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Introduction
Here is ashort introduction to the type IV symmetric domains and to the moduli theory of
$\mathrm{K}3$ surfaces. Because of the lack of time, I cannot write enough details at various points.
The referencens given below are far from complete to fill the missing details. But the readers
might meet the necessary papers using them as the starting points. Also the articles of the
speakers of the workshop should contain related more references.

1Hermitian symmetric domain of type IV

For this section, we refer to Helgason [1], Satake [2],

1.1 Symmetric spaces

A Riemannian symmetric manifold $X$ with metric form $\mu=\sum_{\dot{\iota},j}gijd_{X:}\otimes dxj$ is called $\mathrm{a}$

symmetric space, if for any point $x\in X$ there is an involutive isometry $s_{x}$ of $X$ whose fifixed
points set $\{y\in X|s_{x}(y)=y\}$ is $\{x\}$ . In particular at the tangent space $T_{x}$ of $X$ at $x$ , $s_{x}$

induces (-1) multiplication.
Let $Iso(X)$ be the group of all the isometries of $X$ with compact-0pen topology. Then the

subgroup of $Iso(X)$ generated by all the symmetries acts transitively on $X$ , because any $\mathrm{t}\mathrm{w}\rho$

points $x,y$ in $X$ is connected by $\mathrm{a}$ fifinite number of geodesic arcs $C_{i}(1\leq i\leq n)$ such that the
terminal points are fifinite number of points $x=x_{0}$ , $x_{1}$ , $\cdots$ , $x_{n}=y$ with $End(C_{i})=\{_{X_{\dot{|}-1}}, x_{i}\}$ .
All the more $Iso(X)$ acts on the symmetric space $X$ transitively.

The stabilzer Stab(x) of $x$ in $Iso(X)$ is aclosed subgroup, which is known to be compact
(cf. Theroem 2.5 of [1]). The derivation induces anatural continuous homomorphism $i_{x}$ :
Stab(x) $\ni g\vdasharrow dg\in O(T_{x}, \mu_{x})$ . Here $O(T_{x}, \mu_{x})$ is the orthogonal group on the linear space
with definite inner product $\mu_{x}$ , hence it is the orthoganal group $O(n)$ with $n=\dim_{\mathrm{R}}X$ .

Given an element $h$ in $O(T_{x},\mu_{x})$ , then by the uniqueness of the solution of the geodesic
equation with inital value $t\in T\mathrm{x}$ , it is uniquely extended to an element of Stab(x) ($\mathrm{i}.\mathrm{e}.$ , we use
the exponential map $\exp$ : $T_{x}arrow X$ . Therefore $i_{x}$ is abijective continuous homomorphism
from acompact group, hence an isomorphism. Stab(x) is a compact Lie group and the
quotient $Iso(X)/Stab(x)\cong X$ is a manifold. We can show that $Iso(X)$ is also a Lie group
with compatible smooth structure on $Iso(X)/Stab(x)\underline{\simeq}X$ cf. Theorem 3.3 of [1] $)$ .

1.2 Decomposition

There are symmetric spaces of compact type which is isomorphic to ahomogeneous space
$G/K$ with $G$ acompact Lie group and $K$ aclosed subgroup. There are symmetric spaces of
non-compact type which is isomorphic to $G/K$ with $G$ a non-compact semisimple Lie group
and $K$ is amaximal compact subgroup of $G$ . There are symmetric space of Euclidean type,
which is a flat manifold, $\mathrm{i}.\mathrm{e}.$ , locally an Euclidean space
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In general a simply connected (globally) symmetric space $X$ decomposes as a product
$X^{0}\cross X^{+}\cross X^{-}$ of Euclidean type $X^{0}$ , compact type $X^{+}$ and non-compact type $X^{-}$ (cf.
Proposition 4.2 of [1] $)$ .

Asymmetric space of non-compact type (resp. compact type) decomposes into irreducible
factors corresponding to the decomposition of $G$ into simple factors. An irreducible symmetric
space $X$ of non-compact type (resp. compact type ) is a quotient of a simple Lie group $G$ .

1.3 Cartan decomposition

If $X=G/K$ is a non-compact symmetric space with $G$ a semisimple Lie group of non-
compact type, then the symmetry $s_{x\mathrm{o}}$ at $x_{0}=1\cdot$ $K\in G/K$ induces an isomorphoism $g\in$

$Garrow s_{x_{0}}gs_{\overline{x}0^{1}}\in G$ of $G$ . Passing to the Lie algebra we have $Ad(s_{x_{0}})$ : $\mathrm{g}$ $arrow g$ . The eigenspace
decompostion $\mathrm{g}$

$=\mathrm{g}^{+}\oplus \mathrm{g}^{-}$ with respect to this involution is the Cartan decomposition
$\mathrm{g}$ $=t$ $\oplus \mathfrak{p}$ of the non-compact semisimple Lie algebra $\mathrm{g}$

$=\mathrm{L}\mathrm{i}\mathrm{e}(G)$ . The space $\mathfrak{p}$ which is the
orthogonal complement of $t$ with respect to the Killing form is canonically identified with the
tangent space $T_{x\mathrm{o}}\cong \mathrm{g}/t$ of $X$ at $x_{0}$ . Moreover the invaraiant Riemannian metric on $T_{x_{0}}$ is
proportional to the restriction of the Killing form to $\mathfrak{p}$ , if $X$ is irreducible.

1.4 Classification
Irreducible symmetric spaces of compact type and non-comapct type are classifified by \’Elie
Cartan. Among them, Type $\mathrm{B}\mathrm{D}\mathrm{I}$

$SO_{0}(p+q)/SO(p)\cross SO(q)$

is our concern (cf. Chapter $\mathrm{X}$ of [1], p.453 for $\mathrm{B}\mathrm{D}\mathrm{I}$).

