kn)r(xu-k)zt (Iz]<1)

we have
o= K7 @-1),, (A=y-B-1) (z=0,1)
- getrr-a g __CDITA+L) (24"
STk +DI(A +1-k) «-1
- Ke'"('-a")zl-yg (“1)kr(7 -B)(y -1-k) 2
STk + DIy - B-k)L(y - —k)
-Ke“"'“'”’-——g((::i))z“’,E(a —y+1,B -y +1;2-7;2)
under the conditions. Therefore, choosing
K=1/M, (M=e"v-9C(y -1)/T(y - o))
we have (39) from (44).
By the change @ and § in (39), we have (39) itself again.

§ 2. Commentaries

(33)

(34)

(35)

36)

37)

(38)

39

(40)

(41)

(42)

43)

(44)

(45)

(I) When none of the numbers y, a -, y —a -, is equalto an integ.er, each of
the following twenty-four functions ( due to Kummer) satisfies the homogeneous Gauss

equation §1,(0) in Chap.1. [8].
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List of the twenty-four functions by Kummer

Viy=2F(a, B; y; 2) Viss=2F (&, fia+f+1—y; 1 —2)
Va=(—2)" " Fy—a,y— B y; 2) V=2 ""F e+ 1=y, f+1—via+f+1-y; 1
- |
V(J)=(l—z) 'zFx(a,'}’“p; % 7‘2—1‘) V(1,=Z"2F1(a,a+l—'y;a+ﬂ+l-—-y; I——)
bnad 2
- 1
Vig=(l-2) ’zﬂ(?“‘a, B v —Z—ZT> V(a)=z_‘sz(ﬂ+ 1=y, Bat+pB+1—y; l—-z—)

Vm‘(-z)_'zﬂ(ﬁ. at+l—ya+l - -—‘—)
z

Vuoy=(~2)" "l —2)""”11’1(' —By—Hati-p -l-)
z

V(11)=(l-z)—'zpl(“v Y=Bat1—p; : )

{—2z

Vuz)=(—2)"’(l—2)""'2F1<a+1—1', 1-fia+1-p i : )
~z

V(“,z(—z)""zFl(ﬁ‘-{- 1=, BB+ 1 —a; ! )

4

Pug=(=21"1(1 —2)'_'—’1F1(' —a, y—o; f+1—a —I—)
z

V(up‘—'(l—2)-‘21:1(/’.)‘*‘1;/’+|—¢; l‘ )

—2Z

Vae=(—2)'""1 "z)r-’-le‘(p+ t=rl=afei-o 1-1-2>

Van=2'""F\(a+1—-y, f+1~y;2—y; 2)
Vug=2'""l=2)' " 1, F (1 —a, 1 - §;2—y; 2)

Viugy=2'"1(1 —-z)""‘zF|<az+ =y, 1 =p;2—y; z-z-l )

V(zo)=zl_'(‘—z)’—‘-lel(ﬂ"‘l“")', l—a; 2~y zjl )

Van=0-2"" " F(y—a,y—B;y+1 —a—f; | —2)
Van=z2'""1 =z * "4, F (1 —a, | = f; y+1 —a—f;1~2)
1

V(m=2""(1-Z)""‘zF.(v—a, I—agy+1—a—p l——-—)
z

V(aq'—'z‘ﬂ(l—2)'—"‘21‘.1()"‘”: I=By+1—a—p; l—;l—) .

Moreover, we have the following six identities.

(1) Vo =¥y =V = Vs (iv) Vasy =Vao = Vasy = Vg »
(it) Viy = Vigy =¥y = Vg » (v Vary = Vasy = Vo) = Viawy 5

(i) Vo) = Yooy = Voan = Py - v Wy = Ve = Vi = Vo -

74



(IT) By our N-fractional calculus operator N” method to the homogeneou.s Gauss.‘ equa-
tion we obtained the solutions shown in Chap. 1, which have the fractional differin-
tegrated forms respectively. .
The translations from our solutions Chap.1, Group I to the more familiar forms which
contain the well known Gauss Hypergeometric functions yield, as we see in Chap.2,§1,

V.

Vay Yooy Veasy Vi Vasy Yanr Vens Vanr Hop Vany

(refer to the list described above).
In the same way as the procedure shown in Chapter 2. §1, the transrations from the
solutions of Group II yield
Vs Ve Vi s Veasys Vg Vasy Ve Yoy Vs Vays
and the transrations from the solutions of Group IlI yield
Vasy Maoy Virys Viey Vanys Vaasy Visyr Vaoy Yoy Vo -
Therefore, we see that almost all functions of the group V;, <}y, in the list
described above can be derived directly from our solutions of the Groups I, II and III in
Chap. 1, which have fractional differintegrated forms, except only two functions ¥,

and Vi, . (For the calculations from the solutions of Group II and III, refer to JFC Vol.
10, November 1996, pp 9-23.)

However; we have the relationships (i) and (ii) respectlively. )

Therefore, we can derive the Kummer's twenty-four functions from our solutions
in Chap. 1.

That is, the solutions obtained by our N” operator method cover the Kummer's 24

functions. _ .
(I11) All mathematicians should compare our N-fractional calculus, N-transformation
and N-fractional calculus operator N method to the ordinary and pa.rtial diff_eren.txal
equations with that of other fractional calculus, for example, - Riemann-Liouville,
Woeyl, Osler, Oldham and Spanier's ones. .

(IV) Hitherto, only the solutions of the formsin Chap. 1, Group I had been treatfd in
the applications of fractional calculus to differential equations. However, this [;s
insufficient. Namely, we must add the solutions such as the forms of Group II and [_ ,
which are shown in Chap. 1,§ 1. For the solutions to the other differential

equations the situations are same.
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