1.5 A direct description of BD I type symmetric spaces

Assume that $p$ , $q\geq 1,p+q\geq 3$ . Let $Q$ : $\mathrm{R}^{p+q}arrow \mathrm{R}$ be areal quadratic form of signature
$(p+, q-)$ . Let $G$ be the identity component of the orthogonal group $O(Q)$ , which is identifified
with the identity component $SO_{0}(p, q)$ of SO(p, $q$) if $p+q$ even, and with the group SO(p, $q$)
itself if $p+q$ is odd.

There is a natural description of the symmeytric space

$X=G/K=SO\mathrm{o}(p, q)/SO(p)\mathrm{x}$ SO(q),

in terms of the minimal majorants of $Q$ , which appears in the reduction theory of indefinite
quadratic forms (cf. A.Borel [3]).

Proposition For the quadratic form $Q$ given above, there is canonical bijections between
the following 3 data:
(i) $R:\mathrm{R}^{p+q}arrow \mathrm{R}$ is a positive definite quadratic forms such that for any $v$ in $\mathrm{R}^{p+q}$ we have
$|Q(v)|\leq|R(v)|$ and $R$ is minimal among such majorating positive-definite quadratic forms
(minimal majorant);
(ii) adecompostion of $V=\mathrm{R}^{p+q}$ into two subspaces $V=V+\oplus V_{-}$ such that

$Q|V_{+}$ is positive definite, $Q|V_{-}$ is negative-defifinite, and $Sq|V+$ $\cross V_{-}\equiv 0$ .

Here $S_{Q}$ is the symmetric bilinear form on $V\mathrm{x}V$ associated with $Q$ ;
(iii) apositive-definite matrix $R$ such that $(QR^{-1})^{2}=1_{n}$ , or equivalently $QR^{-1}Q=R$ ;
(iv) achoice of maximal compact subgroup in $G=SO_{0}(p, q)$ .
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Proof) Probably it is not necessary to give a detailed proof. Similutaneous diagonalization of
$Q$ and $R$ shows that both $Q$ and $R$ are written in diagonal forms: $Q(v)= \sum_{i=1}^{p+q}a_{i}v_{i}^{2}$ , $R(v)=$

$\sum_{i=1}^{p+q}b_{i}v_{i}^{2}$ . Here among $a_{i}$ , $p$ elements are positive and $q$ elements are negative by Sylvester’s
law of inertia. For $R$ to be aminimal majorant, we have to set $b_{i}=|a_{2}|$ for each $i$ .

The correspondence are given as follows:
$(\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i})$ :Given aminimal majorant $R$ , we set

$V\pm=$ { $v\in V|$ for any $w\in V$, $S_{Q}$ ( $v$ , $w)=\pm S_{R}(v,$ $w)$ }.

(ii) $\Rightarrow(\mathrm{i})$ :Given adecomposition in the statement (ii), we defifine $R$ by

$R(v)=Q(v_{+})-Q(v_{-})$ for $v=v_{+}+v_{-}(_{-}\pm\in V\pm)$ .

(ii) $\Rightarrow(\mathrm{i}\mathrm{i}\mathrm{i})$ :The decomposition in (ii) gives an involutive automorphism

$P$ : $v=v_{+}+v_{-}\vdasharrow v_{+}-v_{-}(v\pm\in V\pm)$ .

Let us denote by the same sybol $P$ the matrix corresponding to $P$ . Then $P^{2}=1p+q$ and $QP$

$(=R)$ is apositive definite matrix which is obviously minimal majorant by the fifirst part of
this proof.
(iii) $\Rightarrow(\mathrm{i}\mathrm{i}):V=V_{+}+V_{-}$ is the eigenspace decomposition with respect to the involutive
automorphism $QR^{-1}(=P)$ , $\mathrm{i}.\mathrm{e}.$ ,

$V_{\pm}=\{v\in V|Pv=\pm v\}$ .

(i), (ii), $(\mathrm{i}\mathrm{i}\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{v}):$ Let $K$ be the subgroup of $G$ defifined by $K=G\cap O(R)=\{g\in G|g(V_{\pm})\subset$

$V_{\pm}\}$ . Then this is isomorphic to SO (p) $\mathrm{x}$ SO(q), a maximal compact subroup. Conversely if
amaximal compact subgroup If is given. Then the the integral

$R(v)= \int_{K}|Q(k\cdot v)|dk$

Here $dk$ is the normalized Haar measure on $K$ .
We refer to Proposition (5.2) of Borel [3] here.

2Hermitian symmetric spaces of type IV

Asymmetric space $X=G/K$ with acomplex structure and the given Riemannian metric is
Hermitian is called a Hermitian symmetric space, if the symmetry $s_{x}$ at each point $x\in X$

is also holomorphic with respect this complex structure. In particular the multiplication of
$U(1)=\{z\in \mathrm{C}||z|=1\}$ on the tangent space $T_{x}$ of each point $x\in X$ is induced by elements
in the stabilizer Stab(x), the (connected) group $K$ have a subgroup isomorphic to $U(1)$ which
is central in $K$ .

We can check those symmterci spaces $X=G/K$ with connected $G$ and non-trivial center
$Z(K)$ which contains $U(1)$ . For $BDI$ type symmetric spaces $SO_{0}(p, q)/SO$ ($p\mathrm{x}$ SO(q)) this
happens only when $p=2$ or $q=2$ .

2.1 Adescription by real Hodge structure

This section is areproduction of Appendix of the book of Satake [2].
The tyPe IV classical domains have various important realizations. We review those

briefly here
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2.2 Poincare model (Harish-Chandra realiztion)

This is the unit disk model. Our domain is written as

$D_{IV}=$ { $z=(z_{1}$ , $\cdots$ , $z_{q})\in \mathrm{C}^{q}||^{t}z\cdot z|^{2}+1-2^{t}\overline{z}\cdot z>0$ and $|^{t}z\cdot z|<1$ }

$= \{z\in \mathrm{C}^{q}|1-t\overline{z}z>\sqrt{(^{t}\overline{z}\cdot z)^{2}-|^{t}z\cdot z|^{2}},1-\dot{.}\sum_{=1}^{q}|z_{i}|^{2}>\sqrt{(\sum_{i}|z_{j}|^{2})^{2})-|\sum z_{j}^{2}|}\}$ .

We may refer to [4].
The Borel embedding of this realization is given by

$(z_{1}, \cdots, z_{q})arrow(1$ : $z_{1}$ :... : $z_{q}$ : $\sum_{i=1}^{q}z_{i}^{2})\in \mathrm{P}^{q+1}$ .

2.3 Realization as a tube domain

Adomain in $\mathrm{C}^{q}$ of the form $\mathrm{R}^{q}+\sqrt{-1}V$ with $\mathrm{a}$ (positive) cone $V$ in $\mathrm{R}^{q}$ is called a tube
domain. The symmetric domains of type $\mathrm{I}\mathrm{V}$ are isomorphic to tube domains. The description

of this realization as tube domain is given as follows.
Set

$D_{tube}=\{((_{1},$ $\cdots$ , $(_{q})\in \mathrm{C}^{q}|{\rm Im}\zeta_{1}>$

Then the Borel embedding is given by the mapping

($(_{1}, \cdots, \zeta_{q})\in D_{tub\mathrm{e}}\vdasharrow(1$ : $\zeta_{1}$ : .. . : $\zeta_{q}$ : $(_{1}^{2}- \sum_{j=2}^{q}\zeta_{i}^{2})\in \mathrm{P}^{q+1}$ .

Any point $(\xi 0:\xi_{1} : \cdots : \xi_{q}+1)$ in the image satisfifies a quadratic relation:

$Q( \xi):=-\xi_{0}\xi_{q+1}+\xi_{1}^{2}-\sum_{\dot{|}=2}^{q}\xi_{i}^{2}=0$ .

Moreover for the symmetric bilinear form $S_{Q}$ associated with $Q$ , we have

$S_{Q}(\xi,\overline{\xi})$ $=$ $- \xi_{0}^{-}\xi_{q+1}-\xi_{0}\xi_{q+1}^{-}+2\xi_{1}\xi_{1}^{-}-2\sum_{i=2}^{q}\xi_{\dot{\mathrm{t}}}\overline{\xi}_{\dot{\iota}}$

$=$ $-( \zeta_{1}^{2}-\sum_{i=2}^{q}\zeta_{i}^{2})-\zeta_{1}^{2}-\sum_{=2}^{q}\zeta_{i}^{2}+2\zeta_{1}\overline{\zeta}_{1}-2\sum_{i=2}^{q}\zeta_{i}\overline{\zeta}_{i}$

$=$ $4({\rm Im} \zeta_{1}^{2}-\sum_{i=2}^{q}{\rm Im}\zeta_{i}^{2})$

$>$ 0.

2.4 Real parabolic subgroups

In general the Witt index $r$ of $Q$ with signature $(p+, q-)$ over $\mathrm{R}$ is $\min(p, q)$ . The split
componentA of a minimal parabolic subgroup of $G=SO(Q)$ is of rank $r$ .
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When $r=2$ , the restricted root system $\Phi(\mathrm{g}, a)$ is of $BC_{2}- \mathrm{t}\mathrm{y}\mathrm{p}\mathrm{e}$ : there are two (types of)
maximal standard parabolic subgroups $P_{J}$ and Ps containing the minimal paraboric subgroup
$P \min$ . One has non-abelian unipotent radical, the other abelian unipotent radical which is
the translation of the real directions for the tube domain model of $G/K$ . The semisimple
non-compact part of the Levi componet of $P_{J}$ is $SL(2, \mathrm{R})$ . The semisimple part of the Levi
part of $Pg$ , which is sometimes refered as the Siegel parabolic subgroup, is isomorphic to
SO $(1, q-1)$ .

The parabolic subgroups defifined over $\mathrm{Q}$ is discussed later.

3 Arithmetic discrete subgroups

Here we recall the typical ways to construct arithmetic discrete subgroups $\Gamma$ in $G=SO_{0}(2, q)$ ,
and review the basic facts related them.

3.1 Definition

The simplest way to obtain such group in $SO_{0}(p, q)$ for general $p$ is to consider aquadratic
form $Q$ : $\mathrm{Q}^{p+q}arrow \mathrm{Q}$ of signature $(p+, q-)$ defined over the rational number field Q. Then
we can consider the orthogonal group SO(Q) (or $O(Q)$ depending on one’s purpose) which
is a semisimple algebraic group defifined over $\mathrm{Q}$ if $p+q\geq 3$ .

Choose a lattice $L$ in $\mathrm{Q}^{p+q}$ , then there is arational number $r$ such that $rQ$ becomes
an integral-valued function on $L$ (or even-integral valued if you like). Then in the group
of $\mathrm{Q}$-rational points $5\mathrm{O}(\mathrm{Q})(\mathrm{Q})$ of the algebraic group SO (Q) or in the real semisimple Lie
group of the real points of SO (Q), we can consider the intersection

$\Gamma:=\mathrm{A}\mathrm{u}\mathrm{t}(L)\cap SO(Q)(\mathrm{Q})\cap SO(Q)\mathrm{o}(\mathrm{R})=\mathrm{A}\mathrm{u}\mathrm{t}(L)$ $\cap SO(Q)\circ(\mathrm{R})$ .

Then $\Gamma$ is a discrete subgroup of $G=SO(Q)_{0}(\mathrm{R})$ with finite covolume by the reduction
theory ( $\mathrm{c}/$. Borel, and Harish-Chandra $\mathrm{I}$ ).

The Witt index of the quadratic form $Q$ over $\mathrm{Q}$ is equal to the dimension of the maximal
$\mathrm{Q}$-split torus in SO (Q), $\mathrm{i}.\mathrm{e}.$ , the $\mathrm{Q}$-rank of SO (Q).

More general way to have an arithmetic subgroup $\Gamma$ in $SO\mathrm{o}(p,q)$ is to consider a totally
real number fifield $F$ of finite degree $d$ and aquadratic form

$Q$ : $F^{p+q}arrow F$

over $F$ , which is of signature $(p+, q-)$ with respect areal embedding $v_{1}$ : $F$ (: $\mathrm{R}$ and defifinite
with repect to the remaining $d-1$ embeddings $v\dot{.}$ : $F\subset \mathrm{R}(2\leq i\leq d)$ .

Now consider the diagonal map

SO (Q) $(F) arrow\prod_{=1}^{d}$ SO $(Q\otimes(F,v_{i})\mathrm{R})$

from the F-rational points SO (Q) (F) of the special orthogonal group SO(Q) over $F$ to the
product of real groups. Compose this with the first projection to SO $(Q\otimes(F,v_{1})\mathrm{R})$ . Then the
image $\Gamma$ of the integral part $\mathrm{A}\mathrm{u}\mathrm{t}(\mathcal{O}_{F}^{\mathrm{p}+q})\cap SO(Q)(F)$ of SO $(Q)(F)$ is the requited arithmetic
subgroup. When $d\geq 2$ , this group is of $\mathrm{Q}$-rank 0.
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3.2 Parabolic subgroups (global)

Let $V$ be afinite dimensional vector space of dimension $n$ with a non-degenerate $\mathrm{Q}$-valued
quadratic form $\psi$ on $V$ . We consider the algebraic group $G=SO(V, \psi)$ .

Now assume that either of the following equivalent condistions:
(i) rankQG $=2$ ;
(ii) the Witt index of $(V, \psi)$ is equal to 2.

Under this assumption, we can fifind a maximally totally isotropic subsapce of dimQ $W_{-1}(V)=$

$2$ . We set

$W_{0}(V):=$ { $v\in V|\psi(v,$ $w)=0$ , for any $w\in W_{-1}(V)$ }.

Further choose a subspace $W_{-2}(V)\subset W_{-1}(V)$ , dimQ $W_{-2](V)}=1$ and the assocaited sub-
sapce

$W_{1}(V):=$ { $v\in V|\psi(v,$ $w)=0$, for any $w\in W_{-2}(V)$ }.

Then we obtain a flag

$\mathcal{F}:=\{W_{-3}(V)=\{0\}\subset W_{-2}(V)\subset W_{-1}(V)\subset W_{0}(V)\subset W_{1}(V)\subset W_{2}(V)=V\}$

and the associated minimal parabolic subgroup

$P\tau$ $=Stab(F)$ $:=\{g\in G|g(W_{i}(V))\subset W_{i}(V)\}$ .

and its unipotent radical

$N\tau$ $:=$ {$g\in P_{F}|gr(g)|_{gr_{W.(V)}}\equiv 1$ for any $i$}.

We have the natural isomorphism of algebraic groups

$P_{F}/N_{F}\cong \mathrm{G}_{m}\cross \mathrm{G}_{m}\mathrm{x}$ SO $(Grw_{0}(V), \psi’)$ .

The reduction theory implies that the set of double cosets: $\Gamma\backslash G/PF$ is finite.
We have two standard maximal parabolic subgroups containing the above minimal parabolic

subgroup, by forgetting the part of the data of the falg:
(A): Siegel parabolic subgroup Ps assocaited with the partial flag:

$W_{-2}(V)\subset Wo(V)\subset W_{2}(V)=V$.

In this case, $Ps/N_{S}\cong \mathrm{G}_{m}\mathrm{x}SO(Grw_{0}, \psi’)$ . Here $\psi^{l}$ is the naturally induced metric from $\psi$ .
(B): ’Jacobi’ parabolic subgroup $P_{J}$ associated with the partial flag:

$W_{-1}(V)\subset W_{0}(V)\subset W_{1}(V)=V$.

In this case, the Levi part of $P_{J}$ is isomorphic to the quotient $P_{J}/N_{J}\cong GL(G\mathrm{r}_{W_{-1}(V)})\cross$

SO $(gr_{W_{0}}(V), \psi’)$

3.3 compactiflcation
The Baily-Borel-Satake compactiflcation of the aritmetic quotient $\Gamma\backslash Dw$ is obtained by
attaching a finite number of points ($=\mathrm{z}\mathrm{e}\mathrm{r}\mathrm{o}$-dimensional boundaries) parametrized by the
double cosets $\Gamma\backslash G/Ps$ and a finite number of elliptic modular curves ($=\mathrm{o}\mathrm{n}\mathrm{e}$ dimensional
boundaries) numbered by the finite set of double cosets $\Gamma\backslash G/P_{J}$ . The latter boundaries are
associated with the semisimple part $SL(GrW_{-1})\underline{\simeq}SL(2, \mathrm{Q})$ of the Levi subgroup of $P_{J}$ .
Hence these are elliptic modular curves.

The topology and the analytic structure on this enlargement of the quotient $\mathrm{r}\backslash v_{IV}$ re-
quires some more space and time. The readers should consult with the original papers.
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4 Fundamentals on K3 surfaces

4.1 Definition of K3 surfaces

Definition A connected complex analytic manifold of dimesnion 2 is called an analytic surface.
A compact analytic surface $S$ with the conditions:
(i) $q(S)=\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{c}H^{1}(S, \mathcal{O}s)$ $=0$ ;
(ii) $c_{1}(S)=0$

is called $K\mathit{3}$ surface.
The short exact sequence of sheaves on $S$ :

$0arrow \mathrm{Z}arrow \mathcal{O}_{S}arrow \mathcal{O}_{S}^{*}arrow 1$

derives a long cohomological sequence:

$0arrow H^{1}(S, \mathrm{Z})arrow H^{1}(S, \mathcal{O}s)arrow H^{1}(S, \mathcal{O}^{*}s)arrow H^{2}(S.\mathrm{Z})arrow H^{2}(S, \mathcal{O}s)arrow\cdots$ .

Then the first condition $q(S)=0$ implies that

$H^{1}(S, \mathcal{O}s)=\{0\}$ , $H^{1}(S, \mathrm{Z})=\{0\}$ ,

and the Picard variety
$\mathrm{P}\mathrm{i}\mathrm{c}^{0}(S):=H^{1}(S, \mathrm{Z})\backslash H^{1}(S, \mathcal{O}s)$

vanishes. Therefore the Picard group Pic(5):$=H^{1}(S, \mathcal{O}_{S}^{*})$ is isomorphic to the N\’eron-Severi

group

$NS(S):={\rm Im}(c_{1,B}=\delta:H^{1}(S, \mathcal{O}^{*}s)arrow H^{2}(S, \mathrm{Z}))=\mathrm{K}\mathrm{e}\mathrm{r}(H^{2}(i) : H^{2}(S, \mathrm{Z})arrow H^{2}(S, \mathcal{O}s))$ .
The vanishing of the first Chern class $c_{1}(S)$ means that the image of the class $\mathrm{o}\mathrm{f}\wedge^{2}\Theta s$ or
its dual $\Omega_{S}^{2}=\wedge^{2}\Omega_{S}^{1}$ in Pic(O5) via $\mathit{6}=c_{1,B}$ vanishes in $NS(S)$ . Here $\Theta s$ is the sheaf of
holomorphic tangent on $S$ and $\Omega_{S}^{1}$ the sheaf of holomorphic cotangent on $S$ , and $\Omega_{S}^{2}$ the
canonical sheaf on $S$ , respectively. Thus we have an isomorphism of sheaves

$\Omega_{S}^{2}\cong \mathcal{O}_{S}$ .

Therefore $\Gamma(S,\Omega_{S}^{2})$ has non-zero section $\omega$ which is unique up to constant multiple, that
is nowhere vanishing on $S$ . Moreover Serre duality implies that $H^{2}(S, \mathcal{O}s)$ is also of one
dimension. Hence

$p_{g}(S)=\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{c}H^{2}(S, \mathcal{O}s)=1$ ,

and

$\chi(\mathcal{O}s)=\sum_{\dot{|}=0}^{2}(-1)^{i}$ dimc $H^{i}(S, \mathcal{O}s)=1-q(S)+p_{g}(S)=2$ .

As apart of Riemann-Roch theorem, we have ${\rm Max}$ Noether’s formula:

$\chi(\mathcal{O}_{S})=\frac{1}{12}\{c_{1}^{2}(S)+c_{2}(S)\}$

with $c_{2}(S)=e(S)$ the Euler number of $S$ , for any compact complex analytic surface $S$ . For
$\mathrm{K}3$ surfaces $\mathrm{t}\mathrm{i}\mathrm{s}$ means that

$2= \frac{1}{12}(0+c_{2}(S))$ , $\mathrm{i}.\mathrm{e}.$ , $c_{2}(S)=e(S)=24$ .
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We know already that $H^{1}(S, \mathrm{Z})=$ {0}, $i.e,.b_{1}(S)=0$ . Therefore by Poincar\’e duality $b_{3}(S)=$

0. Hence

$24=e(S)=b_{0}(S)-b_{1}(S)+b_{2}(S)-b_{3}(S)+b_{4}(S)=1-0+b_{2}(S)-0+1=b_{2}(S)+2$ , i.e., $b_{2}(S)=22$ .

Since $S$ has a K\"ahler metric by assumption, we have Hodge decompostion of the cohomol-
ogy groups with real coefficients of $S$ . The unique non-trivial Hodge structure on these
cohomology groups is at the degree 2:

$H^{2}(S, \mathrm{R})\otimes {}_{\mathrm{R}}\mathrm{C}=H^{2}(S, \mathrm{C})=H^{(2,0)}\oplus H^{(1,1)}\oplus H^{(0,2)}$

with
$H^{(2,0)}={\rm Im}(\Gamma(S, \Omega_{S}^{2})arrow H^{2}(S, \mathrm{C}))\cong\Gamma(S, \Omega_{S}^{2})$

$H^{(1,1)}=H^{1}(S, \Omega_{S}^{1}))$ , $H^{(0,2)}\underline{\simeq}H^{2}(S, \mathcal{O}s)$ .

The Hodge symmetry implies $H^{\overline{(2},0)}=H^{(0,2)}$ has dimension 1 for $\mathrm{K}3$ surfaces, again.

4.2 $H_{2}$ and $H^{2}$ are torsion-free

4.3Examples of K3 surfaces

(0):Kummer surfaces. Let [-1] be the isomorphism (-1) multiplication on an abelian variety
$A$ of dimension 2, which has $16=2^{4}$ isolated fifixed points corresponding to the $2$ -divison
ppoints 2 $\cdot$ $P=0$ . Then the quotient variety $A/\{idA, [-1]\}$ by order 2 cyclic group generated
bo [-1] has 16 normal singularities whose local chart is given by $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{C}\mathrm{f}\mathrm{z}2$ , $w^{2}$ , $zw$]. Here
$\mathrm{C}[z^{2}, w^{2}, zw]$ is the subring in the polynomial ring $\mathrm{C}[z, w]$ of 2variables. Since it is isomorphic
to the quotient ring $\mathrm{C}[u, v, t]/(uv-t^{2})$ , these singularities are conical. By blowing-up these
16 singularities, we have asmooth algebraic surface Kurn(A)$)$ , which is a K3 surface.

Firstly $H^{1}(A/<[-1]>, \mathrm{Z})=H^{1}(A, \mathrm{Z})^{<[-1]>}=\{0\}$ implies $H^{1}(Kum(A), \mathrm{Z})=\{0\}$ ,
this means $b_{1}(S)=2q(S)=0$ . Secondly the fact that the canonical bundle $\Omega_{A}^{2}$ is trivial
implies that there is a unique nowhere vanishing 2-f0rm $\omega_{A}$ unique up to constant multiple.
Direct computation using local coordinates shows that this is extendable to $Kum(A)$ uniquely
without zeros. This means $\Omega_{Kum(A)}^{2}\cong \mathcal{O}s$ .

Polarization.

(l):Double covering of $\mathrm{P}^{2}$ Some K3 surfaces are obtained as double coverings of $\mathrm{P}^{2}$ branched
along degree 6 curves in $\mathrm{P}^{2}$ . We consider weighted variables $(x, y, z, w)$ of weight (1, 1, 1, 3)
respectively. And we can defifine the associated weighted projective space $\mathrm{P}^{(1,1,1,3)}$ obtained
as the quotient of $\mathrm{A}^{4}-\{(0,0,0,0)\}$ by the relation $(x, y, z, w)(tx, ty,tz, t^{3}w)\sim(t\in \mathrm{C}^{*})$ .

An equation $w^{2}=F_{6}(x, y, z)$ with $F_{6}(x, y, z)$ a homogeneous polynomial of degree 6 in
this 3-dimensional weighted projective space defines a $K3$ surface if it has no singularities.
The projection to $\mathrm{P}^{2}$ corresponding to the 3coordinates $(x, y, z)$ defifines adouble covering.

The pull-back of the tautological line bundle $O(1)$ of $\mathrm{P}^{2}$ gives an ample line bundle of
degree 2 on this $K3$ surface.

(2)$):Quartic$ surfaces in ps A non-zero homogeneous polynomial $F_{4}(x, y, z, w)$ of degree 4
in 4variables $(x : y : z : w)$ defines an algebraic surface. If this quartic surface has mild
singuarities, it is a $K3$ surface. In particular, a smooth quartic surface is a $K3$ surface.
This is because the irregulairty $q(S)$ of this surface $S$ vanishes by the Lefschetz hypersurface
(section) theroem $(\mathrm{i}.\mathrm{e}., q(S)=q(\mathrm{P}^{3})=0)$ on one hand. On the other hand, the adjunction
formula implies that the canonical sheaf $\Omega_{S}^{2}$ of $S$ is isomorphic to

$(\Omega_{\mathrm{p}\mathrm{s}}^{3}|S)\otimes N_{S/\mathrm{P}^{3}}^{*}\cong(O_{\mathrm{P}^{3}}(4)|S)\otimes O_{S}(-4)\cong O_{S}(4)\otimes O_{\mathrm{S}}(-4)\cong O_{S}$ ,

8



$\mathrm{i}.\mathrm{e}.$ , the trivial invertible sheaf.
The possible number of coefficeints of $F_{4}$ is ${}_{4}H_{4}={}_{7}C_{4}=35$ and the dimension of

the automorphism of $\mathrm{P}^{3}$ is $16-1=15$ . Therefore the heuristic ’ $\mathrm{A}\mathrm{n}\mathrm{z}\mathrm{h}\mathrm{a}\mathrm{l}$ de Modul’ is
$35-1-15=19$ .

The polariztion is the hyperplane section in $\mathrm{P}^{3}$ , hence it is the degree of the surface $S$ , 4.

(3) :Complete intersection of a quadric and a cubic in $\mathrm{P}^{4}$ By the same theorems as the case
(2), asmooth intesersection gives a $K4$ surface. The polarization is the hyperplane section,
hence its degree is $2\cdot\cdot=6$ . For a fixed non-degenerate quadric, the dimension of the projective
orthogonal group stabilzeing this quadric is 10. For a fixed quadric $Q$ , the choice of cubics
should be counted modulo $Q$ times some linear form $L$ . Thus the heuristic number of moduli
is ${}_{5}H_{3}-10-5-1=35-16=19!$

(4): Cornplete intersection of tyPe (2, 2, 2) in $\mathrm{P}^{5}$ By the same theorems as in the case (2),
(3), the smooth intersections are $K3$ . The polarization, the hyperplane section is of degree
$2^{3}=8$ .

Exercise Confirm that in this case also the heuristic number of moduli is 19. Try the
case (1) also.

4.4 Simply connectedness of K3 surfaces

It is an easy exercise to show that a $K3$ surface $S$ has no non-trivial finite etale covering, using
Noether’s formula etc. But the fact that acomplex analytic surafce has trivial (topological)
fundamental is proved by much deeper result.

The Lefchetz hyperplane section theorem implies that any smooth quartic in the 3 di-
mensional projecitve space is simply connected.

Theorem (Kodaira) Any two $K3$ surfaces $S_{1}$ , $S_{2}$ are included in some analytic family of
(analytic) $K3$ surfaces, i.e., they are connected by deformation of complex structures. In
particular, all the $K3$ surfaces are diffeomorphic as $C^{\infty}$ -manifold.

Because acomplex quartic surface is simply connected, all other $K3$ surafces are also
simply connected.

5 Moduli spaces of K3 surfaces

Unfortunately we do not yet have purely algebraic construction of the global moduli spaces
of $K3$ surfaces by using Geometric Invariant Theory. There seems to be satisfactory local
theory. The remaining problem is the problem of ’stablity’ to apply the method of G.I.T.

The current construction uses the transcendental method via periods firstly, after that
the existence of moduli space over $\mathrm{C}$ implies the stability. Thus we have moduli spaces over
subfifield of $\mathrm{C}$ , say, over Q. And by the fact that almost all $p$ is good, we have models over
such large $p$ . But we have no model over $\mathrm{Z}$ or no effective control of bad primes $p$ .

We recall this transcendental method to construct moduli spaces. This is directly related
type $\mathrm{I}\mathrm{V}$ symmetric domain. And accordingly automorphic forms on this domain, similarly
as elliptic modular forms are invoved in the moduli space of elliptic curves.

5.1 The Hodge structure of aK3 surrface

The non-trivial homology or cohomology groups of aK3 surfaces $S$ is the second homology
(cohomology) group $H_{2}(S, \mathrm{Z})$ (resp. $H^{2}$ ($S$, $\mathrm{Z}$ )). This is afree $\mathrm{Z}$ module of rank 22. The
Hodge decomposition is given by

$H^{2}(S, \mathrm{Z})\otimes_{\mathrm{Z}}\mathrm{C}=H^{(2,0)}\oplus H^{(1,1)}\oplus H^{(0,2)}$
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$H^{(2,0)}=\Gamma(S, \Omega_{S}^{2})\cong \mathrm{C}$ , $H^{(0,2)}=\overline{H(0,2)}\cong H^{2}(S, \mathcal{O}_{S})\cong \mathrm{C}$ ,

and
$H^{(1,1)}\cong H^{1}(S, \Omega_{S}^{1})\cong \mathrm{C}^{2}2$ .

If $S$ is algebraic and a poralization class $c_{1}(L)\in NS(S)$ of an ample invertible sheaf $L$

of degree $2d$ is given, then the orthogonal complement of $L$ in $H^{2}(S, \mathrm{Z})$ with respect to the

intersection form
$H_{\mathrm{p}rim}^{2}(S, \mathrm{Z})=\{\eta\in H^{2}(S, \mathrm{Z})|\mathrm{t}\mathrm{r}(\eta\cup c_{1}(L))=0\}$

is aHodge structure of weight 2 with a polarization form $\psi$ which is the restriction of the

intersection form.
The restriction of $\psi_{\mathrm{R}}=\psi\otimes \mathrm{z}^{\mathrm{R}}$ to $H_{p_{\Gamma}im}^{2}(S, \mathrm{R})\cap\{H^{(2,0)} \oplus H^{(0,2)}\}$ is positive defifinite, and

the restriction to $H_{p’ m}^{2}:(S, \mathrm{R})\cap H^{(1,1)}$ is negative defifinite by Hodge index theorem. Hence

the signature of OR on $H_{\mathrm{p}rim}^{2}(S, \mathrm{Z})\otimes_{\mathrm{Z}}\mathrm{R}$ is $(2+, 19-)$ .
Returning to the original lattice $(H^{2}(S, \mathrm{Z})$ , $\psi s)$ with intersectionform $\psi_{S}$ , we fifind that

this satisied the following 3 properties:
(i) $\emptyset s$ is unimodular, and even,
(ii) it is of signature $(3+, 19-)$ over R.
(iii) $\psi_{S}\cong(-E_{8})^{\oplus 2}\oplus H^{\oplus 3}$ .
The last result is a conclusion of the theory of quadratic forms. And we find the ismorphism

class of such lattice is unique.
Choose such an abstract lattice $(\Lambda, \psi_{\Lambda})$ of signature $(3+, 19-)$ , integral even unimodular.

Then by an analogue of Witt theorem for any two vectors $\lambda$ , $\lambda’\in\Lambda$ of the same length
$\psi_{\Lambda}(\lambda)=\psi_{\Lambda}(\lambda’)=2d$ , there is an isometry $\gamma$ of $(\Lambda, \psi_{\Lambda})$ such that $\lambda’=\gamma(\lambda)$ .

From now on, we identify $H^{2}(S, \mathrm{Z})$ with $H_{2}(S, \mathrm{Z})$ by Poincare’ duality.

5.2 Periods of marked K3 surfaces and the moduli map

We fix alattice $(\Lambda, \psi_{\mathrm{A}})$ of the type given above. Also we fifix an element $\lambda_{0}\in\Lambda$ with postive

length $\psi_{\mathrm{A}}(\lambda_{0})=2d$ .
Definition Amarked K3 surface with polarization is a pair $(S, L)$ of a $\mathrm{K}3$ surafce and an

ample invertible sheaf $L$ , with added strutures:
(i) an isomorphism

$\alpha:\{H_{2}(S, \mathrm{Z}), \psi s; c_{1}(L)\}\cong\{\Lambda, \psi_{\Lambda;}\lambda_{0}\}$

and
(ii) an isomrphism

$\beta$ : $\Gamma(S, \Omega_{S})\cong \mathrm{C}$ .

Then for the above data $(S, L;\alpha, \beta)$ , we can associate
(a): afree $\mathrm{Z}$ module

$\Lambda(\lambda_{0})=\{l\in\Lambda|\psi_{\mathrm{A}}(\lambda_{0}, l)=0\}$

of rank 21.
(b): an element $p(S;\alpha, \beta)$ in

$\Lambda^{*}(\lambda_{0})\mathrm{c}=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{Z}}(\Lambda(\lambda_{0}), \mathrm{C})$
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is defifined by

$l \in\Lambdaarrow\int_{\alpha^{-1}(l)}\omega$

. Here $\omega\in\Gamma(S, \Omega_{S})$ which is mapped to $1\in \mathrm{C}$ by $\beta$ . Then the (dual) of the intesection form
$\psi^{*}$ gives two period relations:
(i): $\psi_{\Lambda}^{*}(p(S;\alpha,\beta),p(S;\alpha,\beta))=0$

(ii): $\psi_{\Lambda}^{*}(p(S;\alpha, \beta),\overline{p(S\alpha,\beta)})>0$ .
This implies that the point $p(S;\alpha, \beta)$ modulo $\mathrm{C}^{\mathrm{x}}$ belongs to the Borel embedding of the

type IV symmteric domain $V$ of complex dimension 19 belonging to the real orthogonal group

SO $(\Lambda_{\mathrm{R}}^{*}, \psi_{\mathrm{A},\mathrm{R}})$ . Here note that to consider the homogenous coordinates $p(S;\alpha,\beta)$ modulo $\mathrm{C}^{\mathrm{X}}$

is equivalent to forget the second marking $\beta$ .
We can consider acomplex analytic family $Sarrow X$ of complex analytic surfaces of $\mathrm{K}3$ type

with relative ample invertible sheal on $S$ relative to $X$ , with continuous family of markings
$\alpha_{x},\beta_{x}$ for eaxh point $x\in X$ . Then we can defifine a period map $x\in Xarrow p(S_{x};\alpha_{x}, \beta_{x})$ . Forget

the second marking $\beta_{x}$ to get a holomorphic map form $X$ to the tyPe IV symmetric domain
$D_{IV}$ .

Finally we forget the first marking $\alpha_{x}$ . This is equivalent to the division by the action of

the discrete subgroup $\Gamma:=\mathrm{A}\mathrm{u}\mathrm{t}((\Lambda, \psi_{\lambda}, \lambda_{0}))$ on $D$ .
There remains the problem to show the bijectivity of this moduli mapp defifined by the

periods. The local injectivity comes from the local deformation theory of $\mathrm{K}3$ surfaces. The

’Anzahl der Modul’ is 19 etc., etc. The surjectivity is proved by compactifification and by

investigation of degeneration of K3 surfaces. For global injectivity we refer to the original
papers.

5.3 Degeneration of K3 surfaces

Adegeneration of $\mathrm{K}3$ surfaces is a proper flat analytic morphism $\varphi$ : $Sarrow D=\{z\in \mathrm{C}||z|<\epsilon\}$

from acomplex anaytic $3$-fold $S$ to the open disk $D$ such that for $z\in D$ , $z\neq 0$ the fifibers
$\varphi^{-1}(z)=S_{z}$ is a K3 surface and the fiber $S_{0}$ at the center $z=0$ has some singularities in

general, which is of semistable type.
Different from the case of degeneration of curves, the $3$-fold $S$ has possiblity of alternations

which preserve the singular fiber $S_{0}$ and the local monodromy aroud it. To get only a unique

denegeration with prescribed local monodromy aroud a given singular fifiber, Kulikov imposed

the following condition for $\varphi$ :
(’) the relative dualizing complex of $\varphi$ is a single sheaf $\omega_{\varphi}=\omega_{\mathrm{S}/D}$ (the relative canical
sheaf)m and this is trivial, $\mathrm{i}.\mathrm{e}.$ , $\omega_{\varphi}\cong \mathcal{O}s$ (not only over $\varphi^{-1}(D-\{0\})$ ) over the whole $S$ .
Under this Kulikov [5] proved the following:

Theorem There are 3following possibilities of degenerations of K3 surafces:
(0): $\varphi$ is asmooth morphism, $\mathrm{i}.\mathrm{e}.$ , in particular So is a non-singular $\mathrm{K}3$ surface. Hence this

case is not a real degeneration.
(i): $S_{0}= \sum_{\dot{\mathrm{s}}=1}^{n}Vi$ , where $V_{1}$ , $V_{n}$ are rational surfaces, $V_{2}$ , $\cdots$ , $V_{n-1}$ are ruled surfaces with

irregularity 1. plus the graph of $\{V_{\dot{1}}\}\mathrm{i}\mathrm{s}$ of type $A_{n}$ .
(2): $S_{0}= \sum_{j}^{n}=1V_{\dot{l}}$ , where all the $V_{\dot{\iota}}$ are rational surfaces with nonsingular double curves
$C_{\dot{|}j}=V_{\dot{\iota}}\cap Vj(i\neq j)$ which rational. There are some more conditions on the dual graph $\ldots$ .

The last two types of degenerations correponds to two types of maximal parabolic sub-

group $P_{J}$ and Ps discussed in the section of arithemtic subgroups.
Iam sorry for not giving enough references

11



References

[1] Helgason, Sigurdur: Diffeoential Geometry, Lie Groups, and Symmetric Spaces, Aca-
demic Press, 1978.

[2] Satake, Ichiro: Algebraic structures of symmetric domains, Publ. of the Math. Soc. of
Japan. Iwanami Shoten, Publishers and Princeton University Press 1980

[3] Borel, Armand: Introduction aux groupes arithmetique, Hermann, Paris, $197^{*}$ .

[4] Hua, L.K.:Ha rmonic Analysis ofFunctions of Several Complex Variables in the Classical
domains, Amer.Math.Soc, 1963

[5] Vik. S. Kulikov:Degenemtions of K3 surfaces and Enriques surfaces. Uspehi Mat. Nauk
32 (1977), 167-16

12